Contributors: 3
Author Tokens Token Proportion Commits Commit Proportion
Karolina Drobnik 5211 55.39% 5 31.25%
Rebecca Mckeever 4126 43.86% 10 62.50%
Claudio Migliorelli 70 0.74% 1 6.25%
Total 9407 16

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733
// SPDX-License-Identifier: GPL-2.0-or-later
#include "alloc_nid_api.h"

static int alloc_nid_test_flags = TEST_F_NONE;

/*
 * contains the fraction of MEM_SIZE contained in each node in basis point
 * units (one hundredth of 1% or 1/10000)
 */
static const unsigned int node_fractions[] = {
	2500, /* 1/4  */
	 625, /* 1/16 */
	1250, /* 1/8  */
	1250, /* 1/8  */
	 625, /* 1/16 */
	 625, /* 1/16 */
	2500, /* 1/4  */
	 625, /* 1/16 */
};

static inline const char * const get_memblock_alloc_nid_name(int flags)
{
	if (flags & TEST_F_EXACT)
		return "memblock_alloc_exact_nid_raw";
	if (flags & TEST_F_RAW)
		return "memblock_alloc_try_nid_raw";
	return "memblock_alloc_try_nid";
}

static inline void *run_memblock_alloc_nid(phys_addr_t size,
					   phys_addr_t align,
					   phys_addr_t min_addr,
					   phys_addr_t max_addr, int nid)
{
	assert(!(alloc_nid_test_flags & TEST_F_EXACT) ||
	       (alloc_nid_test_flags & TEST_F_RAW));
	/*
	 * TEST_F_EXACT should be checked before TEST_F_RAW since
	 * memblock_alloc_exact_nid_raw() performs raw allocations.
	 */
	if (alloc_nid_test_flags & TEST_F_EXACT)
		return memblock_alloc_exact_nid_raw(size, align, min_addr,
						    max_addr, nid);
	if (alloc_nid_test_flags & TEST_F_RAW)
		return memblock_alloc_try_nid_raw(size, align, min_addr,
						  max_addr, nid);
	return memblock_alloc_try_nid(size, align, min_addr, max_addr, nid);
}

/*
 * A simple test that tries to allocate a memory region within min_addr and
 * max_addr range:
 *
 *        +                   +
 *   |    +       +-----------+      |
 *   |    |       |    rgn    |      |
 *   +----+-------+-----------+------+
 *        ^                   ^
 *        |                   |
 *        min_addr           max_addr
 *
 * Expect to allocate a region that ends at max_addr.
 */
static int alloc_nid_top_down_simple_check(void)
{
	struct memblock_region *rgn = &memblock.reserved.regions[0];
	void *allocated_ptr = NULL;
	phys_addr_t size = SZ_128;
	phys_addr_t min_addr;
	phys_addr_t max_addr;
	phys_addr_t rgn_end;

	PREFIX_PUSH();
	setup_memblock();

	min_addr = memblock_start_of_DRAM() + SMP_CACHE_BYTES * 2;
	max_addr = min_addr + SZ_512;

	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr,
					       NUMA_NO_NODE);
	rgn_end = rgn->base + rgn->size;

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);

	ASSERT_EQ(rgn->size, size);
	ASSERT_EQ(rgn->base, max_addr - size);
	ASSERT_EQ(rgn_end, max_addr);

	ASSERT_EQ(memblock.reserved.cnt, 1);
	ASSERT_EQ(memblock.reserved.total_size, size);

	test_pass_pop();

	return 0;
}

/*
 * A simple test that tries to allocate a memory region within min_addr and
 * max_addr range, where the end address is misaligned:
 *
 *         +       +            +
 *  |      +       +---------+  +    |
 *  |      |       |   rgn   |  |    |
 *  +------+-------+---------+--+----+
 *         ^       ^            ^
 *         |       |            |
 *       min_add   |            max_addr
 *                 |
 *                 Aligned address
 *                 boundary
 *
 * Expect to allocate an aligned region that ends before max_addr.
 */
static int alloc_nid_top_down_end_misaligned_check(void)
{
	struct memblock_region *rgn = &memblock.reserved.regions[0];
	void *allocated_ptr = NULL;
	phys_addr_t size = SZ_128;
	phys_addr_t misalign = SZ_2;
	phys_addr_t min_addr;
	phys_addr_t max_addr;
	phys_addr_t rgn_end;

	PREFIX_PUSH();
	setup_memblock();

	min_addr = memblock_start_of_DRAM() + SMP_CACHE_BYTES * 2;
	max_addr = min_addr + SZ_512 + misalign;

	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr,
					       NUMA_NO_NODE);
	rgn_end = rgn->base + rgn->size;

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);

	ASSERT_EQ(rgn->size, size);
	ASSERT_EQ(rgn->base, max_addr - size - misalign);
	ASSERT_LT(rgn_end, max_addr);

	ASSERT_EQ(memblock.reserved.cnt, 1);
	ASSERT_EQ(memblock.reserved.total_size, size);

	test_pass_pop();

	return 0;
}

/*
 * A simple test that tries to allocate a memory region, which spans over the
 * min_addr and max_addr range:
 *
 *         +               +
 *  |      +---------------+       |
 *  |      |      rgn      |       |
 *  +------+---------------+-------+
 *         ^               ^
 *         |               |
 *         min_addr        max_addr
 *
 * Expect to allocate a region that starts at min_addr and ends at
 * max_addr, given that min_addr is aligned.
 */
static int alloc_nid_exact_address_generic_check(void)
{
	struct memblock_region *rgn = &memblock.reserved.regions[0];
	void *allocated_ptr = NULL;
	phys_addr_t size = SZ_1K;
	phys_addr_t min_addr;
	phys_addr_t max_addr;
	phys_addr_t rgn_end;

	PREFIX_PUSH();
	setup_memblock();

	min_addr = memblock_start_of_DRAM() + SMP_CACHE_BYTES;
	max_addr = min_addr + size;

	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr,
					       NUMA_NO_NODE);
	rgn_end = rgn->base + rgn->size;

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);

	ASSERT_EQ(rgn->size, size);
	ASSERT_EQ(rgn->base, min_addr);
	ASSERT_EQ(rgn_end, max_addr);

	ASSERT_EQ(memblock.reserved.cnt, 1);
	ASSERT_EQ(memblock.reserved.total_size, size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate a memory region, which can't fit into
 * min_addr and max_addr range:
 *
 *           +          +     +
 *  |        +----------+-----+    |
 *  |        |   rgn    +     |    |
 *  +--------+----------+-----+----+
 *           ^          ^     ^
 *           |          |     |
 *           Aligned    |    max_addr
 *           address    |
 *           boundary   min_add
 *
 * Expect to drop the lower limit and allocate a memory region which
 * ends at max_addr (if the address is aligned).
 */
static int alloc_nid_top_down_narrow_range_check(void)
{
	struct memblock_region *rgn = &memblock.reserved.regions[0];
	void *allocated_ptr = NULL;
	phys_addr_t size = SZ_256;
	phys_addr_t min_addr;
	phys_addr_t max_addr;

	PREFIX_PUSH();
	setup_memblock();

	min_addr = memblock_start_of_DRAM() + SZ_512;
	max_addr = min_addr + SMP_CACHE_BYTES;

	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr,
					       NUMA_NO_NODE);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);

	ASSERT_EQ(rgn->size, size);
	ASSERT_EQ(rgn->base, max_addr - size);

	ASSERT_EQ(memblock.reserved.cnt, 1);
	ASSERT_EQ(memblock.reserved.total_size, size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate a memory region, which can't fit into
 * min_addr and max_addr range, with the latter being too close to the beginning
 * of the available memory:
 *
 *   +-------------+
 *   |     new     |
 *   +-------------+
 *         +       +
 *         |       +              |
 *         |       |              |
 *         +-------+--------------+
 *         ^       ^
 *         |       |
 *         |       max_addr
 *         |
 *         min_addr
 *
 * Expect no allocation to happen.
 */
static int alloc_nid_low_max_generic_check(void)
{
	void *allocated_ptr = NULL;
	phys_addr_t size = SZ_1K;
	phys_addr_t min_addr;
	phys_addr_t max_addr;

	PREFIX_PUSH();
	setup_memblock();

	min_addr = memblock_start_of_DRAM();
	max_addr = min_addr + SMP_CACHE_BYTES;

	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr,
					       NUMA_NO_NODE);

	ASSERT_EQ(allocated_ptr, NULL);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate a memory region within min_addr min_addr range,
 * with min_addr being so close that it's next to an allocated region:
 *
 *          +                        +
 *  |       +--------+---------------|
 *  |       |   r1   |      rgn      |
 *  +-------+--------+---------------+
 *          ^                        ^
 *          |                        |
 *          min_addr                 max_addr
 *
 * Expect a merge of both regions. Only the region size gets updated.
 */
static int alloc_nid_min_reserved_generic_check(void)
{
	struct memblock_region *rgn = &memblock.reserved.regions[0];
	void *allocated_ptr = NULL;
	phys_addr_t r1_size = SZ_128;
	phys_addr_t r2_size = SZ_64;
	phys_addr_t total_size = r1_size + r2_size;
	phys_addr_t min_addr;
	phys_addr_t max_addr;
	phys_addr_t reserved_base;

	PREFIX_PUSH();
	setup_memblock();

	max_addr = memblock_end_of_DRAM();
	min_addr = max_addr - r2_size;
	reserved_base = min_addr - r1_size;

	memblock_reserve(reserved_base, r1_size);

	allocated_ptr = run_memblock_alloc_nid(r2_size, SMP_CACHE_BYTES,
					       min_addr, max_addr,
					       NUMA_NO_NODE);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, r2_size, alloc_nid_test_flags);

	ASSERT_EQ(rgn->size, total_size);
	ASSERT_EQ(rgn->base, reserved_base);

	ASSERT_EQ(memblock.reserved.cnt, 1);
	ASSERT_EQ(memblock.reserved.total_size, total_size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate a memory region within min_addr and max_addr,
 * with max_addr being so close that it's next to an allocated region:
 *
 *             +             +
 *  |          +-------------+--------|
 *  |          |     rgn     |   r1   |
 *  +----------+-------------+--------+
 *             ^             ^
 *             |             |
 *             min_addr      max_addr
 *
 * Expect a merge of regions. Only the region size gets updated.
 */
static int alloc_nid_max_reserved_generic_check(void)
{
	struct memblock_region *rgn = &memblock.reserved.regions[0];
	void *allocated_ptr = NULL;
	phys_addr_t r1_size = SZ_64;
	phys_addr_t r2_size = SZ_128;
	phys_addr_t total_size = r1_size + r2_size;
	phys_addr_t min_addr;
	phys_addr_t max_addr;

	PREFIX_PUSH();
	setup_memblock();

	max_addr = memblock_end_of_DRAM() - r1_size;
	min_addr = max_addr - r2_size;

	memblock_reserve(max_addr, r1_size);

	allocated_ptr = run_memblock_alloc_nid(r2_size, SMP_CACHE_BYTES,
					       min_addr, max_addr,
					       NUMA_NO_NODE);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, r2_size, alloc_nid_test_flags);

	ASSERT_EQ(rgn->size, total_size);
	ASSERT_EQ(rgn->base, min_addr);

	ASSERT_EQ(memblock.reserved.cnt, 1);
	ASSERT_EQ(memblock.reserved.total_size, total_size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate memory within min_addr and max_add range, when
 * there are two reserved regions at the borders, with a gap big enough to fit
 * a new region:
 *
 *                +           +
 *  |    +--------+   +-------+------+  |
 *  |    |   r2   |   |  rgn  |  r1  |  |
 *  +----+--------+---+-------+------+--+
 *                ^           ^
 *                |           |
 *                min_addr    max_addr
 *
 * Expect to merge the new region with r1. The second region does not get
 * updated. The total size field gets updated.
 */

static int alloc_nid_top_down_reserved_with_space_check(void)
{
	struct memblock_region *rgn1 = &memblock.reserved.regions[1];
	struct memblock_region *rgn2 = &memblock.reserved.regions[0];
	void *allocated_ptr = NULL;
	struct region r1, r2;
	phys_addr_t r3_size = SZ_64;
	phys_addr_t gap_size = SMP_CACHE_BYTES;
	phys_addr_t total_size;
	phys_addr_t max_addr;
	phys_addr_t min_addr;

	PREFIX_PUSH();
	setup_memblock();

	r1.base = memblock_end_of_DRAM() - SMP_CACHE_BYTES * 2;
	r1.size = SMP_CACHE_BYTES;

	r2.size = SZ_128;
	r2.base = r1.base - (r3_size + gap_size + r2.size);

	total_size = r1.size + r2.size + r3_size;
	min_addr = r2.base + r2.size;
	max_addr = r1.base;

	memblock_reserve(r1.base, r1.size);
	memblock_reserve(r2.base, r2.size);

	allocated_ptr = run_memblock_alloc_nid(r3_size, SMP_CACHE_BYTES,
					       min_addr, max_addr,
					       NUMA_NO_NODE);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, r3_size, alloc_nid_test_flags);

	ASSERT_EQ(rgn1->size, r1.size + r3_size);
	ASSERT_EQ(rgn1->base, max_addr - r3_size);

	ASSERT_EQ(rgn2->size, r2.size);
	ASSERT_EQ(rgn2->base, r2.base);

	ASSERT_EQ(memblock.reserved.cnt, 2);
	ASSERT_EQ(memblock.reserved.total_size, total_size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate memory within min_addr and max_add range, when
 * there are two reserved regions at the borders, with a gap of a size equal to
 * the size of the new region:
 *
 *                 +        +
 *  |     +--------+--------+--------+     |
 *  |     |   r2   |   r3   |   r1   |     |
 *  +-----+--------+--------+--------+-----+
 *                 ^        ^
 *                 |        |
 *                 min_addr max_addr
 *
 * Expect to merge all of the regions into one. The region counter and total
 * size fields get updated.
 */
static int alloc_nid_reserved_full_merge_generic_check(void)
{
	struct memblock_region *rgn = &memblock.reserved.regions[0];
	void *allocated_ptr = NULL;
	struct region r1, r2;
	phys_addr_t r3_size = SZ_64;
	phys_addr_t total_size;
	phys_addr_t max_addr;
	phys_addr_t min_addr;

	PREFIX_PUSH();
	setup_memblock();

	r1.base = memblock_end_of_DRAM() - SMP_CACHE_BYTES * 2;
	r1.size = SMP_CACHE_BYTES;

	r2.size = SZ_128;
	r2.base = r1.base - (r3_size + r2.size);

	total_size = r1.size + r2.size + r3_size;
	min_addr = r2.base + r2.size;
	max_addr = r1.base;

	memblock_reserve(r1.base, r1.size);
	memblock_reserve(r2.base, r2.size);

	allocated_ptr = run_memblock_alloc_nid(r3_size, SMP_CACHE_BYTES,
					       min_addr, max_addr,
					       NUMA_NO_NODE);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, r3_size, alloc_nid_test_flags);

	ASSERT_EQ(rgn->size, total_size);
	ASSERT_EQ(rgn->base, r2.base);

	ASSERT_EQ(memblock.reserved.cnt, 1);
	ASSERT_EQ(memblock.reserved.total_size, total_size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate memory within min_addr and max_add range, when
 * there are two reserved regions at the borders, with a gap that can't fit
 * a new region:
 *
 *                       +    +
 *  |  +----------+------+    +------+   |
 *  |  |    r3    |  r2  |    |  r1  |   |
 *  +--+----------+------+----+------+---+
 *                       ^    ^
 *                       |    |
 *                       |    max_addr
 *                       |
 *                       min_addr
 *
 * Expect to merge the new region with r2. The second region does not get
 * updated. The total size counter gets updated.
 */
static int alloc_nid_top_down_reserved_no_space_check(void)
{
	struct memblock_region *rgn1 = &memblock.reserved.regions[1];
	struct memblock_region *rgn2 = &memblock.reserved.regions[0];
	void *allocated_ptr = NULL;
	struct region r1, r2;
	phys_addr_t r3_size = SZ_256;
	phys_addr_t gap_size = SMP_CACHE_BYTES;
	phys_addr_t total_size;
	phys_addr_t max_addr;
	phys_addr_t min_addr;

	PREFIX_PUSH();
	setup_memblock();

	r1.base = memblock_end_of_DRAM() - SMP_CACHE_BYTES * 2;
	r1.size = SMP_CACHE_BYTES;

	r2.size = SZ_128;
	r2.base = r1.base - (r2.size + gap_size);

	total_size = r1.size + r2.size + r3_size;
	min_addr = r2.base + r2.size;
	max_addr = r1.base;

	memblock_reserve(r1.base, r1.size);
	memblock_reserve(r2.base, r2.size);

	allocated_ptr = run_memblock_alloc_nid(r3_size, SMP_CACHE_BYTES,
					       min_addr, max_addr,
					       NUMA_NO_NODE);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, r3_size, alloc_nid_test_flags);

	ASSERT_EQ(rgn1->size, r1.size);
	ASSERT_EQ(rgn1->base, r1.base);

	ASSERT_EQ(rgn2->size, r2.size + r3_size);
	ASSERT_EQ(rgn2->base, r2.base - r3_size);

	ASSERT_EQ(memblock.reserved.cnt, 2);
	ASSERT_EQ(memblock.reserved.total_size, total_size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate memory within min_addr and max_add range, but
 * it's too narrow and everything else is reserved:
 *
 *            +-----------+
 *            |    new    |
 *            +-----------+
 *                 +      +
 *  |--------------+      +----------|
 *  |      r2      |      |    r1    |
 *  +--------------+------+----------+
 *                 ^      ^
 *                 |      |
 *                 |      max_addr
 *                 |
 *                 min_addr
 *
 * Expect no allocation to happen.
 */

static int alloc_nid_reserved_all_generic_check(void)
{
	void *allocated_ptr = NULL;
	struct region r1, r2;
	phys_addr_t r3_size = SZ_256;
	phys_addr_t gap_size = SMP_CACHE_BYTES;
	phys_addr_t max_addr;
	phys_addr_t min_addr;

	PREFIX_PUSH();
	setup_memblock();

	r1.base = memblock_end_of_DRAM() - SMP_CACHE_BYTES;
	r1.size = SMP_CACHE_BYTES;

	r2.size = MEM_SIZE - (r1.size + gap_size);
	r2.base = memblock_start_of_DRAM();

	min_addr = r2.base + r2.size;
	max_addr = r1.base;

	memblock_reserve(r1.base, r1.size);
	memblock_reserve(r2.base, r2.size);

	allocated_ptr = run_memblock_alloc_nid(r3_size, SMP_CACHE_BYTES,
					       min_addr, max_addr,
					       NUMA_NO_NODE);

	ASSERT_EQ(allocated_ptr, NULL);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate a memory region, where max_addr is
 * bigger than the end address of the available memory. Expect to allocate
 * a region that ends before the end of the memory.
 */
static int alloc_nid_top_down_cap_max_check(void)
{
	struct memblock_region *rgn = &memblock.reserved.regions[0];
	void *allocated_ptr = NULL;
	phys_addr_t size = SZ_256;
	phys_addr_t min_addr;
	phys_addr_t max_addr;

	PREFIX_PUSH();
	setup_memblock();

	min_addr = memblock_end_of_DRAM() - SZ_1K;
	max_addr = memblock_end_of_DRAM() + SZ_256;

	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr,
					       NUMA_NO_NODE);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);

	ASSERT_EQ(rgn->size, size);
	ASSERT_EQ(rgn->base, memblock_end_of_DRAM() - size);

	ASSERT_EQ(memblock.reserved.cnt, 1);
	ASSERT_EQ(memblock.reserved.total_size, size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate a memory region, where min_addr is
 * smaller than the start address of the available memory. Expect to allocate
 * a region that ends before the end of the memory.
 */
static int alloc_nid_top_down_cap_min_check(void)
{
	struct memblock_region *rgn = &memblock.reserved.regions[0];
	void *allocated_ptr = NULL;
	phys_addr_t size = SZ_1K;
	phys_addr_t min_addr;
	phys_addr_t max_addr;

	PREFIX_PUSH();
	setup_memblock();

	min_addr = memblock_start_of_DRAM() - SZ_256;
	max_addr = memblock_end_of_DRAM();

	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr,
					       NUMA_NO_NODE);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);

	ASSERT_EQ(rgn->size, size);
	ASSERT_EQ(rgn->base, memblock_end_of_DRAM() - size);

	ASSERT_EQ(memblock.reserved.cnt, 1);
	ASSERT_EQ(memblock.reserved.total_size, size);

	test_pass_pop();

	return 0;
}

/*
 * A simple test that tries to allocate a memory region within min_addr and
 * max_addr range:
 *
 *        +                       +
 *   |    +-----------+           |      |
 *   |    |    rgn    |           |      |
 *   +----+-----------+-----------+------+
 *        ^                       ^
 *        |                       |
 *        min_addr                max_addr
 *
 * Expect to allocate a region that ends before max_addr.
 */
static int alloc_nid_bottom_up_simple_check(void)
{
	struct memblock_region *rgn = &memblock.reserved.regions[0];
	void *allocated_ptr = NULL;
	phys_addr_t size = SZ_128;
	phys_addr_t min_addr;
	phys_addr_t max_addr;
	phys_addr_t rgn_end;

	PREFIX_PUSH();
	setup_memblock();

	min_addr = memblock_start_of_DRAM() + SMP_CACHE_BYTES * 2;
	max_addr = min_addr + SZ_512;

	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr,
					       NUMA_NO_NODE);
	rgn_end = rgn->base + rgn->size;

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);

	ASSERT_EQ(rgn->size, size);
	ASSERT_EQ(rgn->base, min_addr);
	ASSERT_LT(rgn_end, max_addr);

	ASSERT_EQ(memblock.reserved.cnt, 1);
	ASSERT_EQ(memblock.reserved.total_size, size);

	test_pass_pop();

	return 0;
}

/*
 * A simple test that tries to allocate a memory region within min_addr and
 * max_addr range, where the start address is misaligned:
 *
 *        +                     +
 *  |     +   +-----------+     +     |
 *  |     |   |    rgn    |     |     |
 *  +-----+---+-----------+-----+-----+
 *        ^   ^----.            ^
 *        |        |            |
 *     min_add     |            max_addr
 *                 |
 *                 Aligned address
 *                 boundary
 *
 * Expect to allocate an aligned region that ends before max_addr.
 */
static int alloc_nid_bottom_up_start_misaligned_check(void)
{
	struct memblock_region *rgn = &memblock.reserved.regions[0];
	void *allocated_ptr = NULL;
	phys_addr_t size = SZ_128;
	phys_addr_t misalign = SZ_2;
	phys_addr_t min_addr;
	phys_addr_t max_addr;
	phys_addr_t rgn_end;

	PREFIX_PUSH();
	setup_memblock();

	min_addr = memblock_start_of_DRAM() + misalign;
	max_addr = min_addr + SZ_512;

	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr,
					       NUMA_NO_NODE);
	rgn_end = rgn->base + rgn->size;

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);

	ASSERT_EQ(rgn->size, size);
	ASSERT_EQ(rgn->base, min_addr + (SMP_CACHE_BYTES - misalign));
	ASSERT_LT(rgn_end, max_addr);

	ASSERT_EQ(memblock.reserved.cnt, 1);
	ASSERT_EQ(memblock.reserved.total_size, size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate a memory region, which can't fit into min_addr
 * and max_addr range:
 *
 *                      +    +
 *  |---------+         +    +      |
 *  |   rgn   |         |    |      |
 *  +---------+---------+----+------+
 *                      ^    ^
 *                      |    |
 *                      |    max_addr
 *                      |
 *                      min_add
 *
 * Expect to drop the lower limit and allocate a memory region which
 * starts at the beginning of the available memory.
 */
static int alloc_nid_bottom_up_narrow_range_check(void)
{
	struct memblock_region *rgn = &memblock.reserved.regions[0];
	void *allocated_ptr = NULL;
	phys_addr_t size = SZ_256;
	phys_addr_t min_addr;
	phys_addr_t max_addr;

	PREFIX_PUSH();
	setup_memblock();

	min_addr = memblock_start_of_DRAM() + SZ_512;
	max_addr = min_addr + SMP_CACHE_BYTES;

	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr,
					       NUMA_NO_NODE);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);

	ASSERT_EQ(rgn->size, size);
	ASSERT_EQ(rgn->base, memblock_start_of_DRAM());

	ASSERT_EQ(memblock.reserved.cnt, 1);
	ASSERT_EQ(memblock.reserved.total_size, size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate memory within min_addr and max_add range, when
 * there are two reserved regions at the borders, with a gap big enough to fit
 * a new region:
 *
 *                +           +
 *  |    +--------+-------+   +------+  |
 *  |    |   r2   |  rgn  |   |  r1  |  |
 *  +----+--------+-------+---+------+--+
 *                ^           ^
 *                |           |
 *                min_addr    max_addr
 *
 * Expect to merge the new region with r2. The second region does not get
 * updated. The total size field gets updated.
 */

static int alloc_nid_bottom_up_reserved_with_space_check(void)
{
	struct memblock_region *rgn1 = &memblock.reserved.regions[1];
	struct memblock_region *rgn2 = &memblock.reserved.regions[0];
	void *allocated_ptr = NULL;
	struct region r1, r2;
	phys_addr_t r3_size = SZ_64;
	phys_addr_t gap_size = SMP_CACHE_BYTES;
	phys_addr_t total_size;
	phys_addr_t max_addr;
	phys_addr_t min_addr;

	PREFIX_PUSH();
	setup_memblock();

	r1.base = memblock_end_of_DRAM() - SMP_CACHE_BYTES * 2;
	r1.size = SMP_CACHE_BYTES;

	r2.size = SZ_128;
	r2.base = r1.base - (r3_size + gap_size + r2.size);

	total_size = r1.size + r2.size + r3_size;
	min_addr = r2.base + r2.size;
	max_addr = r1.base;

	memblock_reserve(r1.base, r1.size);
	memblock_reserve(r2.base, r2.size);

	allocated_ptr = run_memblock_alloc_nid(r3_size, SMP_CACHE_BYTES,
					       min_addr, max_addr,
					       NUMA_NO_NODE);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, r3_size, alloc_nid_test_flags);

	ASSERT_EQ(rgn1->size, r1.size);
	ASSERT_EQ(rgn1->base, max_addr);

	ASSERT_EQ(rgn2->size, r2.size + r3_size);
	ASSERT_EQ(rgn2->base, r2.base);

	ASSERT_EQ(memblock.reserved.cnt, 2);
	ASSERT_EQ(memblock.reserved.total_size, total_size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate memory within min_addr and max_add range, when
 * there are two reserved regions at the borders, with a gap of a size equal to
 * the size of the new region:
 *
 *                         +   +
 *  |----------+    +------+   +----+  |
 *  |    r3    |    |  r2  |   | r1 |  |
 *  +----------+----+------+---+----+--+
 *                         ^   ^
 *                         |   |
 *                         |  max_addr
 *                         |
 *                         min_addr
 *
 * Expect to drop the lower limit and allocate memory at the beginning of the
 * available memory. The region counter and total size fields get updated.
 * Other regions are not modified.
 */

static int alloc_nid_bottom_up_reserved_no_space_check(void)
{
	struct memblock_region *rgn1 = &memblock.reserved.regions[2];
	struct memblock_region *rgn2 = &memblock.reserved.regions[1];
	struct memblock_region *rgn3 = &memblock.reserved.regions[0];
	void *allocated_ptr = NULL;
	struct region r1, r2;
	phys_addr_t r3_size = SZ_256;
	phys_addr_t gap_size = SMP_CACHE_BYTES;
	phys_addr_t total_size;
	phys_addr_t max_addr;
	phys_addr_t min_addr;

	PREFIX_PUSH();
	setup_memblock();

	r1.base = memblock_end_of_DRAM() - SMP_CACHE_BYTES * 2;
	r1.size = SMP_CACHE_BYTES;

	r2.size = SZ_128;
	r2.base = r1.base - (r2.size + gap_size);

	total_size = r1.size + r2.size + r3_size;
	min_addr = r2.base + r2.size;
	max_addr = r1.base;

	memblock_reserve(r1.base, r1.size);
	memblock_reserve(r2.base, r2.size);

	allocated_ptr = run_memblock_alloc_nid(r3_size, SMP_CACHE_BYTES,
					       min_addr, max_addr,
					       NUMA_NO_NODE);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, r3_size, alloc_nid_test_flags);

	ASSERT_EQ(rgn3->size, r3_size);
	ASSERT_EQ(rgn3->base, memblock_start_of_DRAM());

	ASSERT_EQ(rgn2->size, r2.size);
	ASSERT_EQ(rgn2->base, r2.base);

	ASSERT_EQ(rgn1->size, r1.size);
	ASSERT_EQ(rgn1->base, r1.base);

	ASSERT_EQ(memblock.reserved.cnt, 3);
	ASSERT_EQ(memblock.reserved.total_size, total_size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate a memory region, where max_addr is
 * bigger than the end address of the available memory. Expect to allocate
 * a region that starts at the min_addr.
 */
static int alloc_nid_bottom_up_cap_max_check(void)
{
	struct memblock_region *rgn = &memblock.reserved.regions[0];
	void *allocated_ptr = NULL;
	phys_addr_t size = SZ_256;
	phys_addr_t min_addr;
	phys_addr_t max_addr;

	PREFIX_PUSH();
	setup_memblock();

	min_addr = memblock_start_of_DRAM() + SZ_1K;
	max_addr = memblock_end_of_DRAM() + SZ_256;

	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr,
					       NUMA_NO_NODE);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);

	ASSERT_EQ(rgn->size, size);
	ASSERT_EQ(rgn->base, min_addr);

	ASSERT_EQ(memblock.reserved.cnt, 1);
	ASSERT_EQ(memblock.reserved.total_size, size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate a memory region, where min_addr is
 * smaller than the start address of the available memory. Expect to allocate
 * a region at the beginning of the available memory.
 */
static int alloc_nid_bottom_up_cap_min_check(void)
{
	struct memblock_region *rgn = &memblock.reserved.regions[0];
	void *allocated_ptr = NULL;
	phys_addr_t size = SZ_1K;
	phys_addr_t min_addr;
	phys_addr_t max_addr;

	PREFIX_PUSH();
	setup_memblock();

	min_addr = memblock_start_of_DRAM();
	max_addr = memblock_end_of_DRAM() - SZ_256;

	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr,
					       NUMA_NO_NODE);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);

	ASSERT_EQ(rgn->size, size);
	ASSERT_EQ(rgn->base, memblock_start_of_DRAM());

	ASSERT_EQ(memblock.reserved.cnt, 1);
	ASSERT_EQ(memblock.reserved.total_size, size);

	test_pass_pop();

	return 0;
}

/* Test case wrappers for range tests */
static int alloc_nid_simple_check(void)
{
	test_print("\tRunning %s...\n", __func__);
	memblock_set_bottom_up(false);
	alloc_nid_top_down_simple_check();
	memblock_set_bottom_up(true);
	alloc_nid_bottom_up_simple_check();

	return 0;
}

static int alloc_nid_misaligned_check(void)
{
	test_print("\tRunning %s...\n", __func__);
	memblock_set_bottom_up(false);
	alloc_nid_top_down_end_misaligned_check();
	memblock_set_bottom_up(true);
	alloc_nid_bottom_up_start_misaligned_check();

	return 0;
}

static int alloc_nid_narrow_range_check(void)
{
	test_print("\tRunning %s...\n", __func__);
	memblock_set_bottom_up(false);
	alloc_nid_top_down_narrow_range_check();
	memblock_set_bottom_up(true);
	alloc_nid_bottom_up_narrow_range_check();

	return 0;
}

static int alloc_nid_reserved_with_space_check(void)
{
	test_print("\tRunning %s...\n", __func__);
	memblock_set_bottom_up(false);
	alloc_nid_top_down_reserved_with_space_check();
	memblock_set_bottom_up(true);
	alloc_nid_bottom_up_reserved_with_space_check();

	return 0;
}

static int alloc_nid_reserved_no_space_check(void)
{
	test_print("\tRunning %s...\n", __func__);
	memblock_set_bottom_up(false);
	alloc_nid_top_down_reserved_no_space_check();
	memblock_set_bottom_up(true);
	alloc_nid_bottom_up_reserved_no_space_check();

	return 0;
}

static int alloc_nid_cap_max_check(void)
{
	test_print("\tRunning %s...\n", __func__);
	memblock_set_bottom_up(false);
	alloc_nid_top_down_cap_max_check();
	memblock_set_bottom_up(true);
	alloc_nid_bottom_up_cap_max_check();

	return 0;
}

static int alloc_nid_cap_min_check(void)
{
	test_print("\tRunning %s...\n", __func__);
	memblock_set_bottom_up(false);
	alloc_nid_top_down_cap_min_check();
	memblock_set_bottom_up(true);
	alloc_nid_bottom_up_cap_min_check();

	return 0;
}

static int alloc_nid_min_reserved_check(void)
{
	test_print("\tRunning %s...\n", __func__);
	run_top_down(alloc_nid_min_reserved_generic_check);
	run_bottom_up(alloc_nid_min_reserved_generic_check);

	return 0;
}

static int alloc_nid_max_reserved_check(void)
{
	test_print("\tRunning %s...\n", __func__);
	run_top_down(alloc_nid_max_reserved_generic_check);
	run_bottom_up(alloc_nid_max_reserved_generic_check);

	return 0;
}

static int alloc_nid_exact_address_check(void)
{
	test_print("\tRunning %s...\n", __func__);
	run_top_down(alloc_nid_exact_address_generic_check);
	run_bottom_up(alloc_nid_exact_address_generic_check);

	return 0;
}

static int alloc_nid_reserved_full_merge_check(void)
{
	test_print("\tRunning %s...\n", __func__);
	run_top_down(alloc_nid_reserved_full_merge_generic_check);
	run_bottom_up(alloc_nid_reserved_full_merge_generic_check);

	return 0;
}

static int alloc_nid_reserved_all_check(void)
{
	test_print("\tRunning %s...\n", __func__);
	run_top_down(alloc_nid_reserved_all_generic_check);
	run_bottom_up(alloc_nid_reserved_all_generic_check);

	return 0;
}

static int alloc_nid_low_max_check(void)
{
	test_print("\tRunning %s...\n", __func__);
	run_top_down(alloc_nid_low_max_generic_check);
	run_bottom_up(alloc_nid_low_max_generic_check);

	return 0;
}

static int memblock_alloc_nid_range_checks(void)
{
	test_print("Running %s range tests...\n",
		   get_memblock_alloc_nid_name(alloc_nid_test_flags));

	alloc_nid_simple_check();
	alloc_nid_misaligned_check();
	alloc_nid_narrow_range_check();
	alloc_nid_reserved_with_space_check();
	alloc_nid_reserved_no_space_check();
	alloc_nid_cap_max_check();
	alloc_nid_cap_min_check();

	alloc_nid_min_reserved_check();
	alloc_nid_max_reserved_check();
	alloc_nid_exact_address_check();
	alloc_nid_reserved_full_merge_check();
	alloc_nid_reserved_all_check();
	alloc_nid_low_max_check();

	return 0;
}

/*
 * A test that tries to allocate a memory region in a specific NUMA node that
 * has enough memory to allocate a region of the requested size.
 * Expect to allocate an aligned region at the end of the requested node.
 */
static int alloc_nid_top_down_numa_simple_check(void)
{
	int nid_req = 3;
	struct memblock_region *new_rgn = &memblock.reserved.regions[0];
	struct memblock_region *req_node = &memblock.memory.regions[nid_req];
	void *allocated_ptr = NULL;
	phys_addr_t size;
	phys_addr_t min_addr;
	phys_addr_t max_addr;

	PREFIX_PUSH();
	setup_numa_memblock(node_fractions);

	ASSERT_LE(SZ_4, req_node->size);
	size = req_node->size / SZ_4;
	min_addr = memblock_start_of_DRAM();
	max_addr = memblock_end_of_DRAM();

	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr, nid_req);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);

	ASSERT_EQ(new_rgn->size, size);
	ASSERT_EQ(new_rgn->base, region_end(req_node) - size);
	ASSERT_LE(req_node->base, new_rgn->base);

	ASSERT_EQ(memblock.reserved.cnt, 1);
	ASSERT_EQ(memblock.reserved.total_size, size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate a memory region in a specific NUMA node that
 * does not have enough memory to allocate a region of the requested size:
 *
 *  |   +-----+          +------------------+     |
 *  |   | req |          |     expected     |     |
 *  +---+-----+----------+------------------+-----+
 *
 *  |                             +---------+     |
 *  |                             |   rgn   |     |
 *  +-----------------------------+---------+-----+
 *
 * Expect to allocate an aligned region at the end of the last node that has
 * enough memory (in this case, nid = 6) after falling back to NUMA_NO_NODE.
 */
static int alloc_nid_top_down_numa_small_node_check(void)
{
	int nid_req = 1;
	int nid_exp = 6;
	struct memblock_region *new_rgn = &memblock.reserved.regions[0];
	struct memblock_region *req_node = &memblock.memory.regions[nid_req];
	struct memblock_region *exp_node = &memblock.memory.regions[nid_exp];
	void *allocated_ptr = NULL;
	phys_addr_t size;
	phys_addr_t min_addr;
	phys_addr_t max_addr;

	PREFIX_PUSH();
	setup_numa_memblock(node_fractions);

	size = SZ_2 * req_node->size;
	min_addr = memblock_start_of_DRAM();
	max_addr = memblock_end_of_DRAM();

	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr, nid_req);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);

	ASSERT_EQ(new_rgn->size, size);
	ASSERT_EQ(new_rgn->base, region_end(exp_node) - size);
	ASSERT_LE(exp_node->base, new_rgn->base);

	ASSERT_EQ(memblock.reserved.cnt, 1);
	ASSERT_EQ(memblock.reserved.total_size, size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate a memory region in a specific NUMA node that
 * is fully reserved:
 *
 *  |              +---------+            +------------------+     |
 *  |              |requested|            |     expected     |     |
 *  +--------------+---------+------------+------------------+-----+
 *
 *  |              +---------+                     +---------+     |
 *  |              | reserved|                     |   new   |     |
 *  +--------------+---------+---------------------+---------+-----+
 *
 * Expect to allocate an aligned region at the end of the last node that is
 * large enough and has enough unreserved memory (in this case, nid = 6) after
 * falling back to NUMA_NO_NODE. The region count and total size get updated.
 */
static int alloc_nid_top_down_numa_node_reserved_check(void)
{
	int nid_req = 2;
	int nid_exp = 6;
	struct memblock_region *new_rgn = &memblock.reserved.regions[1];
	struct memblock_region *req_node = &memblock.memory.regions[nid_req];
	struct memblock_region *exp_node = &memblock.memory.regions[nid_exp];
	void *allocated_ptr = NULL;
	phys_addr_t size;
	phys_addr_t min_addr;
	phys_addr_t max_addr;

	PREFIX_PUSH();
	setup_numa_memblock(node_fractions);

	size = req_node->size;
	min_addr = memblock_start_of_DRAM();
	max_addr = memblock_end_of_DRAM();

	memblock_reserve(req_node->base, req_node->size);
	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr, nid_req);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);

	ASSERT_EQ(new_rgn->size, size);
	ASSERT_EQ(new_rgn->base, region_end(exp_node) - size);
	ASSERT_LE(exp_node->base, new_rgn->base);

	ASSERT_EQ(memblock.reserved.cnt, 2);
	ASSERT_EQ(memblock.reserved.total_size, size + req_node->size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate a memory region in a specific NUMA node that
 * is partially reserved but has enough memory for the allocated region:
 *
 *  |           +---------------------------------------+          |
 *  |           |               requested               |          |
 *  +-----------+---------------------------------------+----------+
 *
 *  |           +------------------+              +-----+          |
 *  |           |     reserved     |              | new |          |
 *  +-----------+------------------+--------------+-----+----------+
 *
 * Expect to allocate an aligned region at the end of the requested node. The
 * region count and total size get updated.
 */
static int alloc_nid_top_down_numa_part_reserved_check(void)
{
	int nid_req = 4;
	struct memblock_region *new_rgn = &memblock.reserved.regions[1];
	struct memblock_region *req_node = &memblock.memory.regions[nid_req];
	void *allocated_ptr = NULL;
	struct region r1;
	phys_addr_t size;
	phys_addr_t min_addr;
	phys_addr_t max_addr;

	PREFIX_PUSH();
	setup_numa_memblock(node_fractions);

	ASSERT_LE(SZ_8, req_node->size);
	r1.base = req_node->base;
	r1.size = req_node->size / SZ_2;
	size = r1.size / SZ_4;
	min_addr = memblock_start_of_DRAM();
	max_addr = memblock_end_of_DRAM();

	memblock_reserve(r1.base, r1.size);
	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr, nid_req);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);

	ASSERT_EQ(new_rgn->size, size);
	ASSERT_EQ(new_rgn->base, region_end(req_node) - size);
	ASSERT_LE(req_node->base, new_rgn->base);

	ASSERT_EQ(memblock.reserved.cnt, 2);
	ASSERT_EQ(memblock.reserved.total_size, size + r1.size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate a memory region in a specific NUMA node that
 * is partially reserved and does not have enough contiguous memory for the
 * allocated region:
 *
 *  |           +-----------------------+         +----------------------|
 *  |           |       requested       |         |       expected       |
 *  +-----------+-----------------------+---------+----------------------+
 *
 *  |                 +----------+                           +-----------|
 *  |                 | reserved |                           |    new    |
 *  +-----------------+----------+---------------------------+-----------+
 *
 * Expect to allocate an aligned region at the end of the last node that is
 * large enough and has enough unreserved memory (in this case,
 * nid = NUMA_NODES - 1) after falling back to NUMA_NO_NODE. The region count
 * and total size get updated.
 */
static int alloc_nid_top_down_numa_part_reserved_fallback_check(void)
{
	int nid_req = 4;
	int nid_exp = NUMA_NODES - 1;
	struct memblock_region *new_rgn = &memblock.reserved.regions[1];
	struct memblock_region *req_node = &memblock.memory.regions[nid_req];
	struct memblock_region *exp_node = &memblock.memory.regions[nid_exp];
	void *allocated_ptr = NULL;
	struct region r1;
	phys_addr_t size;
	phys_addr_t min_addr;
	phys_addr_t max_addr;

	PREFIX_PUSH();
	setup_numa_memblock(node_fractions);

	ASSERT_LE(SZ_4, req_node->size);
	size = req_node->size / SZ_2;
	r1.base = req_node->base + (size / SZ_2);
	r1.size = size;

	min_addr = memblock_start_of_DRAM();
	max_addr = memblock_end_of_DRAM();

	memblock_reserve(r1.base, r1.size);
	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr, nid_req);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);

	ASSERT_EQ(new_rgn->size, size);
	ASSERT_EQ(new_rgn->base, region_end(exp_node) - size);
	ASSERT_LE(exp_node->base, new_rgn->base);

	ASSERT_EQ(memblock.reserved.cnt, 2);
	ASSERT_EQ(memblock.reserved.total_size, size + r1.size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate a memory region that spans over the min_addr
 * and max_addr range and overlaps with two different nodes, where the first
 * node is the requested node:
 *
 *                                min_addr
 *                                |           max_addr
 *                                |           |
 *                                v           v
 *  |           +-----------------------+-----------+              |
 *  |           |       requested       |   node3   |              |
 *  +-----------+-----------------------+-----------+--------------+
 *                                +           +
 *  |                       +-----------+                          |
 *  |                       |    rgn    |                          |
 *  +-----------------------+-----------+--------------------------+
 *
 * Expect to drop the lower limit and allocate a memory region that ends at
 * the end of the requested node.
 */
static int alloc_nid_top_down_numa_split_range_low_check(void)
{
	int nid_req = 2;
	struct memblock_region *new_rgn = &memblock.reserved.regions[0];
	struct memblock_region *req_node = &memblock.memory.regions[nid_req];
	void *allocated_ptr = NULL;
	phys_addr_t size = SZ_512;
	phys_addr_t min_addr;
	phys_addr_t max_addr;
	phys_addr_t req_node_end;

	PREFIX_PUSH();
	setup_numa_memblock(node_fractions);

	req_node_end = region_end(req_node);
	min_addr = req_node_end - SZ_256;
	max_addr = min_addr + size;

	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr, nid_req);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);

	ASSERT_EQ(new_rgn->size, size);
	ASSERT_EQ(new_rgn->base, req_node_end - size);
	ASSERT_LE(req_node->base, new_rgn->base);

	ASSERT_EQ(memblock.reserved.cnt, 1);
	ASSERT_EQ(memblock.reserved.total_size, size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate a memory region that spans over the min_addr
 * and max_addr range and overlaps with two different nodes, where the second
 * node is the requested node:
 *
 *                               min_addr
 *                               |         max_addr
 *                               |         |
 *                               v         v
 *  |      +--------------------------+---------+                |
 *  |      |         expected         |requested|                |
 *  +------+--------------------------+---------+----------------+
 *                               +         +
 *  |                       +---------+                          |
 *  |                       |   rgn   |                          |
 *  +-----------------------+---------+--------------------------+
 *
 * Expect to drop the lower limit and allocate a memory region that
 * ends at the end of the first node that overlaps with the range.
 */
static int alloc_nid_top_down_numa_split_range_high_check(void)
{
	int nid_req = 3;
	int nid_exp = nid_req - 1;
	struct memblock_region *new_rgn = &memblock.reserved.regions[0];
	struct memblock_region *exp_node = &memblock.memory.regions[nid_exp];
	void *allocated_ptr = NULL;
	phys_addr_t size = SZ_512;
	phys_addr_t min_addr;
	phys_addr_t max_addr;
	phys_addr_t exp_node_end;

	PREFIX_PUSH();
	setup_numa_memblock(node_fractions);

	exp_node_end = region_end(exp_node);
	min_addr = exp_node_end - SZ_256;
	max_addr = min_addr + size;

	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr, nid_req);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);

	ASSERT_EQ(new_rgn->size, size);
	ASSERT_EQ(new_rgn->base, exp_node_end - size);
	ASSERT_LE(exp_node->base, new_rgn->base);

	ASSERT_EQ(memblock.reserved.cnt, 1);
	ASSERT_EQ(memblock.reserved.total_size, size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate a memory region that spans over the min_addr
 * and max_addr range and overlaps with two different nodes, where the requested
 * node ends before min_addr:
 *
 *                                         min_addr
 *                                         |         max_addr
 *                                         |         |
 *                                         v         v
 *  |    +---------------+        +-------------+---------+          |
 *  |    |   requested   |        |    node1    |  node2  |          |
 *  +----+---------------+--------+-------------+---------+----------+
 *                                         +         +
 *  |          +---------+                                           |
 *  |          |   rgn   |                                           |
 *  +----------+---------+-------------------------------------------+
 *
 * Expect to drop the lower limit and allocate a memory region that ends at
 * the end of the requested node.
 */
static int alloc_nid_top_down_numa_no_overlap_split_check(void)
{
	int nid_req = 2;
	struct memblock_region *new_rgn = &memblock.reserved.regions[0];
	struct memblock_region *req_node = &memblock.memory.regions[nid_req];
	struct memblock_region *node2 = &memblock.memory.regions[6];
	void *allocated_ptr = NULL;
	phys_addr_t size;
	phys_addr_t min_addr;
	phys_addr_t max_addr;

	PREFIX_PUSH();
	setup_numa_memblock(node_fractions);

	size = SZ_512;
	min_addr = node2->base - SZ_256;
	max_addr = min_addr + size;

	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr, nid_req);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);

	ASSERT_EQ(new_rgn->size, size);
	ASSERT_EQ(new_rgn->base, region_end(req_node) - size);
	ASSERT_LE(req_node->base, new_rgn->base);

	ASSERT_EQ(memblock.reserved.cnt, 1);
	ASSERT_EQ(memblock.reserved.total_size, size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate memory within min_addr and max_add range when
 * the requested node and the range do not overlap, and requested node ends
 * before min_addr. The range overlaps with multiple nodes along node
 * boundaries:
 *
 *                          min_addr
 *                          |                                 max_addr
 *                          |                                 |
 *                          v                                 v
 *  |-----------+           +----------+----...----+----------+      |
 *  | requested |           | min node |    ...    | max node |      |
 *  +-----------+-----------+----------+----...----+----------+------+
 *                          +                                 +
 *  |                                                   +-----+      |
 *  |                                                   | rgn |      |
 *  +---------------------------------------------------+-----+------+
 *
 * Expect to allocate a memory region at the end of the final node in
 * the range after falling back to NUMA_NO_NODE.
 */
static int alloc_nid_top_down_numa_no_overlap_low_check(void)
{
	int nid_req = 0;
	struct memblock_region *new_rgn = &memblock.reserved.regions[0];
	struct memblock_region *min_node = &memblock.memory.regions[2];
	struct memblock_region *max_node = &memblock.memory.regions[5];
	void *allocated_ptr = NULL;
	phys_addr_t size = SZ_64;
	phys_addr_t max_addr;
	phys_addr_t min_addr;

	PREFIX_PUSH();
	setup_numa_memblock(node_fractions);

	min_addr = min_node->base;
	max_addr = region_end(max_node);

	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr, nid_req);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);

	ASSERT_EQ(new_rgn->size, size);
	ASSERT_EQ(new_rgn->base, max_addr - size);
	ASSERT_LE(max_node->base, new_rgn->base);

	ASSERT_EQ(memblock.reserved.cnt, 1);
	ASSERT_EQ(memblock.reserved.total_size, size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate memory within min_addr and max_add range when
 * the requested node and the range do not overlap, and requested node starts
 * after max_addr. The range overlaps with multiple nodes along node
 * boundaries:
 *
 *        min_addr
 *        |                                 max_addr
 *        |                                 |
 *        v                                 v
 *  |     +----------+----...----+----------+        +-----------+   |
 *  |     | min node |    ...    | max node |        | requested |   |
 *  +-----+----------+----...----+----------+--------+-----------+---+
 *        +                                 +
 *  |                                 +-----+                        |
 *  |                                 | rgn |                        |
 *  +---------------------------------+-----+------------------------+
 *
 * Expect to allocate a memory region at the end of the final node in
 * the range after falling back to NUMA_NO_NODE.
 */
static int alloc_nid_top_down_numa_no_overlap_high_check(void)
{
	int nid_req = 7;
	struct memblock_region *new_rgn = &memblock.reserved.regions[0];
	struct memblock_region *min_node = &memblock.memory.regions[2];
	struct memblock_region *max_node = &memblock.memory.regions[5];
	void *allocated_ptr = NULL;
	phys_addr_t size = SZ_64;
	phys_addr_t max_addr;
	phys_addr_t min_addr;

	PREFIX_PUSH();
	setup_numa_memblock(node_fractions);

	min_addr = min_node->base;
	max_addr = region_end(max_node);

	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr, nid_req);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);

	ASSERT_EQ(new_rgn->size, size);
	ASSERT_EQ(new_rgn->base, max_addr - size);
	ASSERT_LE(max_node->base, new_rgn->base);

	ASSERT_EQ(memblock.reserved.cnt, 1);
	ASSERT_EQ(memblock.reserved.total_size, size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate a memory region in a specific NUMA node that
 * has enough memory to allocate a region of the requested size.
 * Expect to allocate an aligned region at the beginning of the requested node.
 */
static int alloc_nid_bottom_up_numa_simple_check(void)
{
	int nid_req = 3;
	struct memblock_region *new_rgn = &memblock.reserved.regions[0];
	struct memblock_region *req_node = &memblock.memory.regions[nid_req];
	void *allocated_ptr = NULL;
	phys_addr_t size;
	phys_addr_t min_addr;
	phys_addr_t max_addr;

	PREFIX_PUSH();
	setup_numa_memblock(node_fractions);

	ASSERT_LE(SZ_4, req_node->size);
	size = req_node->size / SZ_4;
	min_addr = memblock_start_of_DRAM();
	max_addr = memblock_end_of_DRAM();

	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr, nid_req);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);

	ASSERT_EQ(new_rgn->size, size);
	ASSERT_EQ(new_rgn->base, req_node->base);
	ASSERT_LE(region_end(new_rgn), region_end(req_node));

	ASSERT_EQ(memblock.reserved.cnt, 1);
	ASSERT_EQ(memblock.reserved.total_size, size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate a memory region in a specific NUMA node that
 * does not have enough memory to allocate a region of the requested size:
 *
 *  |----------------------+-----+                |
 *  |       expected       | req |                |
 *  +----------------------+-----+----------------+
 *
 *  |---------+                                   |
 *  |   rgn   |                                   |
 *  +---------+-----------------------------------+
 *
 * Expect to allocate an aligned region at the beginning of the first node that
 * has enough memory (in this case, nid = 0) after falling back to NUMA_NO_NODE.
 */
static int alloc_nid_bottom_up_numa_small_node_check(void)
{
	int nid_req = 1;
	int nid_exp = 0;
	struct memblock_region *new_rgn = &memblock.reserved.regions[0];
	struct memblock_region *req_node = &memblock.memory.regions[nid_req];
	struct memblock_region *exp_node = &memblock.memory.regions[nid_exp];
	void *allocated_ptr = NULL;
	phys_addr_t size;
	phys_addr_t min_addr;
	phys_addr_t max_addr;

	PREFIX_PUSH();
	setup_numa_memblock(node_fractions);

	size = SZ_2 * req_node->size;
	min_addr = memblock_start_of_DRAM();
	max_addr = memblock_end_of_DRAM();

	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr, nid_req);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);

	ASSERT_EQ(new_rgn->size, size);
	ASSERT_EQ(new_rgn->base, exp_node->base);
	ASSERT_LE(region_end(new_rgn), region_end(exp_node));

	ASSERT_EQ(memblock.reserved.cnt, 1);
	ASSERT_EQ(memblock.reserved.total_size, size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate a memory region in a specific NUMA node that
 * is fully reserved:
 *
 *  |----------------------+     +-----------+                    |
 *  |       expected       |     | requested |                    |
 *  +----------------------+-----+-----------+--------------------+
 *
 *  |-----------+                +-----------+                    |
 *  |    new    |                |  reserved |                    |
 *  +-----------+----------------+-----------+--------------------+
 *
 * Expect to allocate an aligned region at the beginning of the first node that
 * is large enough and has enough unreserved memory (in this case, nid = 0)
 * after falling back to NUMA_NO_NODE. The region count and total size get
 * updated.
 */
static int alloc_nid_bottom_up_numa_node_reserved_check(void)
{
	int nid_req = 2;
	int nid_exp = 0;
	struct memblock_region *new_rgn = &memblock.reserved.regions[0];
	struct memblock_region *req_node = &memblock.memory.regions[nid_req];
	struct memblock_region *exp_node = &memblock.memory.regions[nid_exp];
	void *allocated_ptr = NULL;
	phys_addr_t size;
	phys_addr_t min_addr;
	phys_addr_t max_addr;

	PREFIX_PUSH();
	setup_numa_memblock(node_fractions);

	size = req_node->size;
	min_addr = memblock_start_of_DRAM();
	max_addr = memblock_end_of_DRAM();

	memblock_reserve(req_node->base, req_node->size);
	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr, nid_req);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);

	ASSERT_EQ(new_rgn->size, size);
	ASSERT_EQ(new_rgn->base, exp_node->base);
	ASSERT_LE(region_end(new_rgn), region_end(exp_node));

	ASSERT_EQ(memblock.reserved.cnt, 2);
	ASSERT_EQ(memblock.reserved.total_size, size + req_node->size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate a memory region in a specific NUMA node that
 * is partially reserved but has enough memory for the allocated region:
 *
 *  |           +---------------------------------------+         |
 *  |           |               requested               |         |
 *  +-----------+---------------------------------------+---------+
 *
 *  |           +------------------+-----+                        |
 *  |           |     reserved     | new |                        |
 *  +-----------+------------------+-----+------------------------+
 *
 * Expect to allocate an aligned region in the requested node that merges with
 * the existing reserved region. The total size gets updated.
 */
static int alloc_nid_bottom_up_numa_part_reserved_check(void)
{
	int nid_req = 4;
	struct memblock_region *new_rgn = &memblock.reserved.regions[0];
	struct memblock_region *req_node = &memblock.memory.regions[nid_req];
	void *allocated_ptr = NULL;
	struct region r1;
	phys_addr_t size;
	phys_addr_t min_addr;
	phys_addr_t max_addr;
	phys_addr_t total_size;

	PREFIX_PUSH();
	setup_numa_memblock(node_fractions);

	ASSERT_LE(SZ_8, req_node->size);
	r1.base = req_node->base;
	r1.size = req_node->size / SZ_2;
	size = r1.size / SZ_4;
	min_addr = memblock_start_of_DRAM();
	max_addr = memblock_end_of_DRAM();
	total_size = size + r1.size;

	memblock_reserve(r1.base, r1.size);
	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr, nid_req);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);

	ASSERT_EQ(new_rgn->size, total_size);
	ASSERT_EQ(new_rgn->base, req_node->base);
	ASSERT_LE(region_end(new_rgn), region_end(req_node));

	ASSERT_EQ(memblock.reserved.cnt, 1);
	ASSERT_EQ(memblock.reserved.total_size, total_size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate a memory region in a specific NUMA node that
 * is partially reserved and does not have enough contiguous memory for the
 * allocated region:
 *
 *  |----------------------+       +-----------------------+         |
 *  |       expected       |       |       requested       |         |
 *  +----------------------+-------+-----------------------+---------+
 *
 *  |-----------+                        +----------+                |
 *  |    new    |                        | reserved |                |
 *  +-----------+------------------------+----------+----------------+
 *
 * Expect to allocate an aligned region at the beginning of the first
 * node that is large enough and has enough unreserved memory (in this case,
 * nid = 0) after falling back to NUMA_NO_NODE. The region count and total size
 * get updated.
 */
static int alloc_nid_bottom_up_numa_part_reserved_fallback_check(void)
{
	int nid_req = 4;
	int nid_exp = 0;
	struct memblock_region *new_rgn = &memblock.reserved.regions[0];
	struct memblock_region *req_node = &memblock.memory.regions[nid_req];
	struct memblock_region *exp_node = &memblock.memory.regions[nid_exp];
	void *allocated_ptr = NULL;
	struct region r1;
	phys_addr_t size;
	phys_addr_t min_addr;
	phys_addr_t max_addr;

	PREFIX_PUSH();
	setup_numa_memblock(node_fractions);

	ASSERT_LE(SZ_4, req_node->size);
	size = req_node->size / SZ_2;
	r1.base = req_node->base + (size / SZ_2);
	r1.size = size;

	min_addr = memblock_start_of_DRAM();
	max_addr = memblock_end_of_DRAM();

	memblock_reserve(r1.base, r1.size);
	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr, nid_req);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);

	ASSERT_EQ(new_rgn->size, size);
	ASSERT_EQ(new_rgn->base, exp_node->base);
	ASSERT_LE(region_end(new_rgn), region_end(exp_node));

	ASSERT_EQ(memblock.reserved.cnt, 2);
	ASSERT_EQ(memblock.reserved.total_size, size + r1.size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate a memory region that spans over the min_addr
 * and max_addr range and overlaps with two different nodes, where the first
 * node is the requested node:
 *
 *                                min_addr
 *                                |           max_addr
 *                                |           |
 *                                v           v
 *  |           +-----------------------+-----------+              |
 *  |           |       requested       |   node3   |              |
 *  +-----------+-----------------------+-----------+--------------+
 *                                +           +
 *  |           +-----------+                                      |
 *  |           |    rgn    |                                      |
 *  +-----------+-----------+--------------------------------------+
 *
 * Expect to drop the lower limit and allocate a memory region at the beginning
 * of the requested node.
 */
static int alloc_nid_bottom_up_numa_split_range_low_check(void)
{
	int nid_req = 2;
	struct memblock_region *new_rgn = &memblock.reserved.regions[0];
	struct memblock_region *req_node = &memblock.memory.regions[nid_req];
	void *allocated_ptr = NULL;
	phys_addr_t size = SZ_512;
	phys_addr_t min_addr;
	phys_addr_t max_addr;
	phys_addr_t req_node_end;

	PREFIX_PUSH();
	setup_numa_memblock(node_fractions);

	req_node_end = region_end(req_node);
	min_addr = req_node_end - SZ_256;
	max_addr = min_addr + size;

	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr, nid_req);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);

	ASSERT_EQ(new_rgn->size, size);
	ASSERT_EQ(new_rgn->base, req_node->base);
	ASSERT_LE(region_end(new_rgn), req_node_end);

	ASSERT_EQ(memblock.reserved.cnt, 1);
	ASSERT_EQ(memblock.reserved.total_size, size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate a memory region that spans over the min_addr
 * and max_addr range and overlaps with two different nodes, where the second
 * node is the requested node:
 *
 *                                                min_addr
 *                                                |         max_addr
 *                                                |         |
 *                                                v         v
 *  |------------------+        +----------------------+---------+      |
 *  |     expected     |        |       previous       |requested|      |
 *  +------------------+--------+----------------------+---------+------+
 *                                                +         +
 *  |---------+                                                         |
 *  |   rgn   |                                                         |
 *  +---------+---------------------------------------------------------+
 *
 * Expect to drop the lower limit and allocate a memory region at the beginning
 * of the first node that has enough memory.
 */
static int alloc_nid_bottom_up_numa_split_range_high_check(void)
{
	int nid_req = 3;
	int nid_exp = 0;
	struct memblock_region *new_rgn = &memblock.reserved.regions[0];
	struct memblock_region *req_node = &memblock.memory.regions[nid_req];
	struct memblock_region *exp_node = &memblock.memory.regions[nid_exp];
	void *allocated_ptr = NULL;
	phys_addr_t size = SZ_512;
	phys_addr_t min_addr;
	phys_addr_t max_addr;
	phys_addr_t exp_node_end;

	PREFIX_PUSH();
	setup_numa_memblock(node_fractions);

	exp_node_end = region_end(req_node);
	min_addr = req_node->base - SZ_256;
	max_addr = min_addr + size;

	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr, nid_req);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);

	ASSERT_EQ(new_rgn->size, size);
	ASSERT_EQ(new_rgn->base, exp_node->base);
	ASSERT_LE(region_end(new_rgn), exp_node_end);

	ASSERT_EQ(memblock.reserved.cnt, 1);
	ASSERT_EQ(memblock.reserved.total_size, size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate a memory region that spans over the min_addr
 * and max_addr range and overlaps with two different nodes, where the requested
 * node ends before min_addr:
 *
 *                                          min_addr
 *                                         |         max_addr
 *                                         |         |
 *                                         v         v
 *  |    +---------------+        +-------------+---------+         |
 *  |    |   requested   |        |    node1    |  node2  |         |
 *  +----+---------------+--------+-------------+---------+---------+
 *                                         +         +
 *  |    +---------+                                                |
 *  |    |   rgn   |                                                |
 *  +----+---------+------------------------------------------------+
 *
 * Expect to drop the lower limit and allocate a memory region that starts at
 * the beginning of the requested node.
 */
static int alloc_nid_bottom_up_numa_no_overlap_split_check(void)
{
	int nid_req = 2;
	struct memblock_region *new_rgn = &memblock.reserved.regions[0];
	struct memblock_region *req_node = &memblock.memory.regions[nid_req];
	struct memblock_region *node2 = &memblock.memory.regions[6];
	void *allocated_ptr = NULL;
	phys_addr_t size;
	phys_addr_t min_addr;
	phys_addr_t max_addr;

	PREFIX_PUSH();
	setup_numa_memblock(node_fractions);

	size = SZ_512;
	min_addr = node2->base - SZ_256;
	max_addr = min_addr + size;

	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr, nid_req);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);

	ASSERT_EQ(new_rgn->size, size);
	ASSERT_EQ(new_rgn->base, req_node->base);
	ASSERT_LE(region_end(new_rgn), region_end(req_node));

	ASSERT_EQ(memblock.reserved.cnt, 1);
	ASSERT_EQ(memblock.reserved.total_size, size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate memory within min_addr and max_add range when
 * the requested node and the range do not overlap, and requested node ends
 * before min_addr. The range overlaps with multiple nodes along node
 * boundaries:
 *
 *                          min_addr
 *                          |                                 max_addr
 *                          |                                 |
 *                          v                                 v
 *  |-----------+           +----------+----...----+----------+      |
 *  | requested |           | min node |    ...    | max node |      |
 *  +-----------+-----------+----------+----...----+----------+------+
 *                          +                                 +
 *  |                       +-----+                                  |
 *  |                       | rgn |                                  |
 *  +-----------------------+-----+----------------------------------+
 *
 * Expect to allocate a memory region at the beginning of the first node
 * in the range after falling back to NUMA_NO_NODE.
 */
static int alloc_nid_bottom_up_numa_no_overlap_low_check(void)
{
	int nid_req = 0;
	struct memblock_region *new_rgn = &memblock.reserved.regions[0];
	struct memblock_region *min_node = &memblock.memory.regions[2];
	struct memblock_region *max_node = &memblock.memory.regions[5];
	void *allocated_ptr = NULL;
	phys_addr_t size = SZ_64;
	phys_addr_t max_addr;
	phys_addr_t min_addr;

	PREFIX_PUSH();
	setup_numa_memblock(node_fractions);

	min_addr = min_node->base;
	max_addr = region_end(max_node);

	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr, nid_req);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);

	ASSERT_EQ(new_rgn->size, size);
	ASSERT_EQ(new_rgn->base, min_addr);
	ASSERT_LE(region_end(new_rgn), region_end(min_node));

	ASSERT_EQ(memblock.reserved.cnt, 1);
	ASSERT_EQ(memblock.reserved.total_size, size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate memory within min_addr and max_add range when
 * the requested node and the range do not overlap, and requested node starts
 * after max_addr. The range overlaps with multiple nodes along node
 * boundaries:
 *
 *        min_addr
 *        |                                 max_addr
 *        |                                 |
 *        v                                 v
 *  |     +----------+----...----+----------+         +---------+   |
 *  |     | min node |    ...    | max node |         |requested|   |
 *  +-----+----------+----...----+----------+---------+---------+---+
 *        +                                 +
 *  |     +-----+                                                   |
 *  |     | rgn |                                                   |
 *  +-----+-----+---------------------------------------------------+
 *
 * Expect to allocate a memory region at the beginning of the first node
 * in the range after falling back to NUMA_NO_NODE.
 */
static int alloc_nid_bottom_up_numa_no_overlap_high_check(void)
{
	int nid_req = 7;
	struct memblock_region *new_rgn = &memblock.reserved.regions[0];
	struct memblock_region *min_node = &memblock.memory.regions[2];
	struct memblock_region *max_node = &memblock.memory.regions[5];
	void *allocated_ptr = NULL;
	phys_addr_t size = SZ_64;
	phys_addr_t max_addr;
	phys_addr_t min_addr;

	PREFIX_PUSH();
	setup_numa_memblock(node_fractions);

	min_addr = min_node->base;
	max_addr = region_end(max_node);

	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr, nid_req);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);

	ASSERT_EQ(new_rgn->size, size);
	ASSERT_EQ(new_rgn->base, min_addr);
	ASSERT_LE(region_end(new_rgn), region_end(min_node));

	ASSERT_EQ(memblock.reserved.cnt, 1);
	ASSERT_EQ(memblock.reserved.total_size, size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate a memory region in a specific NUMA node that
 * does not have enough memory to allocate a region of the requested size.
 * Additionally, none of the nodes have enough memory to allocate the region:
 *
 * +-----------------------------------+
 * |                new                |
 * +-----------------------------------+
 *     |-------+-------+-------+-------+-------+-------+-------+-------|
 *     | node0 | node1 | node2 | node3 | node4 | node5 | node6 | node7 |
 *     +-------+-------+-------+-------+-------+-------+-------+-------+
 *
 * Expect no allocation to happen.
 */
static int alloc_nid_numa_large_region_generic_check(void)
{
	int nid_req = 3;
	void *allocated_ptr = NULL;
	phys_addr_t size = MEM_SIZE / SZ_2;
	phys_addr_t min_addr;
	phys_addr_t max_addr;

	PREFIX_PUSH();
	setup_numa_memblock(node_fractions);

	min_addr = memblock_start_of_DRAM();
	max_addr = memblock_end_of_DRAM();

	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr, nid_req);
	ASSERT_EQ(allocated_ptr, NULL);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate memory within min_addr and max_addr range when
 * there are two reserved regions at the borders. The requested node starts at
 * min_addr and ends at max_addr and is the same size as the region to be
 * allocated:
 *
 *                     min_addr
 *                     |                       max_addr
 *                     |                       |
 *                     v                       v
 *  |      +-----------+-----------------------+-----------------------|
 *  |      |   node5   |       requested       |         node7         |
 *  +------+-----------+-----------------------+-----------------------+
 *                     +                       +
 *  |             +----+-----------------------+----+                  |
 *  |             | r2 |          new          | r1 |                  |
 *  +-------------+----+-----------------------+----+------------------+
 *
 * Expect to merge all of the regions into one. The region counter and total
 * size fields get updated.
 */
static int alloc_nid_numa_reserved_full_merge_generic_check(void)
{
	int nid_req = 6;
	int nid_next = nid_req + 1;
	struct memblock_region *new_rgn = &memblock.reserved.regions[0];
	struct memblock_region *req_node = &memblock.memory.regions[nid_req];
	struct memblock_region *next_node = &memblock.memory.regions[nid_next];
	void *allocated_ptr = NULL;
	struct region r1, r2;
	phys_addr_t size = req_node->size;
	phys_addr_t total_size;
	phys_addr_t max_addr;
	phys_addr_t min_addr;

	PREFIX_PUSH();
	setup_numa_memblock(node_fractions);

	r1.base = next_node->base;
	r1.size = SZ_128;

	r2.size = SZ_128;
	r2.base = r1.base - (size + r2.size);

	total_size = r1.size + r2.size + size;
	min_addr = r2.base + r2.size;
	max_addr = r1.base;

	memblock_reserve(r1.base, r1.size);
	memblock_reserve(r2.base, r2.size);

	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr, nid_req);

	ASSERT_NE(allocated_ptr, NULL);
	assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);

	ASSERT_EQ(new_rgn->size, total_size);
	ASSERT_EQ(new_rgn->base, r2.base);

	ASSERT_LE(new_rgn->base, req_node->base);
	ASSERT_LE(region_end(req_node), region_end(new_rgn));

	ASSERT_EQ(memblock.reserved.cnt, 1);
	ASSERT_EQ(memblock.reserved.total_size, total_size);

	test_pass_pop();

	return 0;
}

/*
 * A test that tries to allocate memory within min_addr and max_add range,
 * where the total range can fit the region, but it is split between two nodes
 * and everything else is reserved. Additionally, nid is set to NUMA_NO_NODE
 * instead of requesting a specific node:
 *
 *                         +-----------+
 *                         |    new    |
 *                         +-----------+
 *  |      +---------------------+-----------|
 *  |      |      prev node      | next node |
 *  +------+---------------------+-----------+
 *                         +           +
 *  |----------------------+           +-----|
 *  |          r1          |           |  r2 |
 *  +----------------------+-----------+-----+
 *                         ^           ^
 *                         |           |
 *                         |           max_addr
 *                         |
 *                         min_addr
 *
 * Expect no allocation to happen.
 */
static int alloc_nid_numa_split_all_reserved_generic_check(void)
{
	void *allocated_ptr = NULL;
	struct memblock_region *next_node = &memblock.memory.regions[7];
	struct region r1, r2;
	phys_addr_t size = SZ_256;
	phys_addr_t max_addr;
	phys_addr_t min_addr;

	PREFIX_PUSH();
	setup_numa_memblock(node_fractions);

	r2.base = next_node->base + SZ_128;
	r2.size = memblock_end_of_DRAM() - r2.base;

	r1.size = MEM_SIZE - (r2.size + size);
	r1.base = memblock_start_of_DRAM();

	min_addr = r1.base + r1.size;
	max_addr = r2.base;

	memblock_reserve(r1.base, r1.size);
	memblock_reserve(r2.base, r2.size);

	allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
					       min_addr, max_addr,
					       NUMA_NO_NODE);

	ASSERT_EQ(allocated_ptr, NULL);

	test_pass_pop();

	return 0;
}

/*
 * A simple test that tries to allocate a memory region through the
 * memblock_alloc_node() on a NUMA node with id `nid`. Expected to have the
 * correct NUMA node set for the new region.
 */
static int alloc_node_on_correct_nid(void)
{
	int nid_req = 2;
	void *allocated_ptr = NULL;
#ifdef CONFIG_NUMA
	struct memblock_region *req_node = &memblock.memory.regions[nid_req];
#endif
	phys_addr_t size = SZ_512;

	PREFIX_PUSH();
	setup_numa_memblock(node_fractions);

	allocated_ptr = memblock_alloc_node(size, SMP_CACHE_BYTES, nid_req);

	ASSERT_NE(allocated_ptr, NULL);
#ifdef CONFIG_NUMA
	ASSERT_EQ(nid_req, req_node->nid);
#endif

	test_pass_pop();

	return 0;
}

/* Test case wrappers for NUMA tests */
static int alloc_nid_numa_simple_check(void)
{
	test_print("\tRunning %s...\n", __func__);
	memblock_set_bottom_up(false);
	alloc_nid_top_down_numa_simple_check();
	memblock_set_bottom_up(true);
	alloc_nid_bottom_up_numa_simple_check();

	return 0;
}

static int alloc_nid_numa_small_node_check(void)
{
	test_print("\tRunning %s...\n", __func__);
	memblock_set_bottom_up(false);
	alloc_nid_top_down_numa_small_node_check();
	memblock_set_bottom_up(true);
	alloc_nid_bottom_up_numa_small_node_check();

	return 0;
}

static int alloc_nid_numa_node_reserved_check(void)
{
	test_print("\tRunning %s...\n", __func__);
	memblock_set_bottom_up(false);
	alloc_nid_top_down_numa_node_reserved_check();
	memblock_set_bottom_up(true);
	alloc_nid_bottom_up_numa_node_reserved_check();

	return 0;
}

static int alloc_nid_numa_part_reserved_check(void)
{
	test_print("\tRunning %s...\n", __func__);
	memblock_set_bottom_up(false);
	alloc_nid_top_down_numa_part_reserved_check();
	memblock_set_bottom_up(true);
	alloc_nid_bottom_up_numa_part_reserved_check();

	return 0;
}

static int alloc_nid_numa_part_reserved_fallback_check(void)
{
	test_print("\tRunning %s...\n", __func__);
	memblock_set_bottom_up(false);
	alloc_nid_top_down_numa_part_reserved_fallback_check();
	memblock_set_bottom_up(true);
	alloc_nid_bottom_up_numa_part_reserved_fallback_check();

	return 0;
}

static int alloc_nid_numa_split_range_low_check(void)
{
	test_print("\tRunning %s...\n", __func__);
	memblock_set_bottom_up(false);
	alloc_nid_top_down_numa_split_range_low_check();
	memblock_set_bottom_up(true);
	alloc_nid_bottom_up_numa_split_range_low_check();

	return 0;
}

static int alloc_nid_numa_split_range_high_check(void)
{
	test_print("\tRunning %s...\n", __func__);
	memblock_set_bottom_up(false);
	alloc_nid_top_down_numa_split_range_high_check();
	memblock_set_bottom_up(true);
	alloc_nid_bottom_up_numa_split_range_high_check();

	return 0;
}

static int alloc_nid_numa_no_overlap_split_check(void)
{
	test_print("\tRunning %s...\n", __func__);
	memblock_set_bottom_up(false);
	alloc_nid_top_down_numa_no_overlap_split_check();
	memblock_set_bottom_up(true);
	alloc_nid_bottom_up_numa_no_overlap_split_check();

	return 0;
}

static int alloc_nid_numa_no_overlap_low_check(void)
{
	test_print("\tRunning %s...\n", __func__);
	memblock_set_bottom_up(false);
	alloc_nid_top_down_numa_no_overlap_low_check();
	memblock_set_bottom_up(true);
	alloc_nid_bottom_up_numa_no_overlap_low_check();

	return 0;
}

static int alloc_nid_numa_no_overlap_high_check(void)
{
	test_print("\tRunning %s...\n", __func__);
	memblock_set_bottom_up(false);
	alloc_nid_top_down_numa_no_overlap_high_check();
	memblock_set_bottom_up(true);
	alloc_nid_bottom_up_numa_no_overlap_high_check();

	return 0;
}

static int alloc_nid_numa_large_region_check(void)
{
	test_print("\tRunning %s...\n", __func__);
	run_top_down(alloc_nid_numa_large_region_generic_check);
	run_bottom_up(alloc_nid_numa_large_region_generic_check);

	return 0;
}

static int alloc_nid_numa_reserved_full_merge_check(void)
{
	test_print("\tRunning %s...\n", __func__);
	run_top_down(alloc_nid_numa_reserved_full_merge_generic_check);
	run_bottom_up(alloc_nid_numa_reserved_full_merge_generic_check);

	return 0;
}

static int alloc_nid_numa_split_all_reserved_check(void)
{
	test_print("\tRunning %s...\n", __func__);
	run_top_down(alloc_nid_numa_split_all_reserved_generic_check);
	run_bottom_up(alloc_nid_numa_split_all_reserved_generic_check);

	return 0;
}

static int alloc_node_numa_on_correct_nid(void)
{
	test_print("\tRunning %s...\n", __func__);
	run_top_down(alloc_node_on_correct_nid);
	run_bottom_up(alloc_node_on_correct_nid);

	return 0;
}

int __memblock_alloc_nid_numa_checks(void)
{
	test_print("Running %s NUMA tests...\n",
		   get_memblock_alloc_nid_name(alloc_nid_test_flags));

	alloc_nid_numa_simple_check();
	alloc_nid_numa_small_node_check();
	alloc_nid_numa_node_reserved_check();
	alloc_nid_numa_part_reserved_check();
	alloc_nid_numa_part_reserved_fallback_check();
	alloc_nid_numa_split_range_low_check();
	alloc_nid_numa_split_range_high_check();

	alloc_nid_numa_no_overlap_split_check();
	alloc_nid_numa_no_overlap_low_check();
	alloc_nid_numa_no_overlap_high_check();
	alloc_nid_numa_large_region_check();
	alloc_nid_numa_reserved_full_merge_check();
	alloc_nid_numa_split_all_reserved_check();

	alloc_node_numa_on_correct_nid();

	return 0;
}

static int memblock_alloc_nid_checks_internal(int flags)
{
	alloc_nid_test_flags = flags;

	prefix_reset();
	prefix_push(get_memblock_alloc_nid_name(flags));

	reset_memblock_attributes();
	dummy_physical_memory_init();

	memblock_alloc_nid_range_checks();
	memblock_alloc_nid_numa_checks();

	dummy_physical_memory_cleanup();

	prefix_pop();

	return 0;
}

int memblock_alloc_nid_checks(void)
{
	memblock_alloc_nid_checks_internal(TEST_F_NONE);
	memblock_alloc_nid_checks_internal(TEST_F_RAW);

	return 0;
}

int memblock_alloc_exact_nid_range_checks(void)
{
	alloc_nid_test_flags = (TEST_F_RAW | TEST_F_EXACT);

	memblock_alloc_nid_range_checks();

	return 0;
}