Contributors: 11
Author Tokens Token Proportion Commits Commit Proportion
Hou Tao 2660 33.81% 2 12.50%
David Herrmann 2418 30.73% 1 6.25%
Yonghong Song 1492 18.96% 3 18.75%
Craig Gallek 825 10.49% 2 12.50%
Jonathan Lemon 273 3.47% 1 6.25%
Andrii Nakryiko 97 1.23% 1 6.25%
Alban Crequy 62 0.79% 1 6.25%
Mickaël Salaün 28 0.36% 2 12.50%
Kees Cook 10 0.13% 1 6.25%
Daniel Borkmann 2 0.03% 1 6.25%
Greg Kroah-Hartman 1 0.01% 1 6.25%
Total 7868 16

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188
// SPDX-License-Identifier: GPL-2.0
/*
 * Randomized tests for eBPF longest-prefix-match maps
 *
 * This program runs randomized tests against the lpm-bpf-map. It implements a
 * "Trivial Longest Prefix Match" (tlpm) based on simple, linear, singly linked
 * lists. The implementation should be pretty straightforward.
 *
 * Based on tlpm, this inserts randomized data into bpf-lpm-maps and verifies
 * the trie-based bpf-map implementation behaves the same way as tlpm.
 */

#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <linux/bpf.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <endian.h>
#include <arpa/inet.h>
#include <sys/time.h>

#include <bpf/bpf.h>
#include <test_maps.h>

#include "bpf_util.h"

struct tlpm_node {
	struct tlpm_node *next;
	size_t n_bits;
	uint8_t key[];
};

struct lpm_trie_bytes_key {
	union {
		struct bpf_lpm_trie_key_hdr hdr;
		__u32 prefixlen;
	};
	unsigned char data[8];
};

struct lpm_trie_int_key {
	union {
		struct bpf_lpm_trie_key_hdr hdr;
		__u32 prefixlen;
	};
	unsigned int data;
};

static struct tlpm_node *tlpm_match(struct tlpm_node *list,
				    const uint8_t *key,
				    size_t n_bits);

static struct tlpm_node *tlpm_add(struct tlpm_node *list,
				  const uint8_t *key,
				  size_t n_bits)
{
	struct tlpm_node *node;
	size_t n;

	n = (n_bits + 7) / 8;

	/* 'overwrite' an equivalent entry if one already exists */
	node = tlpm_match(list, key, n_bits);
	if (node && node->n_bits == n_bits) {
		memcpy(node->key, key, n);
		return list;
	}

	/* add new entry with @key/@n_bits to @list and return new head */

	node = malloc(sizeof(*node) + n);
	assert(node);

	node->next = list;
	node->n_bits = n_bits;
	memcpy(node->key, key, n);

	return node;
}

static void tlpm_clear(struct tlpm_node *list)
{
	struct tlpm_node *node;

	/* free all entries in @list */

	while ((node = list)) {
		list = list->next;
		free(node);
	}
}

static struct tlpm_node *tlpm_match(struct tlpm_node *list,
				    const uint8_t *key,
				    size_t n_bits)
{
	struct tlpm_node *best = NULL;
	size_t i;

	/* Perform longest prefix-match on @key/@n_bits. That is, iterate all
	 * entries and match each prefix against @key. Remember the "best"
	 * entry we find (i.e., the longest prefix that matches) and return it
	 * to the caller when done.
	 */

	for ( ; list; list = list->next) {
		for (i = 0; i < n_bits && i < list->n_bits; ++i) {
			if ((key[i / 8] & (1 << (7 - i % 8))) !=
			    (list->key[i / 8] & (1 << (7 - i % 8))))
				break;
		}

		if (i >= list->n_bits) {
			if (!best || i > best->n_bits)
				best = list;
		}
	}

	return best;
}

static struct tlpm_node *tlpm_delete(struct tlpm_node *list,
				     const uint8_t *key,
				     size_t n_bits)
{
	struct tlpm_node *best = tlpm_match(list, key, n_bits);
	struct tlpm_node *node;

	if (!best || best->n_bits != n_bits)
		return list;

	if (best == list) {
		node = best->next;
		free(best);
		return node;
	}

	for (node = list; node; node = node->next) {
		if (node->next == best) {
			node->next = best->next;
			free(best);
			return list;
		}
	}
	/* should never get here */
	assert(0);
	return list;
}

static void test_lpm_basic(void)
{
	struct tlpm_node *list = NULL, *t1, *t2;

	/* very basic, static tests to verify tlpm works as expected */

	assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 8));

	t1 = list = tlpm_add(list, (uint8_t[]){ 0xff }, 8);
	assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8));
	assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16));
	assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0x00 }, 16));
	assert(!tlpm_match(list, (uint8_t[]){ 0x7f }, 8));
	assert(!tlpm_match(list, (uint8_t[]){ 0xfe }, 8));
	assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 7));

	t2 = list = tlpm_add(list, (uint8_t[]){ 0xff, 0xff }, 16);
	assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8));
	assert(t2 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16));
	assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 15));
	assert(!tlpm_match(list, (uint8_t[]){ 0x7f, 0xff }, 16));

	list = tlpm_delete(list, (uint8_t[]){ 0xff, 0xff }, 16);
	assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8));
	assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16));

	list = tlpm_delete(list, (uint8_t[]){ 0xff }, 8);
	assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 8));

	tlpm_clear(list);
}

static void test_lpm_order(void)
{
	struct tlpm_node *t1, *t2, *l1 = NULL, *l2 = NULL;
	size_t i, j;

	/* Verify the tlpm implementation works correctly regardless of the
	 * order of entries. Insert a random set of entries into @l1, and copy
	 * the same data in reverse order into @l2. Then verify a lookup of
	 * random keys will yield the same result in both sets.
	 */

	for (i = 0; i < (1 << 12); ++i)
		l1 = tlpm_add(l1, (uint8_t[]){
					rand() % 0xff,
					rand() % 0xff,
				}, rand() % 16 + 1);

	for (t1 = l1; t1; t1 = t1->next)
		l2 = tlpm_add(l2, t1->key, t1->n_bits);

	for (i = 0; i < (1 << 8); ++i) {
		uint8_t key[] = { rand() % 0xff, rand() % 0xff };

		t1 = tlpm_match(l1, key, 16);
		t2 = tlpm_match(l2, key, 16);

		assert(!t1 == !t2);
		if (t1) {
			assert(t1->n_bits == t2->n_bits);
			for (j = 0; j < t1->n_bits; ++j)
				assert((t1->key[j / 8] & (1 << (7 - j % 8))) ==
				       (t2->key[j / 8] & (1 << (7 - j % 8))));
		}
	}

	tlpm_clear(l1);
	tlpm_clear(l2);
}

static void test_lpm_map(int keysize)
{
	LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_NO_PREALLOC);
	volatile size_t n_matches, n_matches_after_delete;
	size_t i, j, n_nodes, n_lookups;
	struct tlpm_node *t, *list = NULL;
	struct bpf_lpm_trie_key_u8 *key;
	uint8_t *data, *value;
	int r, map;

	/* Compare behavior of tlpm vs. bpf-lpm. Create a randomized set of
	 * prefixes and insert it into both tlpm and bpf-lpm. Then run some
	 * randomized lookups and verify both maps return the same result.
	 */

	n_matches = 0;
	n_matches_after_delete = 0;
	n_nodes = 1 << 8;
	n_lookups = 1 << 9;

	data = alloca(keysize);
	memset(data, 0, keysize);

	value = alloca(keysize + 1);
	memset(value, 0, keysize + 1);

	key = alloca(sizeof(*key) + keysize);
	memset(key, 0, sizeof(*key) + keysize);

	map = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL,
			     sizeof(*key) + keysize,
			     keysize + 1,
			     4096,
			     &opts);
	assert(map >= 0);

	for (i = 0; i < n_nodes; ++i) {
		for (j = 0; j < keysize; ++j)
			value[j] = rand() & 0xff;
		value[keysize] = rand() % (8 * keysize + 1);

		list = tlpm_add(list, value, value[keysize]);

		key->prefixlen = value[keysize];
		memcpy(key->data, value, keysize);
		r = bpf_map_update_elem(map, key, value, 0);
		assert(!r);
	}

	for (i = 0; i < n_lookups; ++i) {
		for (j = 0; j < keysize; ++j)
			data[j] = rand() & 0xff;

		t = tlpm_match(list, data, 8 * keysize);

		key->prefixlen = 8 * keysize;
		memcpy(key->data, data, keysize);
		r = bpf_map_lookup_elem(map, key, value);
		assert(!r || errno == ENOENT);
		assert(!t == !!r);

		if (t) {
			++n_matches;
			assert(t->n_bits == value[keysize]);
			for (j = 0; j < t->n_bits; ++j)
				assert((t->key[j / 8] & (1 << (7 - j % 8))) ==
				       (value[j / 8] & (1 << (7 - j % 8))));
		}
	}

	/* Remove the first half of the elements in the tlpm and the
	 * corresponding nodes from the bpf-lpm.  Then run the same
	 * large number of random lookups in both and make sure they match.
	 * Note: we need to count the number of nodes actually inserted
	 * since there may have been duplicates.
	 */
	for (i = 0, t = list; t; i++, t = t->next)
		;
	for (j = 0; j < i / 2; ++j) {
		key->prefixlen = list->n_bits;
		memcpy(key->data, list->key, keysize);
		r = bpf_map_delete_elem(map, key);
		assert(!r);
		list = tlpm_delete(list, list->key, list->n_bits);
		assert(list);
	}
	for (i = 0; i < n_lookups; ++i) {
		for (j = 0; j < keysize; ++j)
			data[j] = rand() & 0xff;

		t = tlpm_match(list, data, 8 * keysize);

		key->prefixlen = 8 * keysize;
		memcpy(key->data, data, keysize);
		r = bpf_map_lookup_elem(map, key, value);
		assert(!r || errno == ENOENT);
		assert(!t == !!r);

		if (t) {
			++n_matches_after_delete;
			assert(t->n_bits == value[keysize]);
			for (j = 0; j < t->n_bits; ++j)
				assert((t->key[j / 8] & (1 << (7 - j % 8))) ==
				       (value[j / 8] & (1 << (7 - j % 8))));
		}
	}

	close(map);
	tlpm_clear(list);

	/* With 255 random nodes in the map, we are pretty likely to match
	 * something on every lookup. For statistics, use this:
	 *
	 *     printf("          nodes: %zu\n"
	 *            "        lookups: %zu\n"
	 *            "        matches: %zu\n"
	 *            "matches(delete): %zu\n",
	 *            n_nodes, n_lookups, n_matches, n_matches_after_delete);
	 */
}

/* Test the implementation with some 'real world' examples */

static void test_lpm_ipaddr(void)
{
	LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_NO_PREALLOC);
	struct bpf_lpm_trie_key_u8 *key_ipv4;
	struct bpf_lpm_trie_key_u8 *key_ipv6;
	size_t key_size_ipv4;
	size_t key_size_ipv6;
	int map_fd_ipv4;
	int map_fd_ipv6;
	__u64 value;

	key_size_ipv4 = sizeof(*key_ipv4) + sizeof(__u32);
	key_size_ipv6 = sizeof(*key_ipv6) + sizeof(__u32) * 4;
	key_ipv4 = alloca(key_size_ipv4);
	key_ipv6 = alloca(key_size_ipv6);

	map_fd_ipv4 = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL,
				     key_size_ipv4, sizeof(value),
				     100, &opts);
	assert(map_fd_ipv4 >= 0);

	map_fd_ipv6 = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL,
				     key_size_ipv6, sizeof(value),
				     100, &opts);
	assert(map_fd_ipv6 >= 0);

	/* Fill data some IPv4 and IPv6 address ranges */
	value = 1;
	key_ipv4->prefixlen = 16;
	inet_pton(AF_INET, "192.168.0.0", key_ipv4->data);
	assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);

	value = 2;
	key_ipv4->prefixlen = 24;
	inet_pton(AF_INET, "192.168.0.0", key_ipv4->data);
	assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);

	value = 3;
	key_ipv4->prefixlen = 24;
	inet_pton(AF_INET, "192.168.128.0", key_ipv4->data);
	assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);

	value = 5;
	key_ipv4->prefixlen = 24;
	inet_pton(AF_INET, "192.168.1.0", key_ipv4->data);
	assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);

	value = 4;
	key_ipv4->prefixlen = 23;
	inet_pton(AF_INET, "192.168.0.0", key_ipv4->data);
	assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);

	value = 0xdeadbeef;
	key_ipv6->prefixlen = 64;
	inet_pton(AF_INET6, "2a00:1450:4001:814::200e", key_ipv6->data);
	assert(bpf_map_update_elem(map_fd_ipv6, key_ipv6, &value, 0) == 0);

	/* Set tprefixlen to maximum for lookups */
	key_ipv4->prefixlen = 32;
	key_ipv6->prefixlen = 128;

	/* Test some lookups that should come back with a value */
	inet_pton(AF_INET, "192.168.128.23", key_ipv4->data);
	assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0);
	assert(value == 3);

	inet_pton(AF_INET, "192.168.0.1", key_ipv4->data);
	assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0);
	assert(value == 2);

	inet_pton(AF_INET6, "2a00:1450:4001:814::", key_ipv6->data);
	assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0);
	assert(value == 0xdeadbeef);

	inet_pton(AF_INET6, "2a00:1450:4001:814::1", key_ipv6->data);
	assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0);
	assert(value == 0xdeadbeef);

	/* Test some lookups that should not match any entry */
	inet_pton(AF_INET, "10.0.0.1", key_ipv4->data);
	assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -ENOENT);

	inet_pton(AF_INET, "11.11.11.11", key_ipv4->data);
	assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -ENOENT);

	inet_pton(AF_INET6, "2a00:ffff::", key_ipv6->data);
	assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == -ENOENT);

	close(map_fd_ipv4);
	close(map_fd_ipv6);
}

static void test_lpm_delete(void)
{
	LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_NO_PREALLOC);
	struct bpf_lpm_trie_key_u8 *key;
	size_t key_size;
	int map_fd;
	__u64 value;

	key_size = sizeof(*key) + sizeof(__u32);
	key = alloca(key_size);

	map_fd = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL,
				key_size, sizeof(value),
				100, &opts);
	assert(map_fd >= 0);

	/* Add nodes:
	 * 192.168.0.0/16   (1)
	 * 192.168.0.0/24   (2)
	 * 192.168.128.0/24 (3)
	 * 192.168.1.0/24   (4)
	 *
	 *         (1)
	 *        /   \
         *     (IM)    (3)
	 *    /   \
         *   (2)  (4)
	 */
	value = 1;
	key->prefixlen = 16;
	inet_pton(AF_INET, "192.168.0.0", key->data);
	assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0);

	value = 2;
	key->prefixlen = 24;
	inet_pton(AF_INET, "192.168.0.0", key->data);
	assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0);

	value = 3;
	key->prefixlen = 24;
	inet_pton(AF_INET, "192.168.128.0", key->data);
	assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0);

	value = 4;
	key->prefixlen = 24;
	inet_pton(AF_INET, "192.168.1.0", key->data);
	assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0);

	/* remove non-existent node */
	key->prefixlen = 32;
	inet_pton(AF_INET, "10.0.0.1", key->data);
	assert(bpf_map_lookup_elem(map_fd, key, &value) == -ENOENT);

	key->prefixlen = 30; // unused prefix so far
	inet_pton(AF_INET, "192.255.0.0", key->data);
	assert(bpf_map_delete_elem(map_fd, key) == -ENOENT);

	key->prefixlen = 16; // same prefix as the root node
	inet_pton(AF_INET, "192.255.0.0", key->data);
	assert(bpf_map_delete_elem(map_fd, key) == -ENOENT);

	/* assert initial lookup */
	key->prefixlen = 32;
	inet_pton(AF_INET, "192.168.0.1", key->data);
	assert(bpf_map_lookup_elem(map_fd, key, &value) == 0);
	assert(value == 2);

	/* remove leaf node */
	key->prefixlen = 24;
	inet_pton(AF_INET, "192.168.0.0", key->data);
	assert(bpf_map_delete_elem(map_fd, key) == 0);

	key->prefixlen = 32;
	inet_pton(AF_INET, "192.168.0.1", key->data);
	assert(bpf_map_lookup_elem(map_fd, key, &value) == 0);
	assert(value == 1);

	/* remove leaf (and intermediary) node */
	key->prefixlen = 24;
	inet_pton(AF_INET, "192.168.1.0", key->data);
	assert(bpf_map_delete_elem(map_fd, key) == 0);

	key->prefixlen = 32;
	inet_pton(AF_INET, "192.168.1.1", key->data);
	assert(bpf_map_lookup_elem(map_fd, key, &value) == 0);
	assert(value == 1);

	/* remove root node */
	key->prefixlen = 16;
	inet_pton(AF_INET, "192.168.0.0", key->data);
	assert(bpf_map_delete_elem(map_fd, key) == 0);

	key->prefixlen = 32;
	inet_pton(AF_INET, "192.168.128.1", key->data);
	assert(bpf_map_lookup_elem(map_fd, key, &value) == 0);
	assert(value == 3);

	/* remove last node */
	key->prefixlen = 24;
	inet_pton(AF_INET, "192.168.128.0", key->data);
	assert(bpf_map_delete_elem(map_fd, key) == 0);

	key->prefixlen = 32;
	inet_pton(AF_INET, "192.168.128.1", key->data);
	assert(bpf_map_lookup_elem(map_fd, key, &value) == -ENOENT);

	close(map_fd);
}

static void test_lpm_get_next_key(void)
{
	LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_NO_PREALLOC);
	struct bpf_lpm_trie_key_u8 *key_p, *next_key_p;
	size_t key_size;
	__u32 value = 0;
	int map_fd;

	key_size = sizeof(*key_p) + sizeof(__u32);
	key_p = alloca(key_size);
	next_key_p = alloca(key_size);

	map_fd = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL, key_size, sizeof(value), 100, &opts);
	assert(map_fd >= 0);

	/* empty tree. get_next_key should return ENOENT */
	assert(bpf_map_get_next_key(map_fd, NULL, key_p) == -ENOENT);

	/* get and verify the first key, get the second one should fail. */
	key_p->prefixlen = 16;
	inet_pton(AF_INET, "192.168.0.0", key_p->data);
	assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0);

	memset(key_p, 0, key_size);
	assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
	assert(key_p->prefixlen == 16 && key_p->data[0] == 192 &&
	       key_p->data[1] == 168);

	assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -ENOENT);

	/* no exact matching key should get the first one in post order. */
	key_p->prefixlen = 8;
	assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
	assert(key_p->prefixlen == 16 && key_p->data[0] == 192 &&
	       key_p->data[1] == 168);

	/* add one more element (total two) */
	key_p->prefixlen = 24;
	inet_pton(AF_INET, "192.168.128.0", key_p->data);
	assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0);

	memset(key_p, 0, key_size);
	assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
	assert(key_p->prefixlen == 24 && key_p->data[0] == 192 &&
	       key_p->data[1] == 168 && key_p->data[2] == 128);

	memset(next_key_p, 0, key_size);
	assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
	assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 &&
	       next_key_p->data[1] == 168);

	memcpy(key_p, next_key_p, key_size);
	assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -ENOENT);

	/* Add one more element (total three) */
	key_p->prefixlen = 24;
	inet_pton(AF_INET, "192.168.0.0", key_p->data);
	assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0);

	memset(key_p, 0, key_size);
	assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
	assert(key_p->prefixlen == 24 && key_p->data[0] == 192 &&
	       key_p->data[1] == 168 && key_p->data[2] == 0);

	memset(next_key_p, 0, key_size);
	assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
	assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 &&
	       next_key_p->data[1] == 168 && next_key_p->data[2] == 128);

	memcpy(key_p, next_key_p, key_size);
	assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
	assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 &&
	       next_key_p->data[1] == 168);

	memcpy(key_p, next_key_p, key_size);
	assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -ENOENT);

	/* Add one more element (total four) */
	key_p->prefixlen = 24;
	inet_pton(AF_INET, "192.168.1.0", key_p->data);
	assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0);

	memset(key_p, 0, key_size);
	assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
	assert(key_p->prefixlen == 24 && key_p->data[0] == 192 &&
	       key_p->data[1] == 168 && key_p->data[2] == 0);

	memset(next_key_p, 0, key_size);
	assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
	assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 &&
	       next_key_p->data[1] == 168 && next_key_p->data[2] == 1);

	memcpy(key_p, next_key_p, key_size);
	assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
	assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 &&
	       next_key_p->data[1] == 168 && next_key_p->data[2] == 128);

	memcpy(key_p, next_key_p, key_size);
	assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
	assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 &&
	       next_key_p->data[1] == 168);

	memcpy(key_p, next_key_p, key_size);
	assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -ENOENT);

	/* Add one more element (total five) */
	key_p->prefixlen = 28;
	inet_pton(AF_INET, "192.168.1.128", key_p->data);
	assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0);

	memset(key_p, 0, key_size);
	assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
	assert(key_p->prefixlen == 24 && key_p->data[0] == 192 &&
	       key_p->data[1] == 168 && key_p->data[2] == 0);

	memset(next_key_p, 0, key_size);
	assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
	assert(next_key_p->prefixlen == 28 && next_key_p->data[0] == 192 &&
	       next_key_p->data[1] == 168 && next_key_p->data[2] == 1 &&
	       next_key_p->data[3] == 128);

	memcpy(key_p, next_key_p, key_size);
	assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
	assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 &&
	       next_key_p->data[1] == 168 && next_key_p->data[2] == 1);

	memcpy(key_p, next_key_p, key_size);
	assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
	assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 &&
	       next_key_p->data[1] == 168 && next_key_p->data[2] == 128);

	memcpy(key_p, next_key_p, key_size);
	assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
	assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 &&
	       next_key_p->data[1] == 168);

	memcpy(key_p, next_key_p, key_size);
	assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -ENOENT);

	/* no exact matching key should return the first one in post order */
	key_p->prefixlen = 22;
	inet_pton(AF_INET, "192.168.1.0", key_p->data);
	assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
	assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 &&
	       next_key_p->data[1] == 168 && next_key_p->data[2] == 0);

	close(map_fd);
}

#define MAX_TEST_KEYS	4
struct lpm_mt_test_info {
	int cmd; /* 0: update, 1: delete, 2: lookup, 3: get_next_key */
	int iter;
	int map_fd;
	struct {
		__u32 prefixlen;
		__u32 data;
	} key[MAX_TEST_KEYS];
};

static void *lpm_test_command(void *arg)
{
	int i, j, ret, iter, key_size;
	struct lpm_mt_test_info *info = arg;
	struct bpf_lpm_trie_key_u8 *key_p;

	key_size = sizeof(*key_p) + sizeof(__u32);
	key_p = alloca(key_size);
	for (iter = 0; iter < info->iter; iter++)
		for (i = 0; i < MAX_TEST_KEYS; i++) {
			/* first half of iterations in forward order,
			 * and second half in backward order.
			 */
			j = (iter < (info->iter / 2)) ? i : MAX_TEST_KEYS - i - 1;
			key_p->prefixlen = info->key[j].prefixlen;
			memcpy(key_p->data, &info->key[j].data, sizeof(__u32));
			if (info->cmd == 0) {
				__u32 value = j;
				/* update must succeed */
				assert(bpf_map_update_elem(info->map_fd, key_p, &value, 0) == 0);
			} else if (info->cmd == 1) {
				ret = bpf_map_delete_elem(info->map_fd, key_p);
				assert(ret == 0 || errno == ENOENT);
			} else if (info->cmd == 2) {
				__u32 value;
				ret = bpf_map_lookup_elem(info->map_fd, key_p, &value);
				assert(ret == 0 || errno == ENOENT);
			} else {
				struct bpf_lpm_trie_key_u8 *next_key_p = alloca(key_size);
				ret = bpf_map_get_next_key(info->map_fd, key_p, next_key_p);
				assert(ret == 0 || errno == ENOENT || errno == ENOMEM);
			}
		}

	// Pass successful exit info back to the main thread
	pthread_exit((void *)info);
}

static void setup_lpm_mt_test_info(struct lpm_mt_test_info *info, int map_fd)
{
	info->iter = 2000;
	info->map_fd = map_fd;
	info->key[0].prefixlen = 16;
	inet_pton(AF_INET, "192.168.0.0", &info->key[0].data);
	info->key[1].prefixlen = 24;
	inet_pton(AF_INET, "192.168.0.0", &info->key[1].data);
	info->key[2].prefixlen = 24;
	inet_pton(AF_INET, "192.168.128.0", &info->key[2].data);
	info->key[3].prefixlen = 24;
	inet_pton(AF_INET, "192.168.1.0", &info->key[3].data);
}

static void test_lpm_multi_thread(void)
{
	LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_NO_PREALLOC);
	struct lpm_mt_test_info info[4];
	size_t key_size, value_size;
	pthread_t thread_id[4];
	int i, map_fd;
	void *ret;

	/* create a trie */
	value_size = sizeof(__u32);
	key_size = sizeof(struct bpf_lpm_trie_key_hdr) + value_size;
	map_fd = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL, key_size, value_size, 100, &opts);

	/* create 4 threads to test update, delete, lookup and get_next_key */
	setup_lpm_mt_test_info(&info[0], map_fd);
	for (i = 0; i < 4; i++) {
		if (i != 0)
			memcpy(&info[i], &info[0], sizeof(info[i]));
		info[i].cmd = i;
		assert(pthread_create(&thread_id[i], NULL, &lpm_test_command, &info[i]) == 0);
	}

	for (i = 0; i < 4; i++)
		assert(pthread_join(thread_id[i], &ret) == 0 && ret == (void *)&info[i]);

	close(map_fd);
}

static int lpm_trie_create(unsigned int key_size, unsigned int value_size, unsigned int max_entries)
{
	LIBBPF_OPTS(bpf_map_create_opts, opts);
	int fd;

	opts.map_flags = BPF_F_NO_PREALLOC;
	fd = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, "lpm_trie", key_size, value_size, max_entries,
			    &opts);
	CHECK(fd < 0, "bpf_map_create", "error %d\n", errno);

	return fd;
}

static void test_lpm_trie_update_flags(void)
{
	struct lpm_trie_int_key key;
	unsigned int value, got;
	int fd, err;

	fd = lpm_trie_create(sizeof(key), sizeof(value), 3);

	/* invalid flags (Error) */
	key.prefixlen = 32;
	key.data = 0;
	value = 0;
	err = bpf_map_update_elem(fd, &key, &value, BPF_F_LOCK);
	CHECK(err != -EINVAL, "invalid update flag", "error %d\n", err);

	/* invalid flags (Error) */
	key.prefixlen = 32;
	key.data = 0;
	value = 0;
	err = bpf_map_update_elem(fd, &key, &value, BPF_NOEXIST | BPF_EXIST);
	CHECK(err != -EINVAL, "invalid update flag", "error %d\n", err);

	/* overwrite an empty qp-trie (Error) */
	key.prefixlen = 32;
	key.data = 0;
	value = 2;
	err = bpf_map_update_elem(fd, &key, &value, BPF_EXIST);
	CHECK(err != -ENOENT, "overwrite empty qp-trie", "error %d\n", err);

	/* add a new node */
	key.prefixlen = 16;
	key.data = 0;
	value = 1;
	err = bpf_map_update_elem(fd, &key, &value, BPF_NOEXIST);
	CHECK(err, "add new elem", "error %d\n", err);
	got = 0;
	err = bpf_map_lookup_elem(fd, &key, &got);
	CHECK(err, "lookup elem", "error %d\n", err);
	CHECK(got != value, "check value", "got %d exp %d\n", got, value);

	/* add the same node as new node (Error) */
	err = bpf_map_update_elem(fd, &key, &value, BPF_NOEXIST);
	CHECK(err != -EEXIST, "add new elem again", "error %d\n", err);

	/* overwrite the existed node */
	value = 4;
	err = bpf_map_update_elem(fd, &key, &value, BPF_EXIST);
	CHECK(err, "overwrite elem", "error %d\n", err);
	got = 0;
	err = bpf_map_lookup_elem(fd, &key, &got);
	CHECK(err, "lookup elem", "error %d\n", err);
	CHECK(got != value, "check value", "got %d exp %d\n", got, value);

	/* overwrite the node */
	value = 1;
	err = bpf_map_update_elem(fd, &key, &value, BPF_ANY);
	CHECK(err, "update elem", "error %d\n", err);
	got = 0;
	err = bpf_map_lookup_elem(fd, &key, &got);
	CHECK(err, "lookup elem", "error %d\n", err);
	CHECK(got != value, "check value", "got %d exp %d\n", got, value);

	/* overwrite a non-existent node which is the prefix of the first
	 * node (Error).
	 */
	key.prefixlen = 8;
	key.data = 0;
	value = 2;
	err = bpf_map_update_elem(fd, &key, &value, BPF_EXIST);
	CHECK(err != -ENOENT, "overwrite nonexistent elem", "error %d\n", err);

	/* add a new node which is the prefix of the first node */
	err = bpf_map_update_elem(fd, &key, &value, BPF_NOEXIST);
	CHECK(err, "add new elem", "error %d\n", err);
	got = 0;
	err = bpf_map_lookup_elem(fd, &key, &got);
	CHECK(err, "lookup key", "error %d\n", err);
	CHECK(got != value, "check value", "got %d exp %d\n", got, value);

	/* add another new node which will be the sibling of the first node */
	key.prefixlen = 9;
	key.data = htobe32(1 << 23);
	value = 5;
	err = bpf_map_update_elem(fd, &key, &value, BPF_NOEXIST);
	CHECK(err, "add new elem", "error %d\n", err);
	got = 0;
	err = bpf_map_lookup_elem(fd, &key, &got);
	CHECK(err, "lookup key", "error %d\n", err);
	CHECK(got != value, "check value", "got %d exp %d\n", got, value);

	/* overwrite the third node */
	value = 3;
	err = bpf_map_update_elem(fd, &key, &value, BPF_ANY);
	CHECK(err, "overwrite elem", "error %d\n", err);
	got = 0;
	err = bpf_map_lookup_elem(fd, &key, &got);
	CHECK(err, "lookup key", "error %d\n", err);
	CHECK(got != value, "check value", "got %d exp %d\n", got, value);

	/* delete the second node to make it an intermediate node */
	key.prefixlen = 8;
	key.data = 0;
	err = bpf_map_delete_elem(fd, &key);
	CHECK(err, "del elem", "error %d\n", err);

	/* overwrite the intermediate node (Error) */
	value = 2;
	err = bpf_map_update_elem(fd, &key, &value, BPF_EXIST);
	CHECK(err != -ENOENT, "overwrite nonexistent elem", "error %d\n", err);

	close(fd);
}

static void test_lpm_trie_update_full_map(void)
{
	struct lpm_trie_int_key key;
	int value, got;
	int fd, err;

	fd = lpm_trie_create(sizeof(key), sizeof(value), 3);

	/* add a new node */
	key.prefixlen = 16;
	key.data = 0;
	value = 0;
	err = bpf_map_update_elem(fd, &key, &value, BPF_NOEXIST);
	CHECK(err, "add new elem", "error %d\n", err);
	got = 0;
	err = bpf_map_lookup_elem(fd, &key, &got);
	CHECK(err, "lookup elem", "error %d\n", err);
	CHECK(got != value, "check value", "got %d exp %d\n", got, value);

	/* add new node */
	key.prefixlen = 8;
	key.data = 0;
	value = 1;
	err = bpf_map_update_elem(fd, &key, &value, BPF_NOEXIST);
	CHECK(err, "add new elem", "error %d\n", err);
	got = 0;
	err = bpf_map_lookup_elem(fd, &key, &got);
	CHECK(err, "lookup elem", "error %d\n", err);
	CHECK(got != value, "check value", "got %d exp %d\n", got, value);

	/* add new node */
	key.prefixlen = 9;
	key.data = htobe32(1 << 23);
	value = 2;
	err = bpf_map_update_elem(fd, &key, &value, BPF_NOEXIST);
	CHECK(err, "add new elem", "error %d\n", err);
	got = 0;
	err = bpf_map_lookup_elem(fd, &key, &got);
	CHECK(err, "lookup elem", "error %d\n", err);
	CHECK(got != value, "check value", "got %d exp %d\n", got, value);

	/* try to add more node (Error) */
	key.prefixlen = 32;
	key.data = 0;
	value = 3;
	err = bpf_map_update_elem(fd, &key, &value, BPF_ANY);
	CHECK(err != -ENOSPC, "add to full trie", "error %d\n", err);

	/* update the value of an existed node with BPF_EXIST */
	key.prefixlen = 16;
	key.data = 0;
	value = 4;
	err = bpf_map_update_elem(fd, &key, &value, BPF_EXIST);
	CHECK(err, "overwrite elem", "error %d\n", err);
	got = 0;
	err = bpf_map_lookup_elem(fd, &key, &got);
	CHECK(err, "lookup elem", "error %d\n", err);
	CHECK(got != value, "check value", "got %d exp %d\n", got, value);

	/* update the value of an existed node with BPF_ANY */
	key.prefixlen = 9;
	key.data = htobe32(1 << 23);
	value = 5;
	err = bpf_map_update_elem(fd, &key, &value, BPF_ANY);
	CHECK(err, "overwrite elem", "error %d\n", err);
	got = 0;
	err = bpf_map_lookup_elem(fd, &key, &got);
	CHECK(err, "lookup elem", "error %d\n", err);
	CHECK(got != value, "check value", "got %d exp %d\n", got, value);

	close(fd);
}

static int cmp_str(const void *a, const void *b)
{
	const char *str_a = *(const char **)a, *str_b = *(const char **)b;

	return strcmp(str_a, str_b);
}

/* Save strings in LPM trie. The trailing '\0' for each string will be
 * accounted in the prefixlen. The strings returned during the iteration
 * should be sorted as expected.
 */
static void test_lpm_trie_iterate_strs(void)
{
	static const char * const keys[] = {
		"ab", "abO", "abc", "abo", "abS", "abcd",
	};
	const char *sorted_keys[ARRAY_SIZE(keys)];
	struct lpm_trie_bytes_key key, next_key;
	unsigned int value, got, i, j, len;
	struct lpm_trie_bytes_key *cur;
	int fd, err;

	fd = lpm_trie_create(sizeof(key), sizeof(value), ARRAY_SIZE(keys));

	for (i = 0; i < ARRAY_SIZE(keys); i++) {
		unsigned int flags;

		/* add i-th element */
		flags = i % 2 ? BPF_NOEXIST : 0;
		len = strlen(keys[i]);
		/* include the trailing '\0' */
		key.prefixlen = (len + 1) * 8;
		memset(key.data, 0, sizeof(key.data));
		memcpy(key.data, keys[i], len);
		value = i + 100;
		err = bpf_map_update_elem(fd, &key, &value, flags);
		CHECK(err, "add elem", "#%u error %d\n", i, err);

		err = bpf_map_lookup_elem(fd, &key, &got);
		CHECK(err, "lookup elem", "#%u error %d\n", i, err);
		CHECK(got != value, "lookup elem", "#%u expect %u got %u\n", i, value, got);

		/* re-add i-th element (Error) */
		err = bpf_map_update_elem(fd, &key, &value, BPF_NOEXIST);
		CHECK(err != -EEXIST, "re-add elem", "#%u error %d\n", i, err);

		/* Overwrite i-th element */
		flags = i % 2 ? 0 : BPF_EXIST;
		value = i;
		err = bpf_map_update_elem(fd, &key, &value, flags);
		CHECK(err, "update elem", "error %d\n", err);

		/* Lookup #[0~i] elements */
		for (j = 0; j <= i; j++) {
			len = strlen(keys[j]);
			key.prefixlen = (len + 1) * 8;
			memset(key.data, 0, sizeof(key.data));
			memcpy(key.data, keys[j], len);
			err = bpf_map_lookup_elem(fd, &key, &got);
			CHECK(err, "lookup elem", "#%u/%u error %d\n", i, j, err);
			CHECK(got != j, "lookup elem", "#%u/%u expect %u got %u\n",
			      i, j, value, got);
		}
	}

	/* Add element to a full qp-trie (Error) */
	key.prefixlen = sizeof(key.data) * 8;
	memset(key.data, 0, sizeof(key.data));
	value = 0;
	err = bpf_map_update_elem(fd, &key, &value, 0);
	CHECK(err != -ENOSPC, "add to full qp-trie", "error %d\n", err);

	/* Iterate sorted elements: no deletion */
	memcpy(sorted_keys, keys, sizeof(keys));
	qsort(sorted_keys, ARRAY_SIZE(sorted_keys), sizeof(sorted_keys[0]), cmp_str);
	cur = NULL;
	for (i = 0; i < ARRAY_SIZE(sorted_keys); i++) {
		len = strlen(sorted_keys[i]);
		err = bpf_map_get_next_key(fd, cur, &next_key);
		CHECK(err, "iterate", "#%u error %d\n", i, err);
		CHECK(next_key.prefixlen != (len + 1) * 8, "iterate",
		      "#%u invalid len %u expect %u\n",
		      i, next_key.prefixlen, (len + 1) * 8);
		CHECK(memcmp(sorted_keys[i], next_key.data, len + 1), "iterate",
		      "#%u got %.*s exp %.*s\n", i, len, next_key.data, len, sorted_keys[i]);

		cur = &next_key;
	}
	err = bpf_map_get_next_key(fd, cur, &next_key);
	CHECK(err != -ENOENT, "more element", "error %d\n", err);

	/* Iterate sorted elements: delete the found key after each iteration */
	cur = NULL;
	for (i = 0; i < ARRAY_SIZE(sorted_keys); i++) {
		len = strlen(sorted_keys[i]);
		err = bpf_map_get_next_key(fd, cur, &next_key);
		CHECK(err, "iterate", "#%u error %d\n", i, err);
		CHECK(next_key.prefixlen != (len + 1) * 8, "iterate",
		      "#%u invalid len %u expect %u\n",
		      i, next_key.prefixlen, (len + 1) * 8);
		CHECK(memcmp(sorted_keys[i], next_key.data, len + 1), "iterate",
		      "#%u got %.*s exp %.*s\n", i, len, next_key.data, len, sorted_keys[i]);

		cur = &next_key;

		err = bpf_map_delete_elem(fd, cur);
		CHECK(err, "delete", "#%u error %d\n", i, err);
	}
	err = bpf_map_get_next_key(fd, cur, &next_key);
	CHECK(err != -ENOENT, "non-empty qp-trie", "error %d\n", err);

	close(fd);
}

/* Use the fixed prefixlen (32) and save integers in LPM trie. The iteration of
 * LPM trie will return these integers in big-endian order, therefore, convert
 * these integers to big-endian before update. After each iteration, delete the
 * found key (the smallest integer) and expect the next iteration will return
 * the second smallest number.
 */
static void test_lpm_trie_iterate_ints(void)
{
	struct lpm_trie_int_key key, next_key;
	unsigned int i, max_entries;
	struct lpm_trie_int_key *cur;
	unsigned int *data_set;
	int fd, err;
	bool value;

	max_entries = 4096;
	data_set = calloc(max_entries, sizeof(*data_set));
	CHECK(!data_set, "malloc", "no mem\n");
	for (i = 0; i < max_entries; i++)
		data_set[i] = i;

	fd = lpm_trie_create(sizeof(key), sizeof(value), max_entries);
	value = true;
	for (i = 0; i < max_entries; i++) {
		key.prefixlen = 32;
		key.data = htobe32(data_set[i]);

		err = bpf_map_update_elem(fd, &key, &value, BPF_NOEXIST);
		CHECK(err, "add elem", "#%u error %d\n", i, err);
	}

	cur = NULL;
	for (i = 0; i < max_entries; i++) {
		err = bpf_map_get_next_key(fd, cur, &next_key);
		CHECK(err, "iterate", "#%u error %d\n", i, err);
		CHECK(next_key.prefixlen != 32, "iterate", "#%u invalid len %u\n",
		      i, next_key.prefixlen);
		CHECK(be32toh(next_key.data) != data_set[i], "iterate", "#%u got 0x%x exp 0x%x\n",
		      i, be32toh(next_key.data), data_set[i]);
		cur = &next_key;

		/*
		 * Delete the minimal key, the next call of bpf_get_next_key()
		 * will return the second minimal key.
		 */
		err = bpf_map_delete_elem(fd, &next_key);
		CHECK(err, "del elem", "#%u elem error %d\n", i, err);
	}
	err = bpf_map_get_next_key(fd, cur, &next_key);
	CHECK(err != -ENOENT, "more element", "error %d\n", err);

	err = bpf_map_get_next_key(fd, NULL, &next_key);
	CHECK(err != -ENOENT, "no-empty qp-trie", "error %d\n", err);

	free(data_set);

	close(fd);
}

void test_lpm_trie_map_basic_ops(void)
{
	int i;

	/* we want predictable, pseudo random tests */
	srand(0xf00ba1);

	test_lpm_basic();
	test_lpm_order();

	/* Test with 8, 16, 24, 32, ... 128 bit prefix length */
	for (i = 1; i <= 16; ++i)
		test_lpm_map(i);

	test_lpm_ipaddr();
	test_lpm_delete();
	test_lpm_get_next_key();
	test_lpm_multi_thread();

	test_lpm_trie_update_flags();
	test_lpm_trie_update_full_map();
	test_lpm_trie_iterate_strs();
	test_lpm_trie_iterate_ints();

	printf("%s: PASS\n", __func__);
}