Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Richard Cochran | 1797 | 58.59% | 3 | 12.00% |
Alex Maftei | 374 | 12.19% | 3 | 12.00% |
Dong Zhu | 369 | 12.03% | 1 | 4.00% |
Mahesh Bandewar | 129 | 4.21% | 1 | 4.00% |
Vladimir Oltean | 122 | 3.98% | 2 | 8.00% |
Xabier Marquiegui | 72 | 2.35% | 1 | 4.00% |
Rahul Rameshbabu | 53 | 1.73% | 3 | 12.00% |
Manfred Rudigier | 44 | 1.43% | 1 | 4.00% |
Maciek Machnikowski | 40 | 1.30% | 1 | 4.00% |
Christian Riesch | 24 | 0.78% | 2 | 8.00% |
Nick Desaulniers | 13 | 0.42% | 1 | 4.00% |
Stefan Sörensen | 11 | 0.36% | 1 | 4.00% |
Christopher S. Hall | 5 | 0.16% | 1 | 4.00% |
Vincent Cheng | 5 | 0.16% | 1 | 4.00% |
Thomas Huth | 4 | 0.13% | 1 | 4.00% |
Mahesh Khanwalkar | 3 | 0.10% | 1 | 4.00% |
Thomas Gleixner | 2 | 0.07% | 1 | 4.00% |
Total | 3067 | 25 |
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678
// SPDX-License-Identifier: GPL-2.0-or-later /* * PTP 1588 clock support - User space test program * * Copyright (C) 2010 OMICRON electronics GmbH */ #define _GNU_SOURCE #define __SANE_USERSPACE_TYPES__ /* For PPC64, to get LL64 types */ #include <errno.h> #include <fcntl.h> #include <inttypes.h> #include <math.h> #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/ioctl.h> #include <sys/mman.h> #include <sys/stat.h> #include <sys/time.h> #include <sys/timex.h> #include <sys/types.h> #include <time.h> #include <unistd.h> #include <linux/ptp_clock.h> #define DEVICE "/dev/ptp0" #ifndef ADJ_SETOFFSET #define ADJ_SETOFFSET 0x0100 #endif #ifndef CLOCK_INVALID #define CLOCK_INVALID -1 #endif #define NSEC_PER_SEC 1000000000LL /* clock_adjtime is not available in GLIBC < 2.14 */ #if !__GLIBC_PREREQ(2, 14) #include <sys/syscall.h> static int clock_adjtime(clockid_t id, struct timex *tx) { return syscall(__NR_clock_adjtime, id, tx); } #endif static void show_flag_test(int rq_index, unsigned int flags, int err) { printf("PTP_EXTTS_REQUEST%c flags 0x%08x : (%d) %s\n", rq_index ? '1' + rq_index : ' ', flags, err, strerror(errno)); /* sigh, uClibc ... */ errno = 0; } static void do_flag_test(int fd, unsigned int index) { struct ptp_extts_request extts_request; unsigned long request[2] = { PTP_EXTTS_REQUEST, PTP_EXTTS_REQUEST2, }; unsigned int enable_flags[5] = { PTP_ENABLE_FEATURE, PTP_ENABLE_FEATURE | PTP_RISING_EDGE, PTP_ENABLE_FEATURE | PTP_FALLING_EDGE, PTP_ENABLE_FEATURE | PTP_RISING_EDGE | PTP_FALLING_EDGE, PTP_ENABLE_FEATURE | (PTP_EXTTS_VALID_FLAGS + 1), }; int err, i, j; memset(&extts_request, 0, sizeof(extts_request)); extts_request.index = index; for (i = 0; i < 2; i++) { for (j = 0; j < 5; j++) { extts_request.flags = enable_flags[j]; err = ioctl(fd, request[i], &extts_request); show_flag_test(i, extts_request.flags, err); extts_request.flags = 0; err = ioctl(fd, request[i], &extts_request); } } } static clockid_t get_clockid(int fd) { #define CLOCKFD 3 return (((unsigned int) ~fd) << 3) | CLOCKFD; } static long ppb_to_scaled_ppm(int ppb) { /* * The 'freq' field in the 'struct timex' is in parts per * million, but with a 16 bit binary fractional field. * Instead of calculating either one of * * scaled_ppm = (ppb / 1000) << 16 [1] * scaled_ppm = (ppb << 16) / 1000 [2] * * we simply use double precision math, in order to avoid the * truncation in [1] and the possible overflow in [2]. */ return (long) (ppb * 65.536); } static int64_t pctns(struct ptp_clock_time *t) { return t->sec * NSEC_PER_SEC + t->nsec; } static void usage(char *progname) { fprintf(stderr, "usage: %s [options]\n" " -c query the ptp clock's capabilities\n" " -d name device to open\n" " -e val read 'val' external time stamp events\n" " -f val adjust the ptp clock frequency by 'val' ppb\n" " -F chan Enable single channel mask and keep device open for debugfs verification.\n" " -g get the ptp clock time\n" " -h prints this message\n" " -i val index for event/trigger\n" " -k val measure the time offset between system and phc clock\n" " for 'val' times (Maximum 25)\n" " -l list the current pin configuration\n" " -L pin,val configure pin index 'pin' with function 'val'\n" " the channel index is taken from the '-i' option\n" " 'val' specifies the auxiliary function:\n" " 0 - none\n" " 1 - external time stamp\n" " 2 - periodic output\n" " -n val shift the ptp clock time by 'val' nanoseconds\n" " -o val phase offset (in nanoseconds) to be provided to the PHC servo\n" " -p val enable output with a period of 'val' nanoseconds\n" " -H val set output phase to 'val' nanoseconds (requires -p)\n" " -w val set output pulse width to 'val' nanoseconds (requires -p)\n" " -P val enable or disable (val=1|0) the system clock PPS\n" " -s set the ptp clock time from the system time\n" " -S set the system time from the ptp clock time\n" " -t val shift the ptp clock time by 'val' seconds\n" " -T val set the ptp clock time to 'val' seconds\n" " -x val get an extended ptp clock time with the desired number of samples (up to %d)\n" " -X get a ptp clock cross timestamp\n" " -y val pre/post tstamp timebase to use {realtime|monotonic|monotonic-raw}\n" " -z test combinations of rising/falling external time stamp flags\n", progname, PTP_MAX_SAMPLES); } int main(int argc, char *argv[]) { struct ptp_clock_caps caps; struct ptp_extts_event event; struct ptp_extts_request extts_request; struct ptp_perout_request perout_request; struct ptp_pin_desc desc; struct timespec ts; struct timex tx; struct ptp_clock_time *pct; struct ptp_sys_offset *sysoff; struct ptp_sys_offset_extended *soe; struct ptp_sys_offset_precise *xts; char *progname; unsigned int i; int c, cnt, fd; char *device = DEVICE; clockid_t clkid; int adjfreq = 0x7fffffff; int adjtime = 0; int adjns = 0; int adjphase = 0; int capabilities = 0; int extts = 0; int flagtest = 0; int gettime = 0; int index = 0; int list_pins = 0; int pct_offset = 0; int getextended = 0; int getcross = 0; int n_samples = 0; int pin_index = -1, pin_func; int pps = -1; int seconds = 0; int settime = 0; int channel = -1; clockid_t ext_clockid = CLOCK_REALTIME; int64_t t1, t2, tp; int64_t interval, offset; int64_t perout_phase = -1; int64_t pulsewidth = -1; int64_t perout = -1; progname = strrchr(argv[0], '/'); progname = progname ? 1+progname : argv[0]; while (EOF != (c = getopt(argc, argv, "cd:e:f:F:ghH:i:k:lL:n:o:p:P:sSt:T:w:x:Xy:z"))) { switch (c) { case 'c': capabilities = 1; break; case 'd': device = optarg; break; case 'e': extts = atoi(optarg); break; case 'f': adjfreq = atoi(optarg); break; case 'F': channel = atoi(optarg); break; case 'g': gettime = 1; break; case 'H': perout_phase = atoll(optarg); break; case 'i': index = atoi(optarg); break; case 'k': pct_offset = 1; n_samples = atoi(optarg); break; case 'l': list_pins = 1; break; case 'L': cnt = sscanf(optarg, "%d,%d", &pin_index, &pin_func); if (cnt != 2) { usage(progname); return -1; } break; case 'n': adjns = atoi(optarg); break; case 'o': adjphase = atoi(optarg); break; case 'p': perout = atoll(optarg); break; case 'P': pps = atoi(optarg); break; case 's': settime = 1; break; case 'S': settime = 2; break; case 't': adjtime = atoi(optarg); break; case 'T': settime = 3; seconds = atoi(optarg); break; case 'w': pulsewidth = atoi(optarg); break; case 'x': getextended = atoi(optarg); if (getextended < 1 || getextended > PTP_MAX_SAMPLES) { fprintf(stderr, "number of extended timestamp samples must be between 1 and %d; was asked for %d\n", PTP_MAX_SAMPLES, getextended); return -1; } break; case 'X': getcross = 1; break; case 'y': if (!strcasecmp(optarg, "realtime")) ext_clockid = CLOCK_REALTIME; else if (!strcasecmp(optarg, "monotonic")) ext_clockid = CLOCK_MONOTONIC; else if (!strcasecmp(optarg, "monotonic-raw")) ext_clockid = CLOCK_MONOTONIC_RAW; else { fprintf(stderr, "type needs to be realtime, monotonic or monotonic-raw; was given %s\n", optarg); return -1; } break; case 'z': flagtest = 1; break; case 'h': usage(progname); return 0; case '?': default: usage(progname); return -1; } } fd = open(device, O_RDWR); if (fd < 0) { fprintf(stderr, "opening %s: %s\n", device, strerror(errno)); return -1; } clkid = get_clockid(fd); if (CLOCK_INVALID == clkid) { fprintf(stderr, "failed to read clock id\n"); return -1; } if (capabilities) { if (ioctl(fd, PTP_CLOCK_GETCAPS, &caps)) { perror("PTP_CLOCK_GETCAPS"); } else { printf("capabilities:\n" " %d maximum frequency adjustment (ppb)\n" " %d programmable alarms\n" " %d external time stamp channels\n" " %d programmable periodic signals\n" " %d pulse per second\n" " %d programmable pins\n" " %d cross timestamping\n" " %d adjust_phase\n" " %d maximum phase adjustment (ns)\n", caps.max_adj, caps.n_alarm, caps.n_ext_ts, caps.n_per_out, caps.pps, caps.n_pins, caps.cross_timestamping, caps.adjust_phase, caps.max_phase_adj); } } if (0x7fffffff != adjfreq) { memset(&tx, 0, sizeof(tx)); tx.modes = ADJ_FREQUENCY; tx.freq = ppb_to_scaled_ppm(adjfreq); if (clock_adjtime(clkid, &tx)) { perror("clock_adjtime"); } else { puts("frequency adjustment okay"); } } if (adjtime || adjns) { memset(&tx, 0, sizeof(tx)); tx.modes = ADJ_SETOFFSET | ADJ_NANO; tx.time.tv_sec = adjtime; tx.time.tv_usec = adjns; while (tx.time.tv_usec < 0) { tx.time.tv_sec -= 1; tx.time.tv_usec += NSEC_PER_SEC; } if (clock_adjtime(clkid, &tx) < 0) { perror("clock_adjtime"); } else { puts("time shift okay"); } } if (adjphase) { memset(&tx, 0, sizeof(tx)); tx.modes = ADJ_OFFSET | ADJ_NANO; tx.offset = adjphase; if (clock_adjtime(clkid, &tx) < 0) { perror("clock_adjtime"); } else { puts("phase adjustment okay"); } } if (gettime) { if (clock_gettime(clkid, &ts)) { perror("clock_gettime"); } else { printf("clock time: %ld.%09ld or %s", ts.tv_sec, ts.tv_nsec, ctime(&ts.tv_sec)); } } if (settime == 1) { clock_gettime(CLOCK_REALTIME, &ts); if (clock_settime(clkid, &ts)) { perror("clock_settime"); } else { puts("set time okay"); } } if (settime == 2) { clock_gettime(clkid, &ts); if (clock_settime(CLOCK_REALTIME, &ts)) { perror("clock_settime"); } else { puts("set time okay"); } } if (settime == 3) { ts.tv_sec = seconds; ts.tv_nsec = 0; if (clock_settime(clkid, &ts)) { perror("clock_settime"); } else { puts("set time okay"); } } if (pin_index >= 0) { memset(&desc, 0, sizeof(desc)); desc.index = pin_index; desc.func = pin_func; desc.chan = index; if (ioctl(fd, PTP_PIN_SETFUNC, &desc)) { perror("PTP_PIN_SETFUNC"); } else { puts("set pin function okay"); } } if (extts) { memset(&extts_request, 0, sizeof(extts_request)); extts_request.index = index; extts_request.flags = PTP_ENABLE_FEATURE; if (ioctl(fd, PTP_EXTTS_REQUEST, &extts_request)) { perror("PTP_EXTTS_REQUEST"); extts = 0; } else { puts("external time stamp request okay"); } for (; extts; extts--) { cnt = read(fd, &event, sizeof(event)); if (cnt != sizeof(event)) { perror("read"); break; } printf("event index %u at %lld.%09u\n", event.index, event.t.sec, event.t.nsec); fflush(stdout); } /* Disable the feature again. */ extts_request.flags = 0; if (ioctl(fd, PTP_EXTTS_REQUEST, &extts_request)) { perror("PTP_EXTTS_REQUEST"); } } if (flagtest) { do_flag_test(fd, index); } if (list_pins) { int n_pins = 0; if (ioctl(fd, PTP_CLOCK_GETCAPS, &caps)) { perror("PTP_CLOCK_GETCAPS"); } else { n_pins = caps.n_pins; } for (i = 0; i < n_pins; i++) { desc.index = i; if (ioctl(fd, PTP_PIN_GETFUNC, &desc)) { perror("PTP_PIN_GETFUNC"); break; } printf("name %s index %u func %u chan %u\n", desc.name, desc.index, desc.func, desc.chan); } } if (pulsewidth >= 0 && perout < 0) { puts("-w can only be specified together with -p"); return -1; } if (perout_phase >= 0 && perout < 0) { puts("-H can only be specified together with -p"); return -1; } if (perout >= 0) { if (clock_gettime(clkid, &ts)) { perror("clock_gettime"); return -1; } memset(&perout_request, 0, sizeof(perout_request)); perout_request.index = index; perout_request.period.sec = perout / NSEC_PER_SEC; perout_request.period.nsec = perout % NSEC_PER_SEC; perout_request.flags = 0; if (pulsewidth >= 0) { perout_request.flags |= PTP_PEROUT_DUTY_CYCLE; perout_request.on.sec = pulsewidth / NSEC_PER_SEC; perout_request.on.nsec = pulsewidth % NSEC_PER_SEC; } if (perout_phase >= 0) { perout_request.flags |= PTP_PEROUT_PHASE; perout_request.phase.sec = perout_phase / NSEC_PER_SEC; perout_request.phase.nsec = perout_phase % NSEC_PER_SEC; } else { perout_request.start.sec = ts.tv_sec + 2; perout_request.start.nsec = 0; } if (ioctl(fd, PTP_PEROUT_REQUEST2, &perout_request)) { perror("PTP_PEROUT_REQUEST"); } else { puts("periodic output request okay"); } } if (pps != -1) { int enable = pps ? 1 : 0; if (ioctl(fd, PTP_ENABLE_PPS, enable)) { perror("PTP_ENABLE_PPS"); } else { puts("pps for system time request okay"); } } if (pct_offset) { if (n_samples <= 0 || n_samples > 25) { puts("n_samples should be between 1 and 25"); usage(progname); return -1; } sysoff = calloc(1, sizeof(*sysoff)); if (!sysoff) { perror("calloc"); return -1; } sysoff->n_samples = n_samples; if (ioctl(fd, PTP_SYS_OFFSET, sysoff)) perror("PTP_SYS_OFFSET"); else puts("system and phc clock time offset request okay"); pct = &sysoff->ts[0]; for (i = 0; i < sysoff->n_samples; i++) { t1 = pctns(pct+2*i); tp = pctns(pct+2*i+1); t2 = pctns(pct+2*i+2); interval = t2 - t1; offset = (t2 + t1) / 2 - tp; printf("system time: %lld.%09u\n", (pct+2*i)->sec, (pct+2*i)->nsec); printf("phc time: %lld.%09u\n", (pct+2*i+1)->sec, (pct+2*i+1)->nsec); printf("system time: %lld.%09u\n", (pct+2*i+2)->sec, (pct+2*i+2)->nsec); printf("system/phc clock time offset is %" PRId64 " ns\n" "system clock time delay is %" PRId64 " ns\n", offset, interval); } free(sysoff); } if (getextended) { soe = calloc(1, sizeof(*soe)); if (!soe) { perror("calloc"); return -1; } soe->n_samples = getextended; soe->clockid = ext_clockid; if (ioctl(fd, PTP_SYS_OFFSET_EXTENDED, soe)) { perror("PTP_SYS_OFFSET_EXTENDED"); } else { printf("extended timestamp request returned %d samples\n", getextended); for (i = 0; i < getextended; i++) { switch (ext_clockid) { case CLOCK_REALTIME: printf("sample #%2d: real time before: %lld.%09u\n", i, soe->ts[i][0].sec, soe->ts[i][0].nsec); break; case CLOCK_MONOTONIC: printf("sample #%2d: monotonic time before: %lld.%09u\n", i, soe->ts[i][0].sec, soe->ts[i][0].nsec); break; case CLOCK_MONOTONIC_RAW: printf("sample #%2d: monotonic-raw time before: %lld.%09u\n", i, soe->ts[i][0].sec, soe->ts[i][0].nsec); break; default: break; } printf(" phc time: %lld.%09u\n", soe->ts[i][1].sec, soe->ts[i][1].nsec); switch (ext_clockid) { case CLOCK_REALTIME: printf(" real time after: %lld.%09u\n", soe->ts[i][2].sec, soe->ts[i][2].nsec); break; case CLOCK_MONOTONIC: printf(" monotonic time after: %lld.%09u\n", soe->ts[i][2].sec, soe->ts[i][2].nsec); break; case CLOCK_MONOTONIC_RAW: printf(" monotonic-raw time after: %lld.%09u\n", soe->ts[i][2].sec, soe->ts[i][2].nsec); break; default: break; } } } free(soe); } if (getcross) { xts = calloc(1, sizeof(*xts)); if (!xts) { perror("calloc"); return -1; } if (ioctl(fd, PTP_SYS_OFFSET_PRECISE, xts)) { perror("PTP_SYS_OFFSET_PRECISE"); } else { puts("system and phc crosstimestamping request okay"); printf("device time: %lld.%09u\n", xts->device.sec, xts->device.nsec); printf("system time: %lld.%09u\n", xts->sys_realtime.sec, xts->sys_realtime.nsec); printf("monoraw time: %lld.%09u\n", xts->sys_monoraw.sec, xts->sys_monoraw.nsec); } free(xts); } if (channel >= 0) { if (ioctl(fd, PTP_MASK_CLEAR_ALL)) { perror("PTP_MASK_CLEAR_ALL"); } else if (ioctl(fd, PTP_MASK_EN_SINGLE, (unsigned int *)&channel)) { perror("PTP_MASK_EN_SINGLE"); } else { printf("Channel %d exclusively enabled. Check on debugfs.\n", channel); printf("Press any key to continue\n."); getchar(); } } close(fd); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1