Contributors: 48
Author Tokens Token Proportion Commits Commit Proportion
Aurabindo Pillai 7539 43.59% 5 4.81%
Rafal Ostrowski 3714 21.48% 1 0.96%
Yihan Zhu 1367 7.90% 2 1.92%
Dillon Varone 1310 7.57% 12 11.54%
Austin Zheng 573 3.31% 3 2.88%
Wenjing Liu 573 3.31% 11 10.58%
Ilya Bakoulin 354 2.05% 3 2.88%
Nevenko Stupar 340 1.97% 4 3.85%
Ryan Seto 327 1.89% 1 0.96%
Joshua Aberback 157 0.91% 6 5.77%
Martin Leung 118 0.68% 2 1.92%
Alvin lee 114 0.66% 3 2.88%
David Francis 105 0.61% 1 0.96%
Harry Wentland 99 0.57% 4 3.85%
Anthony Koo 98 0.57% 1 0.96%
Chris Park 61 0.35% 2 1.92%
Nicholas Kazlauskas 60 0.35% 1 0.96%
rodrigosiqueira 42 0.24% 2 1.92%
Srinivasan S 38 0.22% 3 2.88%
Bhawanpreet Lakha 33 0.19% 2 1.92%
Julian Parkin 29 0.17% 1 0.96%
Brendan Tam 26 0.15% 1 0.96%
Sridevi 25 0.14% 2 1.92%
Daniel Sa 23 0.13% 1 0.96%
Alex Hung 18 0.10% 2 1.92%
Adam Nelson 14 0.08% 1 0.96%
Samson Tam 13 0.08% 1 0.96%
Peichen Huang 12 0.07% 2 1.92%
Roman Li 11 0.06% 1 0.96%
Jun Lei 9 0.05% 2 1.92%
Melissa Wen 8 0.05% 2 1.92%
Alex Deucher 8 0.05% 1 0.96%
Jerry (Fangzhi) Zuo 7 0.04% 2 1.92%
Leo (Hanghong) Ma 7 0.04% 1 0.96%
Po-Ting Chen 7 0.04% 1 0.96%
Relja Vojvodic 7 0.04% 1 0.96%
sungwang 7 0.04% 1 0.96%
Andrey Grodzovsky 6 0.03% 1 0.96%
Jimmy Kizito 6 0.03% 1 0.96%
Charlene Liu 6 0.03% 1 0.96%
Michael Strauss 5 0.03% 1 0.96%
Hansen 5 0.03% 1 0.96%
Dmytro Laktyushkin 5 0.03% 2 1.92%
Tony Cheng 2 0.01% 1 0.96%
Meenakshikumar Somasundaram 2 0.01% 1 0.96%
Meera Patel 2 0.01% 1 0.96%
Martin Tsai 1 0.01% 1 0.96%
Peterson 1 0.01% 1 0.96%
Total 17294 104


// SPDX-License-Identifier: MIT
//
// Copyright 2024 Advanced Micro Devices, Inc.

#include "dm_services.h"
#include "basics/dc_common.h"
#include "dm_helpers.h"
#include "core_types.h"
#include "resource.h"
#include "dccg.h"
#include "dce/dce_hwseq.h"
#include "reg_helper.h"
#include "abm.h"
#include "hubp.h"
#include "dchubbub.h"
#include "timing_generator.h"
#include "opp.h"
#include "ipp.h"
#include "mpc.h"
#include "mcif_wb.h"
#include "dc_dmub_srv.h"
#include "link_hwss.h"
#include "dpcd_defs.h"
#include "clk_mgr.h"
#include "dsc.h"
#include "link.h"

#include "dce/dmub_hw_lock_mgr.h"
#include "dcn10/dcn10_cm_common.h"
#include "dcn20/dcn20_optc.h"
#include "dcn30/dcn30_cm_common.h"
#include "dcn32/dcn32_hwseq.h"
#include "dcn401_hwseq.h"
#include "dcn401/dcn401_resource.h"
#include "dc_state_priv.h"
#include "link_enc_cfg.h"

#define DC_LOGGER_INIT(logger)

#define CTX \
	hws->ctx
#define REG(reg)\
	hws->regs->reg
#define DC_LOGGER \
	dc->ctx->logger


#undef FN
#define FN(reg_name, field_name) \
	hws->shifts->field_name, hws->masks->field_name

static void dcn401_initialize_min_clocks(struct dc *dc)
{
	struct dc_clocks *clocks = &dc->current_state->bw_ctx.bw.dcn.clk;

	clocks->dcfclk_deep_sleep_khz = DCN3_2_DCFCLK_DS_INIT_KHZ;
	clocks->dcfclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz * 1000;
	clocks->socclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].socclk_mhz * 1000;
	clocks->dramclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].memclk_mhz * 1000;
	clocks->dppclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].dppclk_mhz * 1000;
	if (dc->debug.disable_boot_optimizations) {
		clocks->dispclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].dispclk_mhz * 1000;
	} else {
		/* Even though DPG_EN = 1 for the connected display, it still requires the
		 * correct timing so we cannot set DISPCLK to min freq or it could cause
		 * audio corruption. Read current DISPCLK from DENTIST and request the same
		 * freq to ensure that the timing is valid and unchanged.
		 */
		clocks->dispclk_khz = dc->clk_mgr->funcs->get_dispclk_from_dentist(dc->clk_mgr);
	}
	clocks->ref_dtbclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].dtbclk_mhz * 1000;
	clocks->fclk_p_state_change_support = true;
	clocks->p_state_change_support = true;

	dc->clk_mgr->funcs->update_clocks(
			dc->clk_mgr,
			dc->current_state,
			true);
}

void dcn401_program_gamut_remap(struct pipe_ctx *pipe_ctx)
{
	unsigned int i = 0;
	struct mpc_grph_gamut_adjustment mpc_adjust;
	unsigned int mpcc_id = pipe_ctx->plane_res.mpcc_inst;
	struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;

	//For now assert if location is not pre-blend
	if (pipe_ctx->plane_state)
		ASSERT(pipe_ctx->plane_state->mcm_location == MPCC_MOVABLE_CM_LOCATION_BEFORE);

	// program MPCC_MCM_FIRST_GAMUT_REMAP
	memset(&mpc_adjust, 0, sizeof(mpc_adjust));
	mpc_adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
	mpc_adjust.mpcc_gamut_remap_block_id = MPCC_MCM_FIRST_GAMUT_REMAP;

	if (pipe_ctx->plane_state &&
		pipe_ctx->plane_state->gamut_remap_matrix.enable_remap == true) {
		mpc_adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
			mpc_adjust.temperature_matrix[i] =
			pipe_ctx->plane_state->gamut_remap_matrix.matrix[i];
	}

	mpc->funcs->set_gamut_remap(mpc, mpcc_id, &mpc_adjust);

	// program MPCC_MCM_SECOND_GAMUT_REMAP for Bypass / Disable for now
	mpc_adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
	mpc_adjust.mpcc_gamut_remap_block_id = MPCC_MCM_SECOND_GAMUT_REMAP;

	mpc->funcs->set_gamut_remap(mpc, mpcc_id, &mpc_adjust);

	// program MPCC_OGAM_GAMUT_REMAP same as is currently used on DCN3x
	memset(&mpc_adjust, 0, sizeof(mpc_adjust));
	mpc_adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
	mpc_adjust.mpcc_gamut_remap_block_id = MPCC_OGAM_GAMUT_REMAP;

	if (pipe_ctx->top_pipe == NULL) {
		if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
			mpc_adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
			for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
				mpc_adjust.temperature_matrix[i] =
				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
		}
	}

	mpc->funcs->set_gamut_remap(mpc, mpcc_id, &mpc_adjust);
}

void dcn401_init_hw(struct dc *dc)
{
	struct abm **abms = dc->res_pool->multiple_abms;
	struct dce_hwseq *hws = dc->hwseq;
	struct dc_bios *dcb = dc->ctx->dc_bios;
	struct resource_pool *res_pool = dc->res_pool;
	int i;
	int edp_num;
	uint32_t backlight = MAX_BACKLIGHT_LEVEL;
	uint32_t user_level = MAX_BACKLIGHT_LEVEL;
	int current_dchub_ref_freq = 0;

	if (dc->clk_mgr && dc->clk_mgr->funcs && dc->clk_mgr->funcs->init_clocks) {
		dc->clk_mgr->funcs->init_clocks(dc->clk_mgr);

		// mark dcmode limits present if any clock has distinct AC and DC values from SMU
		dc->caps.dcmode_power_limits_present =
				(dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dcfclk_levels && dc->clk_mgr->bw_params->dc_mode_limit.dcfclk_mhz) ||
				(dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dispclk_levels && dc->clk_mgr->bw_params->dc_mode_limit.dispclk_mhz) ||
				(dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dtbclk_levels && dc->clk_mgr->bw_params->dc_mode_limit.dtbclk_mhz) ||
				(dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_fclk_levels && dc->clk_mgr->bw_params->dc_mode_limit.fclk_mhz) ||
				(dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels && dc->clk_mgr->bw_params->dc_mode_limit.memclk_mhz) ||
				(dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_socclk_levels && dc->clk_mgr->bw_params->dc_mode_limit.socclk_mhz);
	}

	// Initialize the dccg
	if (res_pool->dccg->funcs->dccg_init)
		res_pool->dccg->funcs->dccg_init(res_pool->dccg);

	// Disable DMUB Initialization until IPS state programming is finalized
	//if (!dcb->funcs->is_accelerated_mode(dcb)) {
	//	hws->funcs.bios_golden_init(dc);
	//}

	// Set default OPTC memory power states
	if (dc->debug.enable_mem_low_power.bits.optc) {
		// Shutdown when unassigned and light sleep in VBLANK
		REG_SET_2(ODM_MEM_PWR_CTRL3, 0, ODM_MEM_UNASSIGNED_PWR_MODE, 3, ODM_MEM_VBLANK_PWR_MODE, 1);
	}

	if (dc->debug.enable_mem_low_power.bits.vga) {
		// Power down VGA memory
		REG_UPDATE(MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, 1);
	}

	if (dc->ctx->dc_bios->fw_info_valid) {
		res_pool->ref_clocks.xtalin_clock_inKhz =
				dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;

		if (res_pool->hubbub) {
			(res_pool->dccg->funcs->get_dccg_ref_freq)(res_pool->dccg,
					dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency,
					&res_pool->ref_clocks.dccg_ref_clock_inKhz);

			current_dchub_ref_freq = res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000;

			(res_pool->hubbub->funcs->get_dchub_ref_freq)(res_pool->hubbub,
					res_pool->ref_clocks.dccg_ref_clock_inKhz,
					&res_pool->ref_clocks.dchub_ref_clock_inKhz);
		} else {
			// Not all ASICs have DCCG sw component
			res_pool->ref_clocks.dccg_ref_clock_inKhz =
					res_pool->ref_clocks.xtalin_clock_inKhz;
			res_pool->ref_clocks.dchub_ref_clock_inKhz =
					res_pool->ref_clocks.xtalin_clock_inKhz;
		}
	} else
		ASSERT_CRITICAL(false);

	for (i = 0; i < dc->link_count; i++) {
		/* Power up AND update implementation according to the
		 * required signal (which may be different from the
		 * default signal on connector).
		 */
		struct dc_link *link = dc->links[i];

		link->link_enc->funcs->hw_init(link->link_enc);

		/* Check for enabled DIG to identify enabled display */
		if (link->link_enc->funcs->is_dig_enabled &&
			link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
			link->link_status.link_active = true;
			link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
			if (link->link_enc->funcs->fec_is_active &&
					link->link_enc->funcs->fec_is_active(link->link_enc))
				link->fec_state = dc_link_fec_enabled;
		}
	}

	/* enable_power_gating_plane before dsc_pg_control because
	 * FORCEON = 1 with hw default value on bootup, resume from s3
	 */
	if (hws->funcs.enable_power_gating_plane)
		hws->funcs.enable_power_gating_plane(dc->hwseq, true);

	/* we want to turn off all dp displays before doing detection */
	dc->link_srv->blank_all_dp_displays(dc);

	/* If taking control over from VBIOS, we may want to optimize our first
	 * mode set, so we need to skip powering down pipes until we know which
	 * pipes we want to use.
	 * Otherwise, if taking control is not possible, we need to power
	 * everything down.
	 */
	if (dcb->funcs->is_accelerated_mode(dcb) || !dc->config.seamless_boot_edp_requested) {
		/* Disable boot optimizations means power down everything including PHY, DIG,
		 * and OTG (i.e. the boot is not optimized because we do a full power down).
		 */
		if (dc->hwss.enable_accelerated_mode && dc->debug.disable_boot_optimizations)
			dc->hwss.enable_accelerated_mode(dc, dc->current_state);
		else
			hws->funcs.init_pipes(dc, dc->current_state);

		if (dc->res_pool->hubbub->funcs->allow_self_refresh_control)
			dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub,
					!dc->res_pool->hubbub->ctx->dc->debug.disable_stutter);

		dcn401_initialize_min_clocks(dc);

		/* On HW init, allow idle optimizations after pipes have been turned off.
		 *
		 * In certain D3 cases (i.e. BOCO / BOMACO) it's possible that hardware state
		 * is reset (i.e. not in idle at the time hw init is called), but software state
		 * still has idle_optimizations = true, so we must disable idle optimizations first
		 * (i.e. set false), then re-enable (set true).
		 */
		dc_allow_idle_optimizations(dc, false);
		dc_allow_idle_optimizations(dc, true);
	}

	/* In headless boot cases, DIG may be turned
	 * on which causes HW/SW discrepancies.
	 * To avoid this, power down hardware on boot
	 * if DIG is turned on and seamless boot not enabled
	 */
	if (!dc->config.seamless_boot_edp_requested) {
		struct dc_link *edp_links[MAX_NUM_EDP];
		struct dc_link *edp_link;

		dc_get_edp_links(dc, edp_links, &edp_num);
		if (edp_num) {
			for (i = 0; i < edp_num; i++) {
				edp_link = edp_links[i];
				if (edp_link->link_enc->funcs->is_dig_enabled &&
						edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
						dc->hwss.edp_backlight_control &&
						hws->funcs.power_down &&
						dc->hwss.edp_power_control) {
					dc->hwss.edp_backlight_control(edp_link, false);
					hws->funcs.power_down(dc);
					dc->hwss.edp_power_control(edp_link, false);
				}
			}
		} else {
			for (i = 0; i < dc->link_count; i++) {
				struct dc_link *link = dc->links[i];

				if (link->link_enc->funcs->is_dig_enabled &&
						link->link_enc->funcs->is_dig_enabled(link->link_enc) &&
						hws->funcs.power_down) {
					hws->funcs.power_down(dc);
					break;
				}

			}
		}
	}

	for (i = 0; i < res_pool->audio_count; i++) {
		struct audio *audio = res_pool->audios[i];

		audio->funcs->hw_init(audio);
	}

	for (i = 0; i < dc->link_count; i++) {
		struct dc_link *link = dc->links[i];

		if (link->panel_cntl) {
			backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
			user_level = link->panel_cntl->stored_backlight_registers.USER_LEVEL;
		}
	}

	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		if (abms[i] != NULL && abms[i]->funcs != NULL)
			abms[i]->funcs->abm_init(abms[i], backlight, user_level);
	}

	/* power AFMT HDMI memory TODO: may move to dis/en output save power*/
	REG_WRITE(DIO_MEM_PWR_CTRL, 0);

	if (!dc->debug.disable_clock_gate) {
		/* enable all DCN clock gating */
		REG_WRITE(DCCG_GATE_DISABLE_CNTL, 0);

		REG_WRITE(DCCG_GATE_DISABLE_CNTL2, 0);

		REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0);
	}

	dcn401_setup_hpo_hw_control(hws, true);

	if (!dcb->funcs->is_accelerated_mode(dcb) && dc->res_pool->hubbub->funcs->init_watermarks)
		dc->res_pool->hubbub->funcs->init_watermarks(dc->res_pool->hubbub);

	if (dc->clk_mgr && dc->clk_mgr->funcs && dc->clk_mgr->funcs->notify_wm_ranges)
		dc->clk_mgr->funcs->notify_wm_ranges(dc->clk_mgr);

	if (dc->res_pool->hubbub->funcs->force_pstate_change_control)
		dc->res_pool->hubbub->funcs->force_pstate_change_control(
				dc->res_pool->hubbub, false, false);

	if (dc->res_pool->hubbub->funcs->init_crb)
		dc->res_pool->hubbub->funcs->init_crb(dc->res_pool->hubbub);

	if (dc->res_pool->hubbub->funcs->set_request_limit && dc->config.sdpif_request_limit_words_per_umc > 0)
		dc->res_pool->hubbub->funcs->set_request_limit(dc->res_pool->hubbub, dc->ctx->dc_bios->vram_info.num_chans, dc->config.sdpif_request_limit_words_per_umc);

	// Get DMCUB capabilities
	if (dc->ctx->dmub_srv) {
		dc_dmub_srv_query_caps_cmd(dc->ctx->dmub_srv);
		dc->caps.dmub_caps.psr = dc->ctx->dmub_srv->dmub->feature_caps.psr;
		dc->caps.dmub_caps.mclk_sw = dc->ctx->dmub_srv->dmub->feature_caps.fw_assisted_mclk_switch_ver > 0;
		dc->caps.dmub_caps.fams_ver = dc->ctx->dmub_srv->dmub->feature_caps.fw_assisted_mclk_switch_ver;
		dc->debug.fams2_config.bits.enable &=
				dc->caps.dmub_caps.fams_ver == dc->debug.fams_version.ver; // sw & fw fams versions must match for support
		if ((!dc->debug.fams2_config.bits.enable && dc->res_pool->funcs->update_bw_bounding_box)
			|| res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000 != current_dchub_ref_freq) {
			/* update bounding box if FAMS2 disabled, or if dchub clk has changed */
			if (dc->clk_mgr)
				dc->res_pool->funcs->update_bw_bounding_box(dc,
									    dc->clk_mgr->bw_params);
		}
	}
}

static void dcn401_get_mcm_lut_xable_from_pipe_ctx(struct dc *dc, struct pipe_ctx *pipe_ctx,
		enum MCM_LUT_XABLE *shaper_xable,
		enum MCM_LUT_XABLE *lut3d_xable,
		enum MCM_LUT_XABLE *lut1d_xable)
{
	enum dc_cm2_shaper_3dlut_setting shaper_3dlut_setting = DC_CM2_SHAPER_3DLUT_SETTING_BYPASS_ALL;
	bool lut1d_enable = false;
	struct mpc *mpc = dc->res_pool->mpc;
	int mpcc_id = pipe_ctx->plane_res.hubp->inst;

	if (!pipe_ctx->plane_state)
		return;
	shaper_3dlut_setting = pipe_ctx->plane_state->mcm_shaper_3dlut_setting;
	lut1d_enable = pipe_ctx->plane_state->mcm_lut1d_enable;
	mpc->funcs->set_movable_cm_location(mpc, MPCC_MOVABLE_CM_LOCATION_BEFORE, mpcc_id);
	pipe_ctx->plane_state->mcm_location = MPCC_MOVABLE_CM_LOCATION_BEFORE;

	*lut1d_xable = lut1d_enable ? MCM_LUT_ENABLE : MCM_LUT_DISABLE;

	switch (shaper_3dlut_setting) {
	case DC_CM2_SHAPER_3DLUT_SETTING_BYPASS_ALL:
		*lut3d_xable = *shaper_xable = MCM_LUT_DISABLE;
		break;
	case DC_CM2_SHAPER_3DLUT_SETTING_ENABLE_SHAPER:
		*lut3d_xable = MCM_LUT_DISABLE;
		*shaper_xable = MCM_LUT_ENABLE;
		break;
	case DC_CM2_SHAPER_3DLUT_SETTING_ENABLE_SHAPER_3DLUT:
		*lut3d_xable = *shaper_xable = MCM_LUT_ENABLE;
		break;
	}
}

static void dcn401_set_mcm_location_post_blend(struct dc *dc, struct pipe_ctx *pipe_ctx, bool bPostBlend)
{
	struct mpc *mpc = dc->res_pool->mpc;
	int mpcc_id = pipe_ctx->plane_res.hubp->inst;

	if (!pipe_ctx->plane_state)
		return;

	mpc->funcs->set_movable_cm_location(mpc, MPCC_MOVABLE_CM_LOCATION_BEFORE, mpcc_id);
	pipe_ctx->plane_state->mcm_location = (bPostBlend) ?
											MPCC_MOVABLE_CM_LOCATION_AFTER :
											MPCC_MOVABLE_CM_LOCATION_BEFORE;
}

static void dc_get_lut_mode(
	enum dc_cm2_gpu_mem_layout layout,
	enum hubp_3dlut_fl_mode *mode,
	enum hubp_3dlut_fl_addressing_mode *addr_mode)
{
	switch (layout) {
	case DC_CM2_GPU_MEM_LAYOUT_3D_SWIZZLE_LINEAR_RGB:
		*mode = hubp_3dlut_fl_mode_native_1;
		*addr_mode = hubp_3dlut_fl_addressing_mode_sw_linear;
		break;
	case DC_CM2_GPU_MEM_LAYOUT_3D_SWIZZLE_LINEAR_BGR:
		*mode = hubp_3dlut_fl_mode_native_2;
		*addr_mode = hubp_3dlut_fl_addressing_mode_sw_linear;
		break;
	case DC_CM2_GPU_MEM_LAYOUT_1D_PACKED_LINEAR:
		*mode = hubp_3dlut_fl_mode_transform;
		*addr_mode = hubp_3dlut_fl_addressing_mode_simple_linear;
		break;
	default:
		*mode = hubp_3dlut_fl_mode_disable;
		*addr_mode = hubp_3dlut_fl_addressing_mode_sw_linear;
		break;
	}
}

static void dc_get_lut_format(
	enum dc_cm2_gpu_mem_format dc_format,
	enum hubp_3dlut_fl_format *format)
{
	switch (dc_format) {
	case DC_CM2_GPU_MEM_FORMAT_16161616_UNORM_12MSB:
		*format = hubp_3dlut_fl_format_unorm_12msb_bitslice;
		break;
	case DC_CM2_GPU_MEM_FORMAT_16161616_UNORM_12LSB:
		*format = hubp_3dlut_fl_format_unorm_12lsb_bitslice;
		break;
	case DC_CM2_GPU_MEM_FORMAT_16161616_FLOAT_FP1_5_10:
		*format = hubp_3dlut_fl_format_float_fp1_5_10;
		break;
	}
}

static void dc_get_lut_xbar(
	enum dc_cm2_gpu_mem_pixel_component_order order,
	enum hubp_3dlut_fl_crossbar_bit_slice *cr_r,
	enum hubp_3dlut_fl_crossbar_bit_slice *y_g,
	enum hubp_3dlut_fl_crossbar_bit_slice *cb_b)
{
	switch (order) {
	case DC_CM2_GPU_MEM_PIXEL_COMPONENT_ORDER_RGBA:
		*cr_r = hubp_3dlut_fl_crossbar_bit_slice_32_47;
		*y_g = hubp_3dlut_fl_crossbar_bit_slice_16_31;
		*cb_b =  hubp_3dlut_fl_crossbar_bit_slice_0_15;
		break;
	case DC_CM2_GPU_MEM_PIXEL_COMPONENT_ORDER_BGRA:
		*cr_r = hubp_3dlut_fl_crossbar_bit_slice_0_15;
		*y_g = hubp_3dlut_fl_crossbar_bit_slice_16_31;
		*cb_b = hubp_3dlut_fl_crossbar_bit_slice_32_47;
		break;
	}
}

static void dc_get_lut_width(
	enum dc_cm2_gpu_mem_size  size,
	enum hubp_3dlut_fl_width *width)
{
	switch (size) {
	case DC_CM2_GPU_MEM_SIZE_333333:
		*width = hubp_3dlut_fl_width_33;
		break;
	case DC_CM2_GPU_MEM_SIZE_171717:
		*width = hubp_3dlut_fl_width_17;
		break;
	case DC_CM2_GPU_MEM_SIZE_TRANSFORMED:
		*width = hubp_3dlut_fl_width_transformed;
		break;
	}
}
static bool dc_is_rmcm_3dlut_supported(struct hubp *hubp, struct mpc *mpc)
{
	if (mpc->funcs->rmcm.update_3dlut_fast_load_select &&
		mpc->funcs->rmcm.program_lut_read_write_control &&
		hubp->funcs->hubp_program_3dlut_fl_addr &&
		mpc->funcs->rmcm.program_bit_depth &&
		hubp->funcs->hubp_program_3dlut_fl_mode &&
		hubp->funcs->hubp_program_3dlut_fl_addressing_mode &&
		hubp->funcs->hubp_program_3dlut_fl_format &&
		hubp->funcs->hubp_update_3dlut_fl_bias_scale &&
		mpc->funcs->rmcm.program_bias_scale &&
		hubp->funcs->hubp_program_3dlut_fl_crossbar &&
		hubp->funcs->hubp_program_3dlut_fl_width &&
		mpc->funcs->rmcm.update_3dlut_fast_load_select &&
		mpc->funcs->rmcm.populate_lut &&
		mpc->funcs->rmcm.program_lut_mode &&
		hubp->funcs->hubp_enable_3dlut_fl &&
		mpc->funcs->rmcm.enable_3dlut_fl)
		return true;

	return false;
}

bool dcn401_program_rmcm_luts(
	struct hubp *hubp,
	struct pipe_ctx *pipe_ctx,
	enum dc_cm2_transfer_func_source lut3d_src,
	struct dc_cm2_func_luts *mcm_luts,
	struct mpc *mpc,
	bool lut_bank_a,
	int mpcc_id)
{
	struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
	union mcm_lut_params m_lut_params;
	enum MCM_LUT_XABLE shaper_xable, lut3d_xable = MCM_LUT_DISABLE, lut1d_xable;
	enum hubp_3dlut_fl_mode mode;
	enum hubp_3dlut_fl_addressing_mode addr_mode;
	enum hubp_3dlut_fl_format format = 0;
	enum hubp_3dlut_fl_crossbar_bit_slice crossbar_bit_slice_y_g = 0;
	enum hubp_3dlut_fl_crossbar_bit_slice crossbar_bit_slice_cb_b = 0;
	enum hubp_3dlut_fl_crossbar_bit_slice crossbar_bit_slice_cr_r = 0;
	enum hubp_3dlut_fl_width width = 0;
	struct dc *dc = hubp->ctx->dc;

	bool bypass_rmcm_3dlut  = false;
	bool bypass_rmcm_shaper = false;

	dcn401_get_mcm_lut_xable_from_pipe_ctx(dc, pipe_ctx, &shaper_xable, &lut3d_xable, &lut1d_xable);

	/* 3DLUT */
	switch (lut3d_src) {
	case DC_CM2_TRANSFER_FUNC_SOURCE_SYSMEM:
		memset(&m_lut_params, 0, sizeof(m_lut_params));
		// Don't know what to do in this case.
		//case DC_CM2_TRANSFER_FUNC_SOURCE_SYSMEM:
		break;
	case DC_CM2_TRANSFER_FUNC_SOURCE_VIDMEM:
		dc_get_lut_width(mcm_luts->lut3d_data.gpu_mem_params.size, &width);
		if (!dc_is_rmcm_3dlut_supported(hubp, mpc) ||
			!mpc->funcs->rmcm.is_config_supported(width))
			return false;

		//0. disable fl on mpc
		mpc->funcs->update_3dlut_fast_load_select(mpc, mpcc_id, 0xF);

		//1. power down the block
		mpc->funcs->rmcm.power_on_shaper_3dlut(mpc, mpcc_id, false);

		//2. program RMCM
		//2a. 3dlut reg programming
		mpc->funcs->rmcm.program_lut_read_write_control(mpc, MCM_LUT_3DLUT, lut_bank_a,
				(!bypass_rmcm_3dlut) && lut3d_xable != MCM_LUT_DISABLE, mpcc_id);

		hubp->funcs->hubp_program_3dlut_fl_addr(hubp,
				mcm_luts->lut3d_data.gpu_mem_params.addr);

		mpc->funcs->rmcm.program_bit_depth(mpc,
				mcm_luts->lut3d_data.gpu_mem_params.bit_depth, mpcc_id);

		// setting native or transformed mode,
		dc_get_lut_mode(mcm_luts->lut3d_data.gpu_mem_params.layout, &mode, &addr_mode);

		//these program the mcm 3dlut
		hubp->funcs->hubp_program_3dlut_fl_mode(hubp, mode);

		hubp->funcs->hubp_program_3dlut_fl_addressing_mode(hubp, addr_mode);

		//seems to be only for the MCM
		dc_get_lut_format(mcm_luts->lut3d_data.gpu_mem_params.format_params.format, &format);
		hubp->funcs->hubp_program_3dlut_fl_format(hubp, format);

		mpc->funcs->rmcm.program_bias_scale(mpc,
			mcm_luts->lut3d_data.gpu_mem_params.format_params.float_params.bias,
			mcm_luts->lut3d_data.gpu_mem_params.format_params.float_params.scale,
			mpcc_id);
		hubp->funcs->hubp_update_3dlut_fl_bias_scale(hubp,
					mcm_luts->lut3d_data.gpu_mem_params.format_params.float_params.bias,
					mcm_luts->lut3d_data.gpu_mem_params.format_params.float_params.scale);

		dc_get_lut_xbar(
			mcm_luts->lut3d_data.gpu_mem_params.component_order,
			&crossbar_bit_slice_cr_r,
			&crossbar_bit_slice_y_g,
			&crossbar_bit_slice_cb_b);

		hubp->funcs->hubp_program_3dlut_fl_crossbar(hubp,
			crossbar_bit_slice_cr_r,
			crossbar_bit_slice_y_g,
			crossbar_bit_slice_cb_b);

		mpc->funcs->rmcm.program_3dlut_size(mpc, width, mpcc_id);

		mpc->funcs->update_3dlut_fast_load_select(mpc, mpcc_id, hubp->inst);

		//2b. shaper reg programming
		memset(&m_lut_params, 0, sizeof(m_lut_params));

		if (mcm_luts->shaper->type == TF_TYPE_HWPWL) {
			m_lut_params.pwl = &mcm_luts->shaper->pwl;
		} else if (mcm_luts->shaper->type == TF_TYPE_DISTRIBUTED_POINTS) {
			ASSERT(false);
			cm_helper_translate_curve_to_hw_format(
					dc->ctx,
					mcm_luts->shaper,
					&dpp_base->regamma_params, true);
			m_lut_params.pwl = &dpp_base->regamma_params;
		}
		if (m_lut_params.pwl) {
			mpc->funcs->rmcm.populate_lut(mpc, m_lut_params, lut_bank_a, mpcc_id);
			mpc->funcs->rmcm.program_lut_mode(mpc, !bypass_rmcm_shaper, lut_bank_a, mpcc_id);
		} else {
			//RMCM 3dlut won't work without its shaper
			return false;
		}

		//3. Select the hubp connected to this RMCM
		hubp->funcs->hubp_enable_3dlut_fl(hubp, true);
		mpc->funcs->rmcm.enable_3dlut_fl(mpc, true, mpcc_id);

		//4. power on the block
		if (m_lut_params.pwl)
			mpc->funcs->rmcm.power_on_shaper_3dlut(mpc, mpcc_id, true);

		break;
	default:
		return false;
	}

	return true;
}

void dcn401_populate_mcm_luts(struct dc *dc,
		struct pipe_ctx *pipe_ctx,
		struct dc_cm2_func_luts mcm_luts,
		bool lut_bank_a)
{
	struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
	struct hubp *hubp = pipe_ctx->plane_res.hubp;
	int mpcc_id = hubp->inst;
	struct mpc *mpc = dc->res_pool->mpc;
	union mcm_lut_params m_lut_params;
	enum dc_cm2_transfer_func_source lut3d_src = mcm_luts.lut3d_data.lut3d_src;
	enum hubp_3dlut_fl_format format = 0;
	enum hubp_3dlut_fl_mode mode;
	enum hubp_3dlut_fl_width width = 0;
	enum hubp_3dlut_fl_addressing_mode addr_mode;
	enum hubp_3dlut_fl_crossbar_bit_slice crossbar_bit_slice_y_g = 0;
	enum hubp_3dlut_fl_crossbar_bit_slice crossbar_bit_slice_cb_b = 0;
	enum hubp_3dlut_fl_crossbar_bit_slice crossbar_bit_slice_cr_r = 0;
	enum MCM_LUT_XABLE shaper_xable = MCM_LUT_DISABLE;
	enum MCM_LUT_XABLE lut3d_xable = MCM_LUT_DISABLE;
	enum MCM_LUT_XABLE lut1d_xable = MCM_LUT_DISABLE;
	bool rval;

	dcn401_get_mcm_lut_xable_from_pipe_ctx(dc, pipe_ctx, &shaper_xable, &lut3d_xable, &lut1d_xable);

	//MCM - setting its location (Before/After) blender
	//set to post blend (true)
	dcn401_set_mcm_location_post_blend(
		dc,
		pipe_ctx,
		mcm_luts.lut3d_data.mpc_mcm_post_blend);

	//RMCM - 3dLUT+Shaper
	if (mcm_luts.lut3d_data.rmcm_3dlut_enable) {
		dcn401_program_rmcm_luts(
			hubp,
			pipe_ctx,
			lut3d_src,
			&mcm_luts,
			mpc,
			lut_bank_a,
			mpcc_id);
	}

	/* 1D LUT */
	if (mcm_luts.lut1d_func) {
		memset(&m_lut_params, 0, sizeof(m_lut_params));
		if (mcm_luts.lut1d_func->type == TF_TYPE_HWPWL)
			m_lut_params.pwl = &mcm_luts.lut1d_func->pwl;
		else if (mcm_luts.lut1d_func->type == TF_TYPE_DISTRIBUTED_POINTS) {
			rval = cm3_helper_translate_curve_to_hw_format(
					mcm_luts.lut1d_func,
					&dpp_base->regamma_params, false);
			m_lut_params.pwl = rval ? &dpp_base->regamma_params : NULL;
		}
		if (m_lut_params.pwl) {
			if (mpc->funcs->populate_lut)
				mpc->funcs->populate_lut(mpc, MCM_LUT_1DLUT, m_lut_params, lut_bank_a, mpcc_id);
		}
		if (mpc->funcs->program_lut_mode)
			mpc->funcs->program_lut_mode(mpc, MCM_LUT_1DLUT, lut1d_xable && m_lut_params.pwl, lut_bank_a, mpcc_id);
	}

	/* Shaper */
	if (mcm_luts.shaper && mcm_luts.lut3d_data.mpc_3dlut_enable) {
		memset(&m_lut_params, 0, sizeof(m_lut_params));
		if (mcm_luts.shaper->type == TF_TYPE_HWPWL)
			m_lut_params.pwl = &mcm_luts.shaper->pwl;
		else if (mcm_luts.shaper->type == TF_TYPE_DISTRIBUTED_POINTS) {
			ASSERT(false);
			rval = cm3_helper_translate_curve_to_hw_format(
					mcm_luts.shaper,
					&dpp_base->regamma_params, true);
			m_lut_params.pwl = rval ? &dpp_base->regamma_params : NULL;
		}
		if (m_lut_params.pwl) {
			if (mpc->funcs->mcm.populate_lut)
				mpc->funcs->mcm.populate_lut(mpc, m_lut_params, lut_bank_a, mpcc_id);
			if (mpc->funcs->program_lut_mode)
				mpc->funcs->program_lut_mode(mpc, MCM_LUT_SHAPER, MCM_LUT_ENABLE, lut_bank_a, mpcc_id);
		}
	}

	/* 3DLUT */
	switch (lut3d_src) {
	case DC_CM2_TRANSFER_FUNC_SOURCE_SYSMEM:
		memset(&m_lut_params, 0, sizeof(m_lut_params));
		if (hubp->funcs->hubp_enable_3dlut_fl)
			hubp->funcs->hubp_enable_3dlut_fl(hubp, false);

		if (mcm_luts.lut3d_data.lut3d_func && mcm_luts.lut3d_data.lut3d_func->state.bits.initialized) {
			m_lut_params.lut3d = &mcm_luts.lut3d_data.lut3d_func->lut_3d;
			if (mpc->funcs->populate_lut)
				mpc->funcs->populate_lut(mpc, MCM_LUT_3DLUT, m_lut_params, lut_bank_a, mpcc_id);
			if (mpc->funcs->program_lut_mode)
				mpc->funcs->program_lut_mode(mpc, MCM_LUT_3DLUT, lut3d_xable, lut_bank_a,
						mpcc_id);
		}
		break;
		case DC_CM2_TRANSFER_FUNC_SOURCE_VIDMEM:
		switch (mcm_luts.lut3d_data.gpu_mem_params.size) {
		case DC_CM2_GPU_MEM_SIZE_333333:
			width = hubp_3dlut_fl_width_33;
			break;
		case DC_CM2_GPU_MEM_SIZE_171717:
			width = hubp_3dlut_fl_width_17;
			break;
		case DC_CM2_GPU_MEM_SIZE_TRANSFORMED:
			width = hubp_3dlut_fl_width_transformed;
			break;
		}

		//check for support
		if (mpc->funcs->mcm.is_config_supported &&
			!mpc->funcs->mcm.is_config_supported(width))
			break;

		if (mpc->funcs->program_lut_read_write_control)
			mpc->funcs->program_lut_read_write_control(mpc, MCM_LUT_3DLUT, lut_bank_a, mpcc_id);
		if (mpc->funcs->program_lut_mode)
			mpc->funcs->program_lut_mode(mpc, MCM_LUT_3DLUT, lut3d_xable, lut_bank_a, mpcc_id);

		if (hubp->funcs->hubp_program_3dlut_fl_addr)
			hubp->funcs->hubp_program_3dlut_fl_addr(hubp, mcm_luts.lut3d_data.gpu_mem_params.addr);

		if (mpc->funcs->mcm.program_bit_depth)
			mpc->funcs->mcm.program_bit_depth(mpc, mcm_luts.lut3d_data.gpu_mem_params.bit_depth, mpcc_id);

		switch (mcm_luts.lut3d_data.gpu_mem_params.layout) {
		case DC_CM2_GPU_MEM_LAYOUT_3D_SWIZZLE_LINEAR_RGB:
			mode = hubp_3dlut_fl_mode_native_1;
			addr_mode = hubp_3dlut_fl_addressing_mode_sw_linear;
			break;
		case DC_CM2_GPU_MEM_LAYOUT_3D_SWIZZLE_LINEAR_BGR:
			mode = hubp_3dlut_fl_mode_native_2;
			addr_mode = hubp_3dlut_fl_addressing_mode_sw_linear;
			break;
		case DC_CM2_GPU_MEM_LAYOUT_1D_PACKED_LINEAR:
			mode = hubp_3dlut_fl_mode_transform;
			addr_mode = hubp_3dlut_fl_addressing_mode_simple_linear;
			break;
		default:
			mode = hubp_3dlut_fl_mode_disable;
			addr_mode = hubp_3dlut_fl_addressing_mode_sw_linear;
			break;
		}
		if (hubp->funcs->hubp_program_3dlut_fl_mode)
			hubp->funcs->hubp_program_3dlut_fl_mode(hubp, mode);

		if (hubp->funcs->hubp_program_3dlut_fl_addressing_mode)
			hubp->funcs->hubp_program_3dlut_fl_addressing_mode(hubp, addr_mode);

		switch (mcm_luts.lut3d_data.gpu_mem_params.format_params.format) {
		case DC_CM2_GPU_MEM_FORMAT_16161616_UNORM_12MSB:
			format = hubp_3dlut_fl_format_unorm_12msb_bitslice;
			break;
		case DC_CM2_GPU_MEM_FORMAT_16161616_UNORM_12LSB:
			format = hubp_3dlut_fl_format_unorm_12lsb_bitslice;
			break;
		case DC_CM2_GPU_MEM_FORMAT_16161616_FLOAT_FP1_5_10:
			format = hubp_3dlut_fl_format_float_fp1_5_10;
			break;
		}
		if (hubp->funcs->hubp_program_3dlut_fl_format)
			hubp->funcs->hubp_program_3dlut_fl_format(hubp, format);
		if (hubp->funcs->hubp_update_3dlut_fl_bias_scale &&
				mpc->funcs->mcm.program_bias_scale) {
			mpc->funcs->mcm.program_bias_scale(mpc,
				mcm_luts.lut3d_data.gpu_mem_params.format_params.float_params.bias,
				mcm_luts.lut3d_data.gpu_mem_params.format_params.float_params.scale,
				mpcc_id);
			hubp->funcs->hubp_update_3dlut_fl_bias_scale(hubp,
						mcm_luts.lut3d_data.gpu_mem_params.format_params.float_params.bias,
						mcm_luts.lut3d_data.gpu_mem_params.format_params.float_params.scale);
		}

		//navi 4x has a bug and r and blue are swapped and need to be worked around here in
		//TODO: need to make a method for get_xbar per asic OR do the workaround in program_crossbar for 4x
		dc_get_lut_xbar(
			mcm_luts.lut3d_data.gpu_mem_params.component_order,
			&crossbar_bit_slice_cr_r,
			&crossbar_bit_slice_y_g,
			&crossbar_bit_slice_cb_b);

		if (hubp->funcs->hubp_program_3dlut_fl_crossbar)
			hubp->funcs->hubp_program_3dlut_fl_crossbar(hubp,
					crossbar_bit_slice_cr_r,
					crossbar_bit_slice_y_g,
					crossbar_bit_slice_cb_b);

		if (mpc->funcs->mcm.program_lut_read_write_control)
			mpc->funcs->mcm.program_lut_read_write_control(mpc, MCM_LUT_3DLUT, lut_bank_a, true, mpcc_id);

		if (mpc->funcs->mcm.program_3dlut_size)
			mpc->funcs->mcm.program_3dlut_size(mpc, width, mpcc_id);

		if (mpc->funcs->update_3dlut_fast_load_select)
			mpc->funcs->update_3dlut_fast_load_select(mpc, mpcc_id, hubp->inst);

		if (hubp->funcs->hubp_enable_3dlut_fl)
			hubp->funcs->hubp_enable_3dlut_fl(hubp, true);
		else {
			if (mpc->funcs->program_lut_mode) {
				mpc->funcs->program_lut_mode(mpc, MCM_LUT_SHAPER, MCM_LUT_DISABLE, lut_bank_a, mpcc_id);
				mpc->funcs->program_lut_mode(mpc, MCM_LUT_3DLUT, MCM_LUT_DISABLE, lut_bank_a, mpcc_id);
				mpc->funcs->program_lut_mode(mpc, MCM_LUT_1DLUT, MCM_LUT_DISABLE, lut_bank_a, mpcc_id);
			}
		}
		break;

	}
}

void dcn401_trigger_3dlut_dma_load(struct dc *dc, struct pipe_ctx *pipe_ctx)
{
	struct hubp *hubp = pipe_ctx->plane_res.hubp;

	if (hubp->funcs->hubp_enable_3dlut_fl) {
		hubp->funcs->hubp_enable_3dlut_fl(hubp, true);
	}
}

bool dcn401_set_mcm_luts(struct pipe_ctx *pipe_ctx,
				const struct dc_plane_state *plane_state)
{
	struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
	int mpcc_id = pipe_ctx->plane_res.hubp->inst;
	struct dc *dc = pipe_ctx->stream_res.opp->ctx->dc;
	struct mpc *mpc = dc->res_pool->mpc;
	bool result;
	const struct pwl_params *lut_params = NULL;
	bool rval;

	if (plane_state->mcm_luts.lut3d_data.lut3d_src == DC_CM2_TRANSFER_FUNC_SOURCE_VIDMEM) {
		dcn401_populate_mcm_luts(dc, pipe_ctx, plane_state->mcm_luts, plane_state->lut_bank_a);
		return true;
	}

	mpc->funcs->set_movable_cm_location(mpc, MPCC_MOVABLE_CM_LOCATION_BEFORE, mpcc_id);
	pipe_ctx->plane_state->mcm_location = MPCC_MOVABLE_CM_LOCATION_BEFORE;
	// 1D LUT
	if (plane_state->blend_tf.type == TF_TYPE_HWPWL)
		lut_params = &plane_state->blend_tf.pwl;
	else if (plane_state->blend_tf.type == TF_TYPE_DISTRIBUTED_POINTS) {
		rval = cm3_helper_translate_curve_to_hw_format(&plane_state->blend_tf,
				&dpp_base->regamma_params, false);
		lut_params = rval ? &dpp_base->regamma_params : NULL;
	}
	result = mpc->funcs->program_1dlut(mpc, lut_params, mpcc_id);
	lut_params = NULL;

	// Shaper
	if (plane_state->in_shaper_func.type == TF_TYPE_HWPWL)
		lut_params = &plane_state->in_shaper_func.pwl;
	else if (plane_state->in_shaper_func.type == TF_TYPE_DISTRIBUTED_POINTS) {
		// TODO: dpp_base replace
		rval = cm3_helper_translate_curve_to_hw_format(&plane_state->in_shaper_func,
				&dpp_base->shaper_params, true);
		lut_params = rval ? &dpp_base->shaper_params : NULL;
	}
	result &= mpc->funcs->program_shaper(mpc, lut_params, mpcc_id);

	// 3D
	if (mpc->funcs->program_3dlut) {
		if (plane_state->lut3d_func.state.bits.initialized == 1)
			result &= mpc->funcs->program_3dlut(mpc, &plane_state->lut3d_func.lut_3d, mpcc_id);
		else
			result &= mpc->funcs->program_3dlut(mpc, NULL, mpcc_id);
	}

	return result;
}

bool dcn401_set_output_transfer_func(struct dc *dc,
				struct pipe_ctx *pipe_ctx,
				const struct dc_stream_state *stream)
{
	int mpcc_id = pipe_ctx->plane_res.hubp->inst;
	struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
	const struct pwl_params *params = NULL;
	bool ret = false;

	/* program OGAM or 3DLUT only for the top pipe*/
	if (resource_is_pipe_type(pipe_ctx, OPP_HEAD)) {
		/*program shaper and 3dlut in MPC*/
		ret = dcn32_set_mpc_shaper_3dlut(pipe_ctx, stream);
		if (ret == false && mpc->funcs->set_output_gamma) {
			if (stream->out_transfer_func.type == TF_TYPE_HWPWL)
				params = &stream->out_transfer_func.pwl;
			else if (pipe_ctx->stream->out_transfer_func.type ==
					TF_TYPE_DISTRIBUTED_POINTS &&
					cm3_helper_translate_curve_to_hw_format(
					&stream->out_transfer_func,
					&mpc->blender_params, false))
				params = &mpc->blender_params;
			/* there are no ROM LUTs in OUTGAM */
			if (stream->out_transfer_func.type == TF_TYPE_PREDEFINED)
				BREAK_TO_DEBUGGER();
		}
	}

	if (mpc->funcs->set_output_gamma)
		mpc->funcs->set_output_gamma(mpc, mpcc_id, params);

	return ret;
}

void dcn401_calculate_dccg_tmds_div_value(struct pipe_ctx *pipe_ctx,
				unsigned int *tmds_div)
{
	struct dc_stream_state *stream = pipe_ctx->stream;

	if (dc_is_tmds_signal(stream->signal) || dc_is_virtual_signal(stream->signal)) {
		if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
			*tmds_div = PIXEL_RATE_DIV_BY_2;
		else
			*tmds_div = PIXEL_RATE_DIV_BY_4;
	} else {
		*tmds_div = PIXEL_RATE_DIV_BY_1;
	}

	if (*tmds_div == PIXEL_RATE_DIV_NA)
		ASSERT(false);

}

static void enable_stream_timing_calc(
		struct pipe_ctx *pipe_ctx,
		struct dc_state *context,
		struct dc *dc,
		unsigned int *tmds_div,
		int *opp_inst,
		int *opp_cnt,
		struct pipe_ctx *opp_heads[MAX_PIPES],
		bool *manual_mode,
		struct drr_params *params,
		unsigned int *event_triggers)
{
	struct dc_stream_state *stream = pipe_ctx->stream;
	int i;

	if (dc_is_tmds_signal(stream->signal) || dc_is_virtual_signal(stream->signal))
		dcn401_calculate_dccg_tmds_div_value(pipe_ctx, tmds_div);

	*opp_cnt = resource_get_opp_heads_for_otg_master(pipe_ctx, &context->res_ctx, opp_heads);
	for (i = 0; i < *opp_cnt; i++)
		opp_inst[i] = opp_heads[i]->stream_res.opp->inst;

	if (dc_is_tmds_signal(stream->signal)) {
		stream->link->phy_state.symclk_ref_cnts.otg = 1;
		if (stream->link->phy_state.symclk_state == SYMCLK_OFF_TX_OFF)
			stream->link->phy_state.symclk_state = SYMCLK_ON_TX_OFF;
		else
			stream->link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
	}

	params->vertical_total_min = stream->adjust.v_total_min;
	params->vertical_total_max = stream->adjust.v_total_max;
	params->vertical_total_mid = stream->adjust.v_total_mid;
	params->vertical_total_mid_frame_num = stream->adjust.v_total_mid_frame_num;

	// DRR should set trigger event to monitor surface update event
	if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
		*event_triggers = 0x80;
}

enum dc_status dcn401_enable_stream_timing(
		struct pipe_ctx *pipe_ctx,
		struct dc_state *context,
		struct dc *dc)
{
	struct dce_hwseq *hws = dc->hwseq;
	struct dc_stream_state *stream = pipe_ctx->stream;
	struct drr_params params = {0};
	unsigned int event_triggers = 0;
	int opp_cnt = 1;
	int opp_inst[MAX_PIPES] = {0};
	struct pipe_ctx *opp_heads[MAX_PIPES] = {0};
	struct dc_crtc_timing patched_crtc_timing = stream->timing;
	bool manual_mode = false;
	unsigned int tmds_div = PIXEL_RATE_DIV_NA;
	unsigned int unused_div = PIXEL_RATE_DIV_NA;
	int odm_slice_width;
	int last_odm_slice_width;
	int i;

	if (!resource_is_pipe_type(pipe_ctx, OTG_MASTER))
		return DC_OK;

	enable_stream_timing_calc(pipe_ctx, context, dc, &tmds_div, opp_inst,
			&opp_cnt, opp_heads, &manual_mode, &params, &event_triggers);

	if (dc->res_pool->dccg->funcs->set_pixel_rate_div) {
		dc->res_pool->dccg->funcs->set_pixel_rate_div(
			dc->res_pool->dccg, pipe_ctx->stream_res.tg->inst,
			tmds_div, unused_div);
	}

	/* TODO check if timing_changed, disable stream if timing changed */

	if (opp_cnt > 1) {
		odm_slice_width = resource_get_odm_slice_dst_width(pipe_ctx, false);
		last_odm_slice_width = resource_get_odm_slice_dst_width(pipe_ctx, true);
		pipe_ctx->stream_res.tg->funcs->set_odm_combine(
				pipe_ctx->stream_res.tg,
				opp_inst, opp_cnt,
				odm_slice_width, last_odm_slice_width);
	}

	/* set DTBCLK_P */
	if (dc->res_pool->dccg->funcs->set_dtbclk_p_src) {
		if (dc_is_dp_signal(stream->signal) || dc_is_virtual_signal(stream->signal)) {
			dc->res_pool->dccg->funcs->set_dtbclk_p_src(dc->res_pool->dccg, DPREFCLK, pipe_ctx->stream_res.tg->inst);
		}
	}

	/* HW program guide assume display already disable
	 * by unplug sequence. OTG assume stop.
	 */
	pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, true);

	if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
			pipe_ctx->clock_source,
			&pipe_ctx->stream_res.pix_clk_params,
			dc->link_srv->dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings),
			&pipe_ctx->pll_settings)) {
		BREAK_TO_DEBUGGER();
		return DC_ERROR_UNEXPECTED;
	}

	if (dc->hwseq->funcs.PLAT_58856_wa && (!dc_is_dp_signal(stream->signal)))
		dc->hwseq->funcs.PLAT_58856_wa(context, pipe_ctx);

	/* if we are borrowing from hblank, h_addressable needs to be adjusted */
	if (dc->debug.enable_hblank_borrow)
		patched_crtc_timing.h_addressable = patched_crtc_timing.h_addressable + pipe_ctx->hblank_borrow;

	pipe_ctx->stream_res.tg->funcs->program_timing(
		pipe_ctx->stream_res.tg,
		&patched_crtc_timing,
		(unsigned int)pipe_ctx->global_sync.dcn4x.vready_offset_pixels,
		(unsigned int)pipe_ctx->global_sync.dcn4x.vstartup_lines,
		(unsigned int)pipe_ctx->global_sync.dcn4x.vupdate_offset_pixels,
		(unsigned int)pipe_ctx->global_sync.dcn4x.vupdate_vupdate_width_pixels,
		(unsigned int)pipe_ctx->global_sync.dcn4x.pstate_keepout_start_lines,
		pipe_ctx->stream->signal,
		true);

	for (i = 0; i < opp_cnt; i++) {
		opp_heads[i]->stream_res.opp->funcs->opp_pipe_clock_control(
				opp_heads[i]->stream_res.opp,
				true);
		opp_heads[i]->stream_res.opp->funcs->opp_program_left_edge_extra_pixel(
				opp_heads[i]->stream_res.opp,
				stream->timing.pixel_encoding,
				resource_is_pipe_type(opp_heads[i], OTG_MASTER));
	}

	pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control(
			pipe_ctx->stream_res.opp,
			true);

	hws->funcs.blank_pixel_data(dc, pipe_ctx, true);

	/* VTG is  within DCHUB command block. DCFCLK is always on */
	if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(pipe_ctx->stream_res.tg)) {
		BREAK_TO_DEBUGGER();
		return DC_ERROR_UNEXPECTED;
	}

	hws->funcs.wait_for_blank_complete(pipe_ctx->stream_res.opp);
	set_drr_and_clear_adjust_pending(pipe_ctx, stream, &params);

	/* Event triggers and num frames initialized for DRR, but can be
	 * later updated for PSR use. Note DRR trigger events are generated
	 * regardless of whether num frames met.
	 */
	if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
		pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
				pipe_ctx->stream_res.tg, event_triggers, 2);

	/* TODO program crtc source select for non-virtual signal*/
	/* TODO program FMT */
	/* TODO setup link_enc */
	/* TODO set stream attributes */
	/* TODO program audio */
	/* TODO enable stream if timing changed */
	/* TODO unblank stream if DP */

	if (dc_state_get_pipe_subvp_type(context, pipe_ctx) == SUBVP_PHANTOM) {
		if (pipe_ctx->stream_res.tg->funcs->phantom_crtc_post_enable)
			pipe_ctx->stream_res.tg->funcs->phantom_crtc_post_enable(pipe_ctx->stream_res.tg);
	}

	return DC_OK;
}

static enum phyd32clk_clock_source get_phyd32clk_src(struct dc_link *link)
{
	switch (link->link_enc->transmitter) {
	case TRANSMITTER_UNIPHY_A:
		return PHYD32CLKA;
	case TRANSMITTER_UNIPHY_B:
		return PHYD32CLKB;
	case TRANSMITTER_UNIPHY_C:
		return PHYD32CLKC;
	case TRANSMITTER_UNIPHY_D:
		return PHYD32CLKD;
	case TRANSMITTER_UNIPHY_E:
		return PHYD32CLKE;
	default:
		return PHYD32CLKA;
	}
}

static void dcn401_enable_stream_calc(
		struct pipe_ctx *pipe_ctx,
		int *dp_hpo_inst,
		enum phyd32clk_clock_source *phyd32clk,
		unsigned int *tmds_div,
		uint32_t *early_control)
{

	struct dc *dc = pipe_ctx->stream->ctx->dc;
	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
	enum dc_lane_count lane_count =
			pipe_ctx->stream->link->cur_link_settings.lane_count;
	uint32_t active_total_with_borders;

	if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx))
		*dp_hpo_inst = pipe_ctx->stream_res.hpo_dp_stream_enc->inst;

	*phyd32clk = get_phyd32clk_src(pipe_ctx->stream->link);

	if (dc_is_tmds_signal(pipe_ctx->stream->signal))
		dcn401_calculate_dccg_tmds_div_value(pipe_ctx, tmds_div);
	else
		*tmds_div = PIXEL_RATE_DIV_BY_1;

	/* enable early control to avoid corruption on DP monitor*/
	active_total_with_borders =
			timing->h_addressable
				+ timing->h_border_left
				+ timing->h_border_right;

	if (lane_count != 0)
		*early_control = active_total_with_borders % lane_count;

	if (*early_control == 0)
		*early_control = lane_count;

}

void dcn401_enable_stream(struct pipe_ctx *pipe_ctx)
{
	uint32_t early_control = 0;
	struct timing_generator *tg = pipe_ctx->stream_res.tg;
	struct dc_link *link = pipe_ctx->stream->link;
	const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
	struct dc *dc = pipe_ctx->stream->ctx->dc;
	struct dccg *dccg = dc->res_pool->dccg;
	enum phyd32clk_clock_source phyd32clk;
	int dp_hpo_inst = 0;
	unsigned int tmds_div = PIXEL_RATE_DIV_NA;
	unsigned int unused_div = PIXEL_RATE_DIV_NA;
	struct link_encoder *link_enc = pipe_ctx->link_res.dio_link_enc;
	struct stream_encoder *stream_enc = pipe_ctx->stream_res.stream_enc;

	if (!dc->config.unify_link_enc_assignment)
		link_enc = link_enc_cfg_get_link_enc(link);

	dcn401_enable_stream_calc(pipe_ctx, &dp_hpo_inst, &phyd32clk,
				&tmds_div, &early_control);

	if (dc_is_dp_signal(pipe_ctx->stream->signal) || dc_is_virtual_signal(pipe_ctx->stream->signal)) {
		if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
			dccg->funcs->set_dpstreamclk(dccg, DPREFCLK, tg->inst, dp_hpo_inst);
			if (link->cur_link_settings.link_rate == LINK_RATE_UNKNOWN) {
				dccg->funcs->disable_symclk32_se(dccg, dp_hpo_inst);
			} else {
				dccg->funcs->enable_symclk32_se(dccg, dp_hpo_inst, phyd32clk);
			}
		} else {
			dccg->funcs->enable_symclk_se(dccg, stream_enc->stream_enc_inst,
					link_enc->transmitter - TRANSMITTER_UNIPHY_A);
		}
	}

	if (dc->res_pool->dccg->funcs->set_pixel_rate_div) {
		dc->res_pool->dccg->funcs->set_pixel_rate_div(
			dc->res_pool->dccg,
			pipe_ctx->stream_res.tg->inst,
			tmds_div,
			unused_div);
	}

	link_hwss->setup_stream_encoder(pipe_ctx);

	if (pipe_ctx->plane_state && pipe_ctx->plane_state->flip_immediate != 1) {
		if (dc->hwss.program_dmdata_engine)
			dc->hwss.program_dmdata_engine(pipe_ctx);
	}

	dc->hwss.update_info_frame(pipe_ctx);

	if (dc_is_dp_signal(pipe_ctx->stream->signal))
		dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);

	tg->funcs->set_early_control(tg, early_control);
}

void dcn401_setup_hpo_hw_control(const struct dce_hwseq *hws, bool enable)
{
	REG_UPDATE(HPO_TOP_HW_CONTROL, HPO_IO_EN, enable);
}

void adjust_hotspot_between_slices_for_2x_magnify(uint32_t cursor_width, struct dc_cursor_position *pos_cpy)
{
	if (cursor_width <= 128) {
		pos_cpy->x_hotspot /= 2;
		pos_cpy->x_hotspot += 1;
	} else {
		pos_cpy->x_hotspot /= 2;
		pos_cpy->x_hotspot += 2;
	}
}

static void disable_link_output_symclk_on_tx_off(struct dc_link *link, enum dp_link_encoding link_encoding)
{
	struct dc *dc = link->ctx->dc;
	struct pipe_ctx *pipe_ctx = NULL;
	uint8_t i;

	for (i = 0; i < MAX_PIPES; i++) {
		pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
		if (pipe_ctx->stream && pipe_ctx->stream->link == link && pipe_ctx->top_pipe == NULL) {
			pipe_ctx->clock_source->funcs->program_pix_clk(
					pipe_ctx->clock_source,
					&pipe_ctx->stream_res.pix_clk_params,
					link_encoding,
					&pipe_ctx->pll_settings);
			break;
		}
	}
}

void dcn401_disable_link_output(struct dc_link *link,
		const struct link_resource *link_res,
		enum signal_type signal)
{
	struct dc *dc = link->ctx->dc;
	const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
	struct dmcu *dmcu = dc->res_pool->dmcu;

	if (signal == SIGNAL_TYPE_EDP &&
			link->dc->hwss.edp_backlight_control &&
			!link->skip_implict_edp_power_control)
		link->dc->hwss.edp_backlight_control(link, false);
	else if (dmcu != NULL && dmcu->funcs->lock_phy)
		dmcu->funcs->lock_phy(dmcu);

	if (dc_is_tmds_signal(signal) && link->phy_state.symclk_ref_cnts.otg > 0) {
		disable_link_output_symclk_on_tx_off(link, DP_UNKNOWN_ENCODING);
		link->phy_state.symclk_state = SYMCLK_ON_TX_OFF;
	} else {
		link_hwss->disable_link_output(link, link_res, signal);
		link->phy_state.symclk_state = SYMCLK_OFF_TX_OFF;
	}

	if (signal == SIGNAL_TYPE_EDP &&
			link->dc->hwss.edp_backlight_control &&
			!link->skip_implict_edp_power_control)
		link->dc->hwss.edp_power_control(link, false);
	else if (dmcu != NULL && dmcu->funcs->lock_phy)
		dmcu->funcs->unlock_phy(dmcu);

	dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_DISABLE_LINK_PHY);
}

void dcn401_set_cursor_position(struct pipe_ctx *pipe_ctx)
{
	struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
	struct hubp *hubp = pipe_ctx->plane_res.hubp;
	struct dpp *dpp = pipe_ctx->plane_res.dpp;
	struct dc_cursor_mi_param param = {
		.pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
		.ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.dchub_ref_clock_inKhz,
		.viewport = pipe_ctx->plane_res.scl_data.viewport,
		.recout = pipe_ctx->plane_res.scl_data.recout,
		.h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
		.v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
		.rotation = pipe_ctx->plane_state->rotation,
		.mirror = pipe_ctx->plane_state->horizontal_mirror,
		.stream = pipe_ctx->stream
	};
	struct rect odm_slice_src = { 0 };
	bool odm_combine_on = (pipe_ctx->next_odm_pipe != NULL) ||
		(pipe_ctx->prev_odm_pipe != NULL);
	int prev_odm_width = 0;
	struct pipe_ctx *prev_odm_pipe = NULL;
	bool mpc_combine_on = false;
	int  bottom_pipe_x_pos = 0;

	int x_pos = pos_cpy.x;
	int y_pos = pos_cpy.y;
	int recout_x_pos = 0;
	int recout_y_pos = 0;

	if ((pipe_ctx->top_pipe != NULL) || (pipe_ctx->bottom_pipe != NULL)) {
		if ((pipe_ctx->plane_state->src_rect.width != pipe_ctx->plane_res.scl_data.viewport.width) ||
			(pipe_ctx->plane_state->src_rect.height != pipe_ctx->plane_res.scl_data.viewport.height)) {
			mpc_combine_on = true;
		}
	}

	/* DCN4 moved cursor composition after Scaler, so in HW it is in
	 * recout space and for HW Cursor position programming need to
	 * translate to recout space.
	 *
	 * Cursor X and Y position programmed into HW can't be negative,
	 * in fact it is X, Y coordinate shifted for the HW Cursor Hot spot
	 * position that goes into HW X and Y coordinates while HW Hot spot
	 * X and Y coordinates are length relative to the cursor top left
	 * corner, hotspot must be smaller than the cursor size.
	 *
	 * DMs/DC interface for Cursor position is in stream->src space, and
	 * DMs supposed to transform Cursor coordinates to stream->src space,
	 * then here we need to translate Cursor coordinates to stream->dst
	 * space, as now in HW, Cursor coordinates are in per pipe recout
	 * space, and for the given pipe valid coordinates are only in range
	 * from 0,0 - recout width, recout height space.
	 * If certain pipe combining is in place, need to further adjust per
	 * pipe to make sure each pipe enabling cursor on its part of the
	 * screen.
	 */
	x_pos = pipe_ctx->stream->dst.x + x_pos * pipe_ctx->stream->dst.width /
		pipe_ctx->stream->src.width;
	y_pos = pipe_ctx->stream->dst.y + y_pos * pipe_ctx->stream->dst.height /
		pipe_ctx->stream->src.height;

	/* If the cursor's source viewport is clipped then we need to
	 * translate the cursor to appear in the correct position on
	 * the screen.
	 *
	 * This translation isn't affected by scaling so it needs to be
	 * done *after* we adjust the position for the scale factor.
	 *
	 * This is only done by opt-in for now since there are still
	 * some usecases like tiled display that might enable the
	 * cursor on both streams while expecting dc to clip it.
	 */
	if (pos_cpy.translate_by_source) {
		x_pos += pipe_ctx->plane_state->src_rect.x;
		y_pos += pipe_ctx->plane_state->src_rect.y;
	}

	/* Adjust for ODM Combine
	 * next/prev_odm_offset is to account for scaled modes that have underscan
	 */
	if (odm_combine_on) {
		prev_odm_pipe = pipe_ctx->prev_odm_pipe;

		while (prev_odm_pipe != NULL) {
			odm_slice_src = resource_get_odm_slice_src_rect(prev_odm_pipe);
			prev_odm_width += odm_slice_src.width;
			prev_odm_pipe = prev_odm_pipe->prev_odm_pipe;
		}

		x_pos -= (prev_odm_width);
	}

	/* If the position is negative then we need to add to the hotspot
	 * to fix cursor size between ODM slices
	 */

	if (x_pos < 0) {
		pos_cpy.x_hotspot -= x_pos;
		if (hubp->curs_attr.attribute_flags.bits.ENABLE_MAGNIFICATION)
			adjust_hotspot_between_slices_for_2x_magnify(hubp->curs_attr.width, &pos_cpy);
		x_pos = 0;
	}

	if (y_pos < 0) {
		pos_cpy.y_hotspot -= y_pos;
		y_pos = 0;
	}

	/* If the position on bottom MPC pipe is negative then we need to add to the hotspot and
	 * adjust x_pos on bottom pipe to make cursor visible when crossing between MPC slices.
	 */
	if (mpc_combine_on &&
		pipe_ctx->top_pipe &&
		(pipe_ctx == pipe_ctx->top_pipe->bottom_pipe)) {

		bottom_pipe_x_pos = x_pos - pipe_ctx->plane_res.scl_data.recout.x;
		if (bottom_pipe_x_pos < 0) {
			x_pos = pipe_ctx->plane_res.scl_data.recout.x;
			pos_cpy.x_hotspot -= bottom_pipe_x_pos;
			if (hubp->curs_attr.attribute_flags.bits.ENABLE_MAGNIFICATION)
				adjust_hotspot_between_slices_for_2x_magnify(hubp->curs_attr.width, &pos_cpy);
		}
	}

	pos_cpy.x = (uint32_t)x_pos;
	pos_cpy.y = (uint32_t)y_pos;

	if (pos_cpy.enable && resource_can_pipe_disable_cursor(pipe_ctx))
		pos_cpy.enable = false;

	x_pos = pos_cpy.x - param.recout.x;
	y_pos = pos_cpy.y - param.recout.y;

	recout_x_pos = x_pos - pos_cpy.x_hotspot;
	recout_y_pos = y_pos - pos_cpy.y_hotspot;

	if (recout_x_pos >= (int)param.recout.width)
		pos_cpy.enable = false;  /* not visible beyond right edge*/

	if (recout_y_pos >= (int)param.recout.height)
		pos_cpy.enable = false;  /* not visible beyond bottom edge*/

	if (recout_x_pos + (int)hubp->curs_attr.width <= 0)
		pos_cpy.enable = false;  /* not visible beyond left edge*/

	if (recout_y_pos + (int)hubp->curs_attr.height <= 0)
		pos_cpy.enable = false;  /* not visible beyond top edge*/

	hubp->funcs->set_cursor_position(hubp, &pos_cpy, &param);
	dpp->funcs->set_cursor_position(dpp, &pos_cpy, &param, hubp->curs_attr.width, hubp->curs_attr.height);
}

static bool dcn401_check_no_memory_request_for_cab(struct dc *dc)
{
	int i;

	/* First, check no-memory-request case */
	for (i = 0; i < dc->current_state->stream_count; i++) {
		if ((dc->current_state->stream_status[i].plane_count) &&
			(dc->current_state->streams[i]->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED))
			/* Fail eligibility on a visible stream */
			return false;
	}

	return true;
}

static uint32_t dcn401_calculate_cab_allocation(struct dc *dc, struct dc_state *ctx)
{
	int i;
	uint8_t num_ways = 0;
	uint32_t mall_ss_size_bytes = 0;

	mall_ss_size_bytes = ctx->bw_ctx.bw.dcn.mall_ss_size_bytes;
	// TODO add additional logic for PSR active stream exclusion optimization
	// mall_ss_psr_active_size_bytes = ctx->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes;

	// Include cursor size for CAB allocation
	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		struct pipe_ctx *pipe = &ctx->res_ctx.pipe_ctx[i];

		if (!pipe->stream || !pipe->plane_state)
			continue;

		mall_ss_size_bytes += dcn32_helper_calculate_mall_bytes_for_cursor(dc, pipe, false);
	}

	// Convert number of cache lines required to number of ways
	if (dc->debug.force_mall_ss_num_ways > 0)
		num_ways = dc->debug.force_mall_ss_num_ways;
	else if (dc->res_pool->funcs->calculate_mall_ways_from_bytes)
		num_ways = dc->res_pool->funcs->calculate_mall_ways_from_bytes(dc, mall_ss_size_bytes);
	else
		num_ways = 0;

	return num_ways;
}

bool dcn401_apply_idle_power_optimizations(struct dc *dc, bool enable)
{
	union dmub_rb_cmd cmd;
	uint8_t ways, i;
	int j;
	bool mall_ss_unsupported = false;
	struct dc_plane_state *plane = NULL;

	if (!dc->ctx->dmub_srv || !dc->current_state)
		return false;

	for (i = 0; i < dc->current_state->stream_count; i++) {
		/* MALL SS messaging is not supported with PSR at this time */
		if (dc->current_state->streams[i] != NULL &&
				dc->current_state->streams[i]->link->psr_settings.psr_version != DC_PSR_VERSION_UNSUPPORTED) {
			DC_LOG_MALL("MALL SS not supported with PSR at this time\n");
			return false;
		}
	}

	memset(&cmd, 0, sizeof(cmd));
	cmd.cab.header.type = DMUB_CMD__CAB_FOR_SS;
	cmd.cab.header.payload_bytes = sizeof(cmd.cab) - sizeof(cmd.cab.header);

	if (enable) {
		if (dcn401_check_no_memory_request_for_cab(dc)) {
			/* 1. Check no memory request case for CAB.
			 * If no memory request case, send CAB_ACTION NO_DCN_REQ DMUB message
			 */
			DC_LOG_MALL("sending CAB action NO_DCN_REQ\n");
			cmd.cab.header.sub_type = DMUB_CMD__CAB_NO_DCN_REQ;
		} else {
			/* 2. Check if all surfaces can fit in CAB.
			 * If surfaces can fit into CAB, send CAB_ACTION_ALLOW DMUB message
			 * and configure HUBP's to fetch from MALL
			 */
			ways = dcn401_calculate_cab_allocation(dc, dc->current_state);

			/* MALL not supported with Stereo3D or TMZ surface. If any plane is using stereo,
			 * or TMZ surface, don't try to enter MALL.
			 */
			for (i = 0; i < dc->current_state->stream_count; i++) {
				for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
					plane = dc->current_state->stream_status[i].plane_states[j];

					if (plane->address.type == PLN_ADDR_TYPE_GRPH_STEREO ||
							plane->address.tmz_surface) {
						mall_ss_unsupported = true;
						break;
					}
				}
				if (mall_ss_unsupported)
					break;
			}
			if (ways <= dc->caps.cache_num_ways && !mall_ss_unsupported) {
				cmd.cab.header.sub_type = DMUB_CMD__CAB_DCN_SS_FIT_IN_CAB;
				cmd.cab.cab_alloc_ways = ways;
				DC_LOG_MALL("cab allocation: %d ways. CAB action: DCN_SS_FIT_IN_CAB\n", ways);
			} else {
				cmd.cab.header.sub_type = DMUB_CMD__CAB_DCN_SS_NOT_FIT_IN_CAB;
				DC_LOG_MALL("frame does not fit in CAB: %d ways required. CAB action: DCN_SS_NOT_FIT_IN_CAB\n", ways);
			}
		}
	} else {
		/* Disable CAB */
		cmd.cab.header.sub_type = DMUB_CMD__CAB_NO_IDLE_OPTIMIZATION;
		DC_LOG_MALL("idle optimization disabled\n");
	}

	dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);

	return true;
}

void dcn401_wait_for_dcc_meta_propagation(const struct dc *dc,
		const struct pipe_ctx *top_pipe)
{
	bool is_wait_needed = false;
	const struct pipe_ctx *pipe_ctx = top_pipe;

	/* check if any surfaces are updating address while using flip immediate and dcc */
	while (pipe_ctx != NULL) {
		if (pipe_ctx->plane_state &&
				pipe_ctx->plane_state->dcc.enable &&
				pipe_ctx->plane_state->flip_immediate &&
				pipe_ctx->plane_state->update_flags.bits.addr_update) {
			is_wait_needed = true;
			break;
		}

		/* check next pipe */
		pipe_ctx = pipe_ctx->bottom_pipe;
	}

	if (is_wait_needed && dc->debug.dcc_meta_propagation_delay_us > 0) {
		udelay(dc->debug.dcc_meta_propagation_delay_us);
	}
}

void dcn401_prepare_bandwidth(struct dc *dc,
	struct dc_state *context)
{
	struct hubbub *hubbub = dc->res_pool->hubbub;
	bool p_state_change_support = context->bw_ctx.bw.dcn.clk.p_state_change_support;
	unsigned int compbuf_size = 0;

	/* Any transition into P-State support should disable MCLK switching first to avoid hangs */
	if (p_state_change_support) {
		dc->optimized_required = true;
		context->bw_ctx.bw.dcn.clk.p_state_change_support = false;
	}

	if (dc->clk_mgr->dc_mode_softmax_enabled)
		if (dc->clk_mgr->clks.dramclk_khz <= dc->clk_mgr->bw_params->dc_mode_softmax_memclk * 1000 &&
				context->bw_ctx.bw.dcn.clk.dramclk_khz > dc->clk_mgr->bw_params->dc_mode_softmax_memclk * 1000)
			dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, dc->clk_mgr->bw_params->clk_table.entries[dc->clk_mgr->bw_params->clk_table.num_entries - 1].memclk_mhz);

	/* Increase clocks */
	dc->clk_mgr->funcs->update_clocks(
			dc->clk_mgr,
			context,
			false);

	/* program dchubbub watermarks:
	 * For assigning wm_optimized_required, use |= operator since we don't want
	 * to clear the value if the optimize has not happened yet
	 */
	dc->wm_optimized_required |= hubbub->funcs->program_watermarks(hubbub,
					&context->bw_ctx.bw.dcn.watermarks,
					dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000,
					false);
	/* update timeout thresholds */
	if (hubbub->funcs->program_arbiter) {
		dc->wm_optimized_required |= hubbub->funcs->program_arbiter(hubbub, &context->bw_ctx.bw.dcn.arb_regs, false);
	}

	/* decrease compbuf size */
	if (hubbub->funcs->program_compbuf_segments) {
		compbuf_size = context->bw_ctx.bw.dcn.arb_regs.compbuf_size;
		dc->wm_optimized_required |= (compbuf_size != dc->current_state->bw_ctx.bw.dcn.arb_regs.compbuf_size);

		hubbub->funcs->program_compbuf_segments(hubbub, compbuf_size, false);
	}

	if (dc->debug.fams2_config.bits.enable) {
		dcn401_fams2_global_control_lock(dc, context, true);
		dcn401_fams2_update_config(dc, context, false);
		dcn401_fams2_global_control_lock(dc, context, false);
	}

	if (p_state_change_support != context->bw_ctx.bw.dcn.clk.p_state_change_support) {
		/* After disabling P-State, restore the original value to ensure we get the correct P-State
		 * on the next optimize. */
		context->bw_ctx.bw.dcn.clk.p_state_change_support = p_state_change_support;
	}
}

void dcn401_optimize_bandwidth(
		struct dc *dc,
		struct dc_state *context)
{
	int i;
	struct hubbub *hubbub = dc->res_pool->hubbub;

	/* enable fams2 if needed */
	if (dc->debug.fams2_config.bits.enable) {
		dcn401_fams2_global_control_lock(dc, context, true);
		dcn401_fams2_update_config(dc, context, true);
		dcn401_fams2_global_control_lock(dc, context, false);
	}

	/* program dchubbub watermarks */
	hubbub->funcs->program_watermarks(hubbub,
					&context->bw_ctx.bw.dcn.watermarks,
					dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000,
					true);
	/* update timeout thresholds */
	if (hubbub->funcs->program_arbiter) {
		hubbub->funcs->program_arbiter(hubbub, &context->bw_ctx.bw.dcn.arb_regs, true);
	}

	if (dc->clk_mgr->dc_mode_softmax_enabled)
		if (dc->clk_mgr->clks.dramclk_khz > dc->clk_mgr->bw_params->dc_mode_softmax_memclk * 1000 &&
				context->bw_ctx.bw.dcn.clk.dramclk_khz <= dc->clk_mgr->bw_params->dc_mode_softmax_memclk * 1000)
			dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, dc->clk_mgr->bw_params->dc_mode_softmax_memclk);

	/* increase compbuf size */
	if (hubbub->funcs->program_compbuf_segments)
		hubbub->funcs->program_compbuf_segments(hubbub, context->bw_ctx.bw.dcn.arb_regs.compbuf_size, true);

	dc->clk_mgr->funcs->update_clocks(
			dc->clk_mgr,
			context,
			true);
	if (context->bw_ctx.bw.dcn.clk.zstate_support == DCN_ZSTATE_SUPPORT_ALLOW) {
		for (i = 0; i < dc->res_pool->pipe_count; ++i) {
			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];

			if (pipe_ctx->stream && pipe_ctx->plane_res.hubp->funcs->program_extended_blank
				&& pipe_ctx->stream->adjust.v_total_min == pipe_ctx->stream->adjust.v_total_max
				&& pipe_ctx->stream->adjust.v_total_max > pipe_ctx->stream->timing.v_total)
					pipe_ctx->plane_res.hubp->funcs->program_extended_blank(pipe_ctx->plane_res.hubp,
						pipe_ctx->dlg_regs.min_dst_y_next_start);
		}
	}
}

void dcn401_fams2_global_control_lock(struct dc *dc,
		struct dc_state *context,
		bool lock)
{
	/* use always for now */
	union dmub_inbox0_cmd_lock_hw hw_lock_cmd = { 0 };

	if (!dc->ctx || !dc->ctx->dmub_srv || !dc->debug.fams2_config.bits.enable)
		return;

	hw_lock_cmd.bits.command_code = DMUB_INBOX0_CMD__HW_LOCK;
	hw_lock_cmd.bits.hw_lock_client = HW_LOCK_CLIENT_DRIVER;
	hw_lock_cmd.bits.lock = lock;
	hw_lock_cmd.bits.should_release = !lock;
	dmub_hw_lock_mgr_inbox0_cmd(dc->ctx->dmub_srv, hw_lock_cmd);
}

void dcn401_fams2_global_control_lock_fast(union block_sequence_params *params)
{
	struct dc *dc = params->fams2_global_control_lock_fast_params.dc;
	bool lock = params->fams2_global_control_lock_fast_params.lock;

	if (params->fams2_global_control_lock_fast_params.is_required) {
		union dmub_inbox0_cmd_lock_hw hw_lock_cmd = { 0 };

		hw_lock_cmd.bits.command_code = DMUB_INBOX0_CMD__HW_LOCK;
		hw_lock_cmd.bits.hw_lock_client = HW_LOCK_CLIENT_DRIVER;
		hw_lock_cmd.bits.lock = lock;
		hw_lock_cmd.bits.should_release = !lock;
		dmub_hw_lock_mgr_inbox0_cmd(dc->ctx->dmub_srv, hw_lock_cmd);
	}
}

void dcn401_fams2_update_config(struct dc *dc, struct dc_state *context, bool enable)
{
	bool fams2_required;

	if (!dc->ctx || !dc->ctx->dmub_srv || !dc->debug.fams2_config.bits.enable)
		return;

	fams2_required = context->bw_ctx.bw.dcn.fams2_global_config.features.bits.enable;

	dc_dmub_srv_fams2_update_config(dc, context, enable && fams2_required);
}

static void update_dsc_for_odm_change(struct dc *dc, struct dc_state *context,
		struct pipe_ctx *otg_master)
{
	int i;
	struct pipe_ctx *old_pipe;
	struct pipe_ctx *new_pipe;
	struct pipe_ctx *old_opp_heads[MAX_PIPES];
	struct pipe_ctx *old_otg_master;
	int old_opp_head_count = 0;

	old_otg_master = &dc->current_state->res_ctx.pipe_ctx[otg_master->pipe_idx];

	if (resource_is_pipe_type(old_otg_master, OTG_MASTER)) {
		old_opp_head_count = resource_get_opp_heads_for_otg_master(old_otg_master,
									   &dc->current_state->res_ctx,
									   old_opp_heads);
	} else {
		// DC cannot assume that the current state and the new state
		// share the same OTG pipe since this is not true when called
		// in the context of a commit stream not checked. Hence, set
		// old_otg_master to NULL to skip the DSC configuration.
		old_otg_master = NULL;
	}


	if (otg_master->stream_res.dsc)
		dcn32_update_dsc_on_stream(otg_master,
				otg_master->stream->timing.flags.DSC);
	if (old_otg_master && old_otg_master->stream_res.dsc) {
		for (i = 0; i < old_opp_head_count; i++) {
			old_pipe = old_opp_heads[i];
			new_pipe = &context->res_ctx.pipe_ctx[old_pipe->pipe_idx];
			if (old_pipe->stream_res.dsc && !new_pipe->stream_res.dsc)
				old_pipe->stream_res.dsc->funcs->dsc_disconnect(
						old_pipe->stream_res.dsc);
		}
	}
}

void dcn401_update_odm(struct dc *dc, struct dc_state *context,
		struct pipe_ctx *otg_master)
{
	struct pipe_ctx *opp_heads[MAX_PIPES];
	int opp_inst[MAX_PIPES] = {0};
	int opp_head_count;
	int odm_slice_width = resource_get_odm_slice_dst_width(otg_master, false);
	int last_odm_slice_width = resource_get_odm_slice_dst_width(otg_master, true);
	int i;

	opp_head_count = resource_get_opp_heads_for_otg_master(
			otg_master, &context->res_ctx, opp_heads);

	for (i = 0; i < opp_head_count; i++)
		opp_inst[i] = opp_heads[i]->stream_res.opp->inst;
	if (opp_head_count > 1)
		otg_master->stream_res.tg->funcs->set_odm_combine(
				otg_master->stream_res.tg,
				opp_inst, opp_head_count,
				odm_slice_width, last_odm_slice_width);
	else
		otg_master->stream_res.tg->funcs->set_odm_bypass(
				otg_master->stream_res.tg,
				&otg_master->stream->timing);

	for (i = 0; i < opp_head_count; i++) {
		opp_heads[i]->stream_res.opp->funcs->opp_pipe_clock_control(
				opp_heads[i]->stream_res.opp,
				true);
		opp_heads[i]->stream_res.opp->funcs->opp_program_left_edge_extra_pixel(
				opp_heads[i]->stream_res.opp,
				opp_heads[i]->stream->timing.pixel_encoding,
				resource_is_pipe_type(opp_heads[i], OTG_MASTER));
	}

	update_dsc_for_odm_change(dc, context, otg_master);

	if (!resource_is_pipe_type(otg_master, DPP_PIPE))
		/*
		 * blank pattern is generated by OPP, reprogram blank pattern
		 * due to OPP count change
		 */
		dc->hwseq->funcs.blank_pixel_data(dc, otg_master, true);
}

void dcn401_unblank_stream(struct pipe_ctx *pipe_ctx,
		struct dc_link_settings *link_settings)
{
	struct encoder_unblank_param params = {0};
	struct dc_stream_state *stream = pipe_ctx->stream;
	struct dc_link *link = stream->link;
	struct dce_hwseq *hws = link->dc->hwseq;

	/* calculate parameters for unblank */
	params.opp_cnt = resource_get_odm_slice_count(pipe_ctx);

	params.timing = pipe_ctx->stream->timing;
	params.link_settings.link_rate = link_settings->link_rate;
	params.pix_per_cycle = pipe_ctx->stream_res.pix_clk_params.dio_se_pix_per_cycle;

	if (link->dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
		pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_unblank(
				pipe_ctx->stream_res.hpo_dp_stream_enc,
				pipe_ctx->stream_res.tg->inst);
	} else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
		pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, &params);
	}

	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP)
		hws->funcs.edp_backlight_control(link, true);
}

void dcn401_hardware_release(struct dc *dc)
{
	dc_dmub_srv_fams2_update_config(dc, dc->current_state, false);

	/* If pstate unsupported, or still supported
	 * by firmware, force it supported by dcn
	 */
	if (dc->current_state) {
		if ((!dc->clk_mgr->clks.p_state_change_support ||
				dc->current_state->bw_ctx.bw.dcn.fams2_global_config.features.bits.enable) &&
				dc->res_pool->hubbub->funcs->force_pstate_change_control)
			dc->res_pool->hubbub->funcs->force_pstate_change_control(
					dc->res_pool->hubbub, true, true);

		dc->current_state->bw_ctx.bw.dcn.clk.p_state_change_support = true;
		dc->clk_mgr->funcs->update_clocks(dc->clk_mgr, dc->current_state, true);
	}
}

void dcn401_wait_for_det_buffer_update_under_otg_master(struct dc *dc, struct dc_state *context, struct pipe_ctx *otg_master)
{
	struct pipe_ctx *opp_heads[MAX_PIPES];
	struct pipe_ctx *dpp_pipes[MAX_PIPES];
	struct hubbub *hubbub = dc->res_pool->hubbub;
	int dpp_count = 0;

	if (!otg_master->stream)
		return;

	int slice_count = resource_get_opp_heads_for_otg_master(otg_master,
			&context->res_ctx, opp_heads);

	for (int slice_idx = 0; slice_idx < slice_count; slice_idx++) {
		if (opp_heads[slice_idx]->plane_state) {
			dpp_count = resource_get_dpp_pipes_for_opp_head(
					opp_heads[slice_idx],
					&context->res_ctx,
					dpp_pipes);
			for (int dpp_idx = 0; dpp_idx < dpp_count; dpp_idx++) {
				struct pipe_ctx *dpp_pipe = dpp_pipes[dpp_idx];
					if (dpp_pipe && hubbub &&
						dpp_pipe->plane_res.hubp &&
						hubbub->funcs->wait_for_det_update)
						hubbub->funcs->wait_for_det_update(hubbub, dpp_pipe->plane_res.hubp->inst);
			}
		} else {
			if (hubbub && opp_heads[slice_idx]->plane_res.hubp && hubbub->funcs->wait_for_det_update)
				hubbub->funcs->wait_for_det_update(hubbub, opp_heads[slice_idx]->plane_res.hubp->inst);
		}
	}
}

void dcn401_interdependent_update_lock(struct dc *dc,
		struct dc_state *context, bool lock)
{
	unsigned int i = 0;
	struct pipe_ctx *pipe = NULL;
	struct timing_generator *tg = NULL;

	if (lock) {
		for (i = 0; i < dc->res_pool->pipe_count; i++) {
			pipe = &context->res_ctx.pipe_ctx[i];
			tg = pipe->stream_res.tg;

			if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
					!tg->funcs->is_tg_enabled(tg) ||
					dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM)
				continue;
			dc->hwss.pipe_control_lock(dc, pipe, true);
		}
	} else {
		/* Need to free DET being used first and have pipe update, then unlock the remaining pipes*/
		for (i = 0; i < dc->res_pool->pipe_count; i++) {
			pipe = &context->res_ctx.pipe_ctx[i];
			tg = pipe->stream_res.tg;

			if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
					!tg->funcs->is_tg_enabled(tg) ||
					dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
				continue;
			}

			if (dc->scratch.pipes_to_unlock_first[i]) {
				struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
				dc->hwss.pipe_control_lock(dc, pipe, false);
				/* Assumes pipe of the same index in current_state is also an OTG_MASTER pipe*/
				dcn401_wait_for_det_buffer_update_under_otg_master(dc, dc->current_state, old_pipe);
			}
		}

		/* Unlocking the rest of the pipes */
		for (i = 0; i < dc->res_pool->pipe_count; i++) {
			if (dc->scratch.pipes_to_unlock_first[i])
				continue;

			pipe = &context->res_ctx.pipe_ctx[i];
			tg = pipe->stream_res.tg;
			if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
					!tg->funcs->is_tg_enabled(tg) ||
					dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
				continue;
			}

			dc->hwss.pipe_control_lock(dc, pipe, false);
		}
	}
}

void dcn401_perform_3dlut_wa_unlock(struct pipe_ctx *pipe_ctx)
{
	/* If 3DLUT FL is enabled and 3DLUT is in use, follow the workaround sequence for pipe unlock to make sure that
	 * HUBP will properly fetch 3DLUT contents after unlock.
	 *
	 * This is meant to work around a known HW issue where VREADY will cancel the pending 3DLUT_ENABLE signal regardless
	 * of whether OTG lock is currently being held or not.
	 */
	struct pipe_ctx *wa_pipes[MAX_PIPES] = { NULL };
	struct pipe_ctx *odm_pipe, *mpc_pipe;
	int i, wa_pipe_ct = 0;

	for (odm_pipe = pipe_ctx; odm_pipe != NULL; odm_pipe = odm_pipe->next_odm_pipe) {
		for (mpc_pipe = odm_pipe; mpc_pipe != NULL; mpc_pipe = mpc_pipe->bottom_pipe) {
			if (mpc_pipe->plane_state && mpc_pipe->plane_state->mcm_luts.lut3d_data.lut3d_src
						== DC_CM2_TRANSFER_FUNC_SOURCE_VIDMEM
					&& mpc_pipe->plane_state->mcm_shaper_3dlut_setting
						== DC_CM2_SHAPER_3DLUT_SETTING_ENABLE_SHAPER_3DLUT) {
				wa_pipes[wa_pipe_ct++] = mpc_pipe;
			}
		}
	}

	if (wa_pipe_ct > 0) {
		if (pipe_ctx->stream_res.tg->funcs->set_vupdate_keepout)
			pipe_ctx->stream_res.tg->funcs->set_vupdate_keepout(pipe_ctx->stream_res.tg, true);

		for (i = 0; i < wa_pipe_ct; ++i) {
			if (wa_pipes[i]->plane_res.hubp->funcs->hubp_enable_3dlut_fl)
				wa_pipes[i]->plane_res.hubp->funcs->hubp_enable_3dlut_fl(wa_pipes[i]->plane_res.hubp, true);
		}

		pipe_ctx->stream_res.tg->funcs->unlock(pipe_ctx->stream_res.tg);
		if (pipe_ctx->stream_res.tg->funcs->wait_update_lock_status)
			pipe_ctx->stream_res.tg->funcs->wait_update_lock_status(pipe_ctx->stream_res.tg, false);

		for (i = 0; i < wa_pipe_ct; ++i) {
			if (wa_pipes[i]->plane_res.hubp->funcs->hubp_enable_3dlut_fl)
				wa_pipes[i]->plane_res.hubp->funcs->hubp_enable_3dlut_fl(wa_pipes[i]->plane_res.hubp, true);
		}

		if (pipe_ctx->stream_res.tg->funcs->set_vupdate_keepout)
			pipe_ctx->stream_res.tg->funcs->set_vupdate_keepout(pipe_ctx->stream_res.tg, false);
	} else {
		pipe_ctx->stream_res.tg->funcs->unlock(pipe_ctx->stream_res.tg);
	}
}

void dcn401_program_outstanding_updates(struct dc *dc,
		struct dc_state *context)
{
	struct hubbub *hubbub = dc->res_pool->hubbub;

	/* update compbuf if required */
	if (hubbub->funcs->program_compbuf_segments)
		hubbub->funcs->program_compbuf_segments(hubbub, context->bw_ctx.bw.dcn.arb_regs.compbuf_size, true);
}

void dcn401_reset_back_end_for_pipe(
		struct dc *dc,
		struct pipe_ctx *pipe_ctx,
		struct dc_state *context)
{
	struct dc_link *link = pipe_ctx->stream->link;
	const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);

	DC_LOGGER_INIT(dc->ctx->logger);
	if (pipe_ctx->stream_res.stream_enc == NULL) {
		pipe_ctx->stream = NULL;
		return;
	}

	/* DPMS may already disable or */
	/* dpms_off status is incorrect due to fastboot
	 * feature. When system resume from S4 with second
	 * screen only, the dpms_off would be true but
	 * VBIOS lit up eDP, so check link status too.
	 */
	if (!pipe_ctx->stream->dpms_off || link->link_status.link_active)
		dc->link_srv->set_dpms_off(pipe_ctx);
	else if (pipe_ctx->stream_res.audio)
		dc->hwss.disable_audio_stream(pipe_ctx);

	/* free acquired resources */
	if (pipe_ctx->stream_res.audio) {
		/*disable az_endpoint*/
		pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);

		/*free audio*/
		if (dc->caps.dynamic_audio == true) {
			/*we have to dynamic arbitrate the audio endpoints*/
			/*we free the resource, need reset is_audio_acquired*/
			update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
					pipe_ctx->stream_res.audio, false);
			pipe_ctx->stream_res.audio = NULL;
		}
	}

	/* by upper caller loop, parent pipe: pipe0, will be reset last.
	 * back end share by all pipes and will be disable only when disable
	 * parent pipe.
	 */
	if (pipe_ctx->top_pipe == NULL) {

		dc->hwss.set_abm_immediate_disable(pipe_ctx);

		pipe_ctx->stream_res.tg->funcs->disable_crtc(pipe_ctx->stream_res.tg);

		pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, false);
		if (pipe_ctx->stream_res.tg->funcs->set_odm_bypass)
			pipe_ctx->stream_res.tg->funcs->set_odm_bypass(
					pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing);

		set_drr_and_clear_adjust_pending(pipe_ctx, pipe_ctx->stream, NULL);

		/* TODO - convert symclk_ref_cnts for otg to a bit map to solve
		 * the case where the same symclk is shared across multiple otg
		 * instances
		 */
		if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal))
			link->phy_state.symclk_ref_cnts.otg = 0;
		if (link->phy_state.symclk_state == SYMCLK_ON_TX_OFF) {
			link_hwss->disable_link_output(link,
					&pipe_ctx->link_res, pipe_ctx->stream->signal);
			link->phy_state.symclk_state = SYMCLK_OFF_TX_OFF;
		}

		/* reset DTBCLK_P */
		if (dc->res_pool->dccg->funcs->set_dtbclk_p_src)
			dc->res_pool->dccg->funcs->set_dtbclk_p_src(dc->res_pool->dccg, REFCLK, pipe_ctx->stream_res.tg->inst);
	}

/*
 * In case of a dangling plane, setting this to NULL unconditionally
 * causes failures during reset hw ctx where, if stream is NULL,
 * it is expected that the pipe_ctx pointers to pipes and plane are NULL.
 */
	pipe_ctx->stream = NULL;
	pipe_ctx->top_pipe = NULL;
	pipe_ctx->bottom_pipe = NULL;
	pipe_ctx->next_odm_pipe = NULL;
	pipe_ctx->prev_odm_pipe = NULL;
	DC_LOG_DEBUG("Reset back end for pipe %d, tg:%d\n",
					pipe_ctx->pipe_idx, pipe_ctx->stream_res.tg->inst);
}

void dcn401_reset_hw_ctx_wrap(
		struct dc *dc,
		struct dc_state *context)
{
	int i;
	struct dce_hwseq *hws = dc->hwseq;

	/* Reset Back End*/
	for (i = dc->res_pool->pipe_count - 1; i >= 0 ; i--) {
		struct pipe_ctx *pipe_ctx_old =
			&dc->current_state->res_ctx.pipe_ctx[i];
		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];

		if (!pipe_ctx_old->stream)
			continue;

		if (pipe_ctx_old->top_pipe || pipe_ctx_old->prev_odm_pipe)
			continue;

		if (!pipe_ctx->stream ||
				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
			struct clock_source *old_clk = pipe_ctx_old->clock_source;

			if (hws->funcs.reset_back_end_for_pipe)
				hws->funcs.reset_back_end_for_pipe(dc, pipe_ctx_old, dc->current_state);
			if (hws->funcs.enable_stream_gating)
				hws->funcs.enable_stream_gating(dc, pipe_ctx_old);
			if (old_clk)
				old_clk->funcs->cs_power_down(old_clk);
		}
	}
}

static unsigned int dcn401_calculate_vready_offset_for_group(struct pipe_ctx *pipe)
{
	struct pipe_ctx *other_pipe;
	unsigned int vready_offset = pipe->global_sync.dcn4x.vready_offset_pixels;

	/* Always use the largest vready_offset of all connected pipes */
	for (other_pipe = pipe->bottom_pipe; other_pipe != NULL; other_pipe = other_pipe->bottom_pipe) {
		if (other_pipe->global_sync.dcn4x.vready_offset_pixels > vready_offset)
			vready_offset = other_pipe->global_sync.dcn4x.vready_offset_pixels;
	}
	for (other_pipe = pipe->top_pipe; other_pipe != NULL; other_pipe = other_pipe->top_pipe) {
		if (other_pipe->global_sync.dcn4x.vready_offset_pixels > vready_offset)
			vready_offset = other_pipe->global_sync.dcn4x.vready_offset_pixels;
	}
	for (other_pipe = pipe->next_odm_pipe; other_pipe != NULL; other_pipe = other_pipe->next_odm_pipe) {
		if (other_pipe->global_sync.dcn4x.vready_offset_pixels > vready_offset)
			vready_offset = other_pipe->global_sync.dcn4x.vready_offset_pixels;
	}
	for (other_pipe = pipe->prev_odm_pipe; other_pipe != NULL; other_pipe = other_pipe->prev_odm_pipe) {
		if (other_pipe->global_sync.dcn4x.vready_offset_pixels > vready_offset)
			vready_offset = other_pipe->global_sync.dcn4x.vready_offset_pixels;
	}

	return vready_offset;
}

static void dcn401_program_tg(
	struct dc *dc,
	struct pipe_ctx *pipe_ctx,
	struct dc_state *context,
	struct dce_hwseq *hws)
{
	pipe_ctx->stream_res.tg->funcs->program_global_sync(
		pipe_ctx->stream_res.tg,
		dcn401_calculate_vready_offset_for_group(pipe_ctx),
		(unsigned int)pipe_ctx->global_sync.dcn4x.vstartup_lines,
		(unsigned int)pipe_ctx->global_sync.dcn4x.vupdate_offset_pixels,
		(unsigned int)pipe_ctx->global_sync.dcn4x.vupdate_vupdate_width_pixels,
		(unsigned int)pipe_ctx->global_sync.dcn4x.pstate_keepout_start_lines);

	if (dc_state_get_pipe_subvp_type(context, pipe_ctx) != SUBVP_PHANTOM)
		pipe_ctx->stream_res.tg->funcs->wait_for_state(pipe_ctx->stream_res.tg, CRTC_STATE_VACTIVE);

	pipe_ctx->stream_res.tg->funcs->set_vtg_params(
		pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing, true);

	if (hws->funcs.setup_vupdate_interrupt)
		hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
}

void dcn401_program_pipe(
	struct dc *dc,
	struct pipe_ctx *pipe_ctx,
	struct dc_state *context)
{
	struct dce_hwseq *hws = dc->hwseq;

	/* Only need to unblank on top pipe */
	if (resource_is_pipe_type(pipe_ctx, OTG_MASTER)) {
		if (pipe_ctx->update_flags.bits.enable ||
			pipe_ctx->update_flags.bits.odm ||
			pipe_ctx->stream->update_flags.bits.abm_level)
			hws->funcs.blank_pixel_data(dc, pipe_ctx,
				!pipe_ctx->plane_state ||
				!pipe_ctx->plane_state->visible);
	}

	/* Only update TG on top pipe */
	if (pipe_ctx->update_flags.bits.global_sync && !pipe_ctx->top_pipe
		&& !pipe_ctx->prev_odm_pipe)
		dcn401_program_tg(dc, pipe_ctx, context, hws);

	if (pipe_ctx->update_flags.bits.odm)
		hws->funcs.update_odm(dc, context, pipe_ctx);

	if (pipe_ctx->update_flags.bits.enable) {
		if (hws->funcs.enable_plane)
			hws->funcs.enable_plane(dc, pipe_ctx, context);
		else
			dc->hwss.enable_plane(dc, pipe_ctx, context);

		if (dc->res_pool->hubbub->funcs->force_wm_propagate_to_pipes)
			dc->res_pool->hubbub->funcs->force_wm_propagate_to_pipes(dc->res_pool->hubbub);
	}

	if (pipe_ctx->update_flags.bits.det_size) {
		if (dc->res_pool->hubbub->funcs->program_det_size)
			dc->res_pool->hubbub->funcs->program_det_size(
				dc->res_pool->hubbub, pipe_ctx->plane_res.hubp->inst, pipe_ctx->det_buffer_size_kb);
		if (dc->res_pool->hubbub->funcs->program_det_segments)
			dc->res_pool->hubbub->funcs->program_det_segments(
				dc->res_pool->hubbub, pipe_ctx->plane_res.hubp->inst, pipe_ctx->hubp_regs.det_size);
	}

	if (pipe_ctx->plane_state && (pipe_ctx->update_flags.raw ||
	    pipe_ctx->plane_state->update_flags.raw ||
	    pipe_ctx->stream->update_flags.raw))
		dc->hwss.update_dchubp_dpp(dc, pipe_ctx, context);

	if (pipe_ctx->plane_state && (pipe_ctx->update_flags.bits.enable ||
		pipe_ctx->plane_state->update_flags.bits.hdr_mult))
		hws->funcs.set_hdr_multiplier(pipe_ctx);

	if (hws->funcs.populate_mcm_luts) {
		if (pipe_ctx->plane_state) {
			hws->funcs.populate_mcm_luts(dc, pipe_ctx, pipe_ctx->plane_state->mcm_luts,
				pipe_ctx->plane_state->lut_bank_a);
			pipe_ctx->plane_state->lut_bank_a = !pipe_ctx->plane_state->lut_bank_a;
		}
	}

	if (pipe_ctx->plane_state &&
		(pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
			pipe_ctx->plane_state->update_flags.bits.gamma_change ||
			pipe_ctx->plane_state->update_flags.bits.lut_3d ||
			pipe_ctx->update_flags.bits.enable))
		hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);

	/* dcn10_translate_regamma_to_hw_format takes 750us to finish
	 * only do gamma programming for powering on, internal memcmp to avoid
	 * updating on slave planes
	 */
	if (pipe_ctx->update_flags.bits.enable ||
		pipe_ctx->update_flags.bits.plane_changed ||
		pipe_ctx->stream->update_flags.bits.out_tf ||
		(pipe_ctx->plane_state &&
			pipe_ctx->plane_state->update_flags.bits.output_tf_change))
		hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);

	/* If the pipe has been enabled or has a different opp, we
	 * should reprogram the fmt. This deals with cases where
	 * interation between mpc and odm combine on different streams
	 * causes a different pipe to be chosen to odm combine with.
	 */
	if (pipe_ctx->update_flags.bits.enable
		|| pipe_ctx->update_flags.bits.opp_changed) {

		pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
			pipe_ctx->stream_res.opp,
			COLOR_SPACE_YCBCR601,
			pipe_ctx->stream->timing.display_color_depth,
			pipe_ctx->stream->signal);

		pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
			pipe_ctx->stream_res.opp,
			&pipe_ctx->stream->bit_depth_params,
			&pipe_ctx->stream->clamping);
	}

	/* Set ABM pipe after other pipe configurations done */
	if ((pipe_ctx->plane_state && pipe_ctx->plane_state->visible)) {
		if (pipe_ctx->stream_res.abm) {
			dc->hwss.set_pipe(pipe_ctx);
			pipe_ctx->stream_res.abm->funcs->set_abm_level(pipe_ctx->stream_res.abm,
				pipe_ctx->stream->abm_level);
		}
	}

	if (pipe_ctx->update_flags.bits.test_pattern_changed) {
		struct output_pixel_processor *odm_opp = pipe_ctx->stream_res.opp;
		struct bit_depth_reduction_params params;

		memset(&params, 0, sizeof(params));
		odm_opp->funcs->opp_program_bit_depth_reduction(odm_opp, &params);
		dc->hwss.set_disp_pattern_generator(dc,
			pipe_ctx,
			pipe_ctx->stream_res.test_pattern_params.test_pattern,
			pipe_ctx->stream_res.test_pattern_params.color_space,
			pipe_ctx->stream_res.test_pattern_params.color_depth,
			NULL,
			pipe_ctx->stream_res.test_pattern_params.width,
			pipe_ctx->stream_res.test_pattern_params.height,
			pipe_ctx->stream_res.test_pattern_params.offset);
	}
}

void dcn401_program_front_end_for_ctx(
	struct dc *dc,
	struct dc_state *context)
{
	int i;
	unsigned int prev_hubp_count = 0;
	unsigned int hubp_count = 0;
	struct dce_hwseq *hws = dc->hwseq;
	struct pipe_ctx *pipe = NULL;

	DC_LOGGER_INIT(dc->ctx->logger);

	if (resource_is_pipe_topology_changed(dc->current_state, context))
		resource_log_pipe_topology_update(dc, context);

	if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
		for (i = 0; i < dc->res_pool->pipe_count; i++) {
			pipe = &context->res_ctx.pipe_ctx[i];

			if (pipe->plane_state) {
				if (pipe->plane_state->triplebuffer_flips)
					BREAK_TO_DEBUGGER();

				/*turn off triple buffer for full update*/
				dc->hwss.program_triplebuffer(
					dc, pipe, pipe->plane_state->triplebuffer_flips);
			}
		}
	}

	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		if (dc->current_state->res_ctx.pipe_ctx[i].plane_state)
			prev_hubp_count++;
		if (context->res_ctx.pipe_ctx[i].plane_state)
			hubp_count++;
	}

	if (prev_hubp_count == 0 && hubp_count > 0) {
		if (dc->res_pool->hubbub->funcs->force_pstate_change_control)
			dc->res_pool->hubbub->funcs->force_pstate_change_control(
				dc->res_pool->hubbub, true, false);
		udelay(500);
	}

	/* Set pipe update flags and lock pipes */
	for (i = 0; i < dc->res_pool->pipe_count; i++)
		dc->hwss.detect_pipe_changes(dc->current_state, context, &dc->current_state->res_ctx.pipe_ctx[i],
			&context->res_ctx.pipe_ctx[i]);

	/* When disabling phantom pipes, turn on phantom OTG first (so we can get double
	 * buffer updates properly)
	 */
	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		struct dc_stream_state *stream = dc->current_state->res_ctx.pipe_ctx[i].stream;

		pipe = &dc->current_state->res_ctx.pipe_ctx[i];

		if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable && stream &&
			dc_state_get_pipe_subvp_type(dc->current_state, pipe) == SUBVP_PHANTOM) {
			struct timing_generator *tg = dc->current_state->res_ctx.pipe_ctx[i].stream_res.tg;

			if (tg->funcs->enable_crtc) {
				if (dc->hwseq->funcs.blank_pixel_data)
					dc->hwseq->funcs.blank_pixel_data(dc, pipe, true);

				tg->funcs->enable_crtc(tg);
			}
		}
	}
	/* OTG blank before disabling all front ends */
	for (i = 0; i < dc->res_pool->pipe_count; i++)
		if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable
			&& !context->res_ctx.pipe_ctx[i].top_pipe
			&& !context->res_ctx.pipe_ctx[i].prev_odm_pipe
			&& context->res_ctx.pipe_ctx[i].stream)
			hws->funcs.blank_pixel_data(dc, &context->res_ctx.pipe_ctx[i], true);


	/* Disconnect mpcc */
	for (i = 0; i < dc->res_pool->pipe_count; i++)
		if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable
			|| context->res_ctx.pipe_ctx[i].update_flags.bits.opp_changed) {
			struct hubbub *hubbub = dc->res_pool->hubbub;

			/* Phantom pipe DET should be 0, but if a pipe in use is being transitioned to phantom
			 * then we want to do the programming here (effectively it's being disabled). If we do
			 * the programming later the DET won't be updated until the OTG for the phantom pipe is
			 * turned on (i.e. in an MCLK switch) which can come in too late and cause issues with
			 * DET allocation.
			 */
			if ((context->res_ctx.pipe_ctx[i].update_flags.bits.disable ||
				(context->res_ctx.pipe_ctx[i].plane_state &&
				dc_state_get_pipe_subvp_type(context, &context->res_ctx.pipe_ctx[i]) ==
				SUBVP_PHANTOM))) {
				if (hubbub->funcs->program_det_size)
					hubbub->funcs->program_det_size(hubbub,
						dc->current_state->res_ctx.pipe_ctx[i].plane_res.hubp->inst, 0);
				if (dc->res_pool->hubbub->funcs->program_det_segments)
					dc->res_pool->hubbub->funcs->program_det_segments(
						hubbub,	dc->current_state->res_ctx.pipe_ctx[i].plane_res.hubp->inst, 0);
			}
			hws->funcs.plane_atomic_disconnect(dc, dc->current_state,
				&dc->current_state->res_ctx.pipe_ctx[i]);
			DC_LOG_DC("Reset mpcc for pipe %d\n", dc->current_state->res_ctx.pipe_ctx[i].pipe_idx);
		}

	/* update ODM for blanked OTG master pipes */
	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		pipe = &context->res_ctx.pipe_ctx[i];
		if (resource_is_pipe_type(pipe, OTG_MASTER) &&
			!resource_is_pipe_type(pipe, DPP_PIPE) &&
			pipe->update_flags.bits.odm &&
			hws->funcs.update_odm)
			hws->funcs.update_odm(dc, context, pipe);
	}

	/*
	 * Program all updated pipes, order matters for mpcc setup. Start with
	 * top pipe and program all pipes that follow in order
	 */
	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		pipe = &context->res_ctx.pipe_ctx[i];

		if (pipe->plane_state && !pipe->top_pipe) {
			while (pipe) {
				if (hws->funcs.program_pipe)
					hws->funcs.program_pipe(dc, pipe, context);
				else {
					/* Don't program phantom pipes in the regular front end programming sequence.
					 * There is an MPO transition case where a pipe being used by a video plane is
					 * transitioned directly to be a phantom pipe when closing the MPO video.
					 * However the phantom pipe will program a new HUBP_VTG_SEL (update takes place
					 * right away) but the MPO still exists until the double buffered update of the
					 * main pipe so we will get a frame of underflow if the phantom pipe is
					 * programmed here.
					 */
					if (pipe->stream &&
						dc_state_get_pipe_subvp_type(context, pipe) != SUBVP_PHANTOM)
						dcn401_program_pipe(dc, pipe, context);
				}

				pipe = pipe->bottom_pipe;
			}
		}

		/* Program secondary blending tree and writeback pipes */
		pipe = &context->res_ctx.pipe_ctx[i];
		if (!pipe->top_pipe && !pipe->prev_odm_pipe
			&& pipe->stream && pipe->stream->num_wb_info > 0
			&& (pipe->update_flags.raw || (pipe->plane_state && pipe->plane_state->update_flags.raw)
				|| pipe->stream->update_flags.raw)
			&& hws->funcs.program_all_writeback_pipes_in_tree)
			hws->funcs.program_all_writeback_pipes_in_tree(dc, pipe->stream, context);

		/* Avoid underflow by check of pipe line read when adding 2nd plane. */
		if (hws->wa.wait_hubpret_read_start_during_mpo_transition &&
			!pipe->top_pipe &&
			pipe->stream &&
			pipe->plane_res.hubp->funcs->hubp_wait_pipe_read_start &&
			dc->current_state->stream_status[0].plane_count == 1 &&
			context->stream_status[0].plane_count > 1) {
			pipe->plane_res.hubp->funcs->hubp_wait_pipe_read_start(pipe->plane_res.hubp);
		}
	}
}

void dcn401_post_unlock_program_front_end(
	struct dc *dc,
	struct dc_state *context)
{
	// Timeout for pipe enable
	unsigned int timeout_us = 100000;
	unsigned int polling_interval_us = 1;
	struct dce_hwseq *hwseq = dc->hwseq;
	int i;

	DC_LOGGER_INIT(dc->ctx->logger);

	for (i = 0; i < dc->res_pool->pipe_count; i++)
		if (resource_is_pipe_type(&dc->current_state->res_ctx.pipe_ctx[i], OPP_HEAD) &&
			!resource_is_pipe_type(&context->res_ctx.pipe_ctx[i], OPP_HEAD))
			dc->hwss.post_unlock_reset_opp(dc,
				&dc->current_state->res_ctx.pipe_ctx[i]);

	for (i = 0; i < dc->res_pool->pipe_count; i++)
		if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable)
			dc->hwss.disable_plane(dc, dc->current_state, &dc->current_state->res_ctx.pipe_ctx[i]);

	/*
	 * If we are enabling a pipe, we need to wait for pending clear as this is a critical
	 * part of the enable operation otherwise, DM may request an immediate flip which
	 * will cause HW to perform an "immediate enable" (as opposed to "vsync enable") which
	 * is unsupported on DCN.
	 */
	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
		// Don't check flip pending on phantom pipes
		if (pipe->plane_state && !pipe->top_pipe && pipe->update_flags.bits.enable &&
			dc_state_get_pipe_subvp_type(context, pipe) != SUBVP_PHANTOM) {
			struct hubp *hubp = pipe->plane_res.hubp;
			int j = 0;

			for (j = 0; j < timeout_us / polling_interval_us
				&& hubp->funcs->hubp_is_flip_pending(hubp); j++)
				udelay(polling_interval_us);
		}
	}

	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];

		/* When going from a smaller ODM slice count to larger, we must ensure double
		 * buffer update completes before we return to ensure we don't reduce DISPCLK
		 * before we've transitioned to 2:1 or 4:1
		 */
		if (resource_is_pipe_type(old_pipe, OTG_MASTER) && resource_is_pipe_type(pipe, OTG_MASTER) &&
			resource_get_odm_slice_count(old_pipe) < resource_get_odm_slice_count(pipe) &&
			dc_state_get_pipe_subvp_type(context, pipe) != SUBVP_PHANTOM) {
			int j = 0;
			struct timing_generator *tg = pipe->stream_res.tg;

			if (tg->funcs->get_optc_double_buffer_pending) {
				for (j = 0; j < timeout_us / polling_interval_us
					&& tg->funcs->get_optc_double_buffer_pending(tg); j++)
					udelay(polling_interval_us);
			}
		}
	}

	if (dc->res_pool->hubbub->funcs->force_pstate_change_control)
		dc->res_pool->hubbub->funcs->force_pstate_change_control(
			dc->res_pool->hubbub, false, false);


	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];

		if (pipe->plane_state && !pipe->top_pipe) {
			/* Program phantom pipe here to prevent a frame of underflow in the MPO transition
			 * case (if a pipe being used for a video plane transitions to a phantom pipe, it
			 * can underflow due to HUBP_VTG_SEL programming if done in the regular front end
			 * programming sequence).
			 */
			while (pipe) {
				if (pipe->stream && dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
					/* When turning on the phantom pipe we want to run through the
					 * entire enable sequence, so apply all the "enable" flags.
					 */
					if (dc->hwss.apply_update_flags_for_phantom)
						dc->hwss.apply_update_flags_for_phantom(pipe);
					if (dc->hwss.update_phantom_vp_position)
						dc->hwss.update_phantom_vp_position(dc, context, pipe);
					dcn401_program_pipe(dc, pipe, context);
				}
				pipe = pipe->bottom_pipe;
			}
		}
	}

	if (!hwseq)
		return;

	/* P-State support transitions:
	 * Natural -> FPO:      P-State disabled in prepare, force disallow anytime is safe
	 * FPO -> Natural:      Unforce anytime after FW disable is safe (P-State will assert naturally)
	 * Unsupported -> FPO:  P-State enabled in optimize, force disallow anytime is safe
	 * FPO -> Unsupported:  P-State disabled in prepare, unforce disallow anytime is safe
	 * FPO <-> SubVP:       Force disallow is maintained on the FPO / SubVP pipes
	 */
	if (hwseq->funcs.update_force_pstate)
		dc->hwseq->funcs.update_force_pstate(dc, context);

	/* Only program the MALL registers after all the main and phantom pipes
	 * are done programming.
	 */
	if (hwseq->funcs.program_mall_pipe_config)
		hwseq->funcs.program_mall_pipe_config(dc, context);

	/* WA to apply WM setting*/
	if (hwseq->wa.DEGVIDCN21)
		dc->res_pool->hubbub->funcs->apply_DEDCN21_147_wa(dc->res_pool->hubbub);


	/* WA for stutter underflow during MPO transitions when adding 2nd plane */
	if (hwseq->wa.disallow_self_refresh_during_multi_plane_transition) {

		if (dc->current_state->stream_status[0].plane_count == 1 &&
			context->stream_status[0].plane_count > 1) {

			struct timing_generator *tg = dc->res_pool->timing_generators[0];

			dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub, false);

			hwseq->wa_state.disallow_self_refresh_during_multi_plane_transition_applied = true;
			hwseq->wa_state.disallow_self_refresh_during_multi_plane_transition_applied_on_frame =
				tg->funcs->get_frame_count(tg);
		}
	}
}

bool dcn401_update_bandwidth(
	struct dc *dc,
	struct dc_state *context)
{
	int i;
	struct dce_hwseq *hws = dc->hwseq;

	/* recalculate DML parameters */
	if (dc->res_pool->funcs->validate_bandwidth(dc, context, false) != DC_OK)
		return false;

	/* apply updated bandwidth parameters */
	dc->hwss.prepare_bandwidth(dc, context);

	/* update hubp configs for all pipes */
	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];

		if (pipe_ctx->plane_state == NULL)
			continue;

		if (pipe_ctx->top_pipe == NULL) {
			bool blank = !is_pipe_tree_visible(pipe_ctx);

			pipe_ctx->stream_res.tg->funcs->program_global_sync(
				pipe_ctx->stream_res.tg,
				dcn401_calculate_vready_offset_for_group(pipe_ctx),
				(unsigned int)pipe_ctx->global_sync.dcn4x.vstartup_lines,
				(unsigned int)pipe_ctx->global_sync.dcn4x.vupdate_offset_pixels,
				(unsigned int)pipe_ctx->global_sync.dcn4x.vupdate_vupdate_width_pixels,
				(unsigned int)pipe_ctx->global_sync.dcn4x.pstate_keepout_start_lines);

			pipe_ctx->stream_res.tg->funcs->set_vtg_params(
				pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing, false);

			if (pipe_ctx->prev_odm_pipe == NULL)
				hws->funcs.blank_pixel_data(dc, pipe_ctx, blank);

			if (hws->funcs.setup_vupdate_interrupt)
				hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
		}

		if (pipe_ctx->plane_res.hubp->funcs->hubp_setup2)
			pipe_ctx->plane_res.hubp->funcs->hubp_setup2(
				pipe_ctx->plane_res.hubp,
				&pipe_ctx->hubp_regs,
				&pipe_ctx->global_sync,
				&pipe_ctx->stream->timing);
	}

	return true;
}

void dcn401_detect_pipe_changes(struct dc_state *old_state,
	struct dc_state *new_state,
	struct pipe_ctx *old_pipe,
	struct pipe_ctx *new_pipe)
{
	bool old_is_phantom = dc_state_get_pipe_subvp_type(old_state, old_pipe) == SUBVP_PHANTOM;
	bool new_is_phantom = dc_state_get_pipe_subvp_type(new_state, new_pipe) == SUBVP_PHANTOM;

	unsigned int old_pipe_vready_offset_pixels = old_pipe->global_sync.dcn4x.vready_offset_pixels;
	unsigned int new_pipe_vready_offset_pixels = new_pipe->global_sync.dcn4x.vready_offset_pixels;
	unsigned int old_pipe_vstartup_lines = old_pipe->global_sync.dcn4x.vstartup_lines;
	unsigned int new_pipe_vstartup_lines = new_pipe->global_sync.dcn4x.vstartup_lines;
	unsigned int old_pipe_vupdate_offset_pixels = old_pipe->global_sync.dcn4x.vupdate_offset_pixels;
	unsigned int new_pipe_vupdate_offset_pixels = new_pipe->global_sync.dcn4x.vupdate_offset_pixels;
	unsigned int old_pipe_vupdate_width_pixels = old_pipe->global_sync.dcn4x.vupdate_vupdate_width_pixels;
	unsigned int new_pipe_vupdate_width_pixels = new_pipe->global_sync.dcn4x.vupdate_vupdate_width_pixels;

	new_pipe->update_flags.raw = 0;

	/* If non-phantom pipe is being transitioned to a phantom pipe,
	 * set disable and return immediately. This is because the pipe
	 * that was previously in use must be fully disabled before we
	 * can "enable" it as a phantom pipe (since the OTG will certainly
	 * be different). The post_unlock sequence will set the correct
	 * update flags to enable the phantom pipe.
	 */
	if (old_pipe->plane_state && !old_is_phantom &&
		new_pipe->plane_state && new_is_phantom) {
		new_pipe->update_flags.bits.disable = 1;
		return;
	}

	if (resource_is_pipe_type(new_pipe, OTG_MASTER) &&
		resource_is_odm_topology_changed(new_pipe, old_pipe))
		/* Detect odm changes */
		new_pipe->update_flags.bits.odm = 1;

	/* Exit on unchanged, unused pipe */
	if (!old_pipe->plane_state && !new_pipe->plane_state)
		return;
	/* Detect pipe enable/disable */
	if (!old_pipe->plane_state && new_pipe->plane_state) {
		new_pipe->update_flags.bits.enable = 1;
		new_pipe->update_flags.bits.mpcc = 1;
		new_pipe->update_flags.bits.dppclk = 1;
		new_pipe->update_flags.bits.hubp_interdependent = 1;
		new_pipe->update_flags.bits.hubp_rq_dlg_ttu = 1;
		new_pipe->update_flags.bits.unbounded_req = 1;
		new_pipe->update_flags.bits.gamut_remap = 1;
		new_pipe->update_flags.bits.scaler = 1;
		new_pipe->update_flags.bits.viewport = 1;
		new_pipe->update_flags.bits.det_size = 1;
		if (new_pipe->stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE &&
			new_pipe->stream_res.test_pattern_params.width != 0 &&
			new_pipe->stream_res.test_pattern_params.height != 0)
			new_pipe->update_flags.bits.test_pattern_changed = 1;
		if (!new_pipe->top_pipe && !new_pipe->prev_odm_pipe) {
			new_pipe->update_flags.bits.odm = 1;
			new_pipe->update_flags.bits.global_sync = 1;
		}
		return;
	}

	/* For SubVP we need to unconditionally enable because any phantom pipes are
	 * always removed then newly added for every full updates whenever SubVP is in use.
	 * The remove-add sequence of the phantom pipe always results in the pipe
	 * being blanked in enable_stream_timing (DPG).
	 */
	if (new_pipe->stream && dc_state_get_pipe_subvp_type(new_state, new_pipe) == SUBVP_PHANTOM)
		new_pipe->update_flags.bits.enable = 1;

	/* Phantom pipes are effectively disabled, if the pipe was previously phantom
	 * we have to enable
	 */
	if (old_pipe->plane_state && old_is_phantom &&
		new_pipe->plane_state && !new_is_phantom)
		new_pipe->update_flags.bits.enable = 1;

	if (old_pipe->plane_state && !new_pipe->plane_state) {
		new_pipe->update_flags.bits.disable = 1;
		return;
	}

	/* Detect plane change */
	if (old_pipe->plane_state != new_pipe->plane_state)
		new_pipe->update_flags.bits.plane_changed = true;

	/* Detect top pipe only changes */
	if (resource_is_pipe_type(new_pipe, OTG_MASTER)) {
		/* Detect global sync changes */
		if ((old_pipe_vready_offset_pixels != new_pipe_vready_offset_pixels)
			|| (old_pipe_vstartup_lines != new_pipe_vstartup_lines)
			|| (old_pipe_vupdate_offset_pixels != new_pipe_vupdate_offset_pixels)
			|| (old_pipe_vupdate_width_pixels != new_pipe_vupdate_width_pixels))
			new_pipe->update_flags.bits.global_sync = 1;
	}

	if (old_pipe->det_buffer_size_kb != new_pipe->det_buffer_size_kb)
		new_pipe->update_flags.bits.det_size = 1;

	/*
	 * Detect opp / tg change, only set on change, not on enable
	 * Assume mpcc inst = pipe index, if not this code needs to be updated
	 * since mpcc is what is affected by these. In fact all of our sequence
	 * makes this assumption at the moment with how hubp reset is matched to
	 * same index mpcc reset.
	 */
	if (old_pipe->stream_res.opp != new_pipe->stream_res.opp)
		new_pipe->update_flags.bits.opp_changed = 1;
	if (old_pipe->stream_res.tg != new_pipe->stream_res.tg)
		new_pipe->update_flags.bits.tg_changed = 1;

	/*
	 * Detect mpcc blending changes, only dpp inst and opp matter here,
	 * mpccs getting removed/inserted update connected ones during their own
	 * programming
	 */
	if (old_pipe->plane_res.dpp != new_pipe->plane_res.dpp
		|| old_pipe->stream_res.opp != new_pipe->stream_res.opp)
		new_pipe->update_flags.bits.mpcc = 1;

	/* Detect dppclk change */
	if (old_pipe->plane_res.bw.dppclk_khz != new_pipe->plane_res.bw.dppclk_khz)
		new_pipe->update_flags.bits.dppclk = 1;

	/* Check for scl update */
	if (memcmp(&old_pipe->plane_res.scl_data, &new_pipe->plane_res.scl_data, sizeof(struct scaler_data)))
		new_pipe->update_flags.bits.scaler = 1;
	/* Check for vp update */
	if (memcmp(&old_pipe->plane_res.scl_data.viewport, &new_pipe->plane_res.scl_data.viewport, sizeof(struct rect))
		|| memcmp(&old_pipe->plane_res.scl_data.viewport_c,
			&new_pipe->plane_res.scl_data.viewport_c, sizeof(struct rect)))
		new_pipe->update_flags.bits.viewport = 1;

	/* Detect dlg/ttu/rq updates */
	{
		struct dml2_display_dlg_regs old_dlg_regs = old_pipe->hubp_regs.dlg_regs;
		struct dml2_display_ttu_regs old_ttu_regs = old_pipe->hubp_regs.ttu_regs;
		struct dml2_display_rq_regs	 old_rq_regs = old_pipe->hubp_regs.rq_regs;
		struct dml2_display_dlg_regs *new_dlg_regs = &new_pipe->hubp_regs.dlg_regs;
		struct dml2_display_ttu_regs *new_ttu_regs = &new_pipe->hubp_regs.ttu_regs;
		struct dml2_display_rq_regs	 *new_rq_regs = &new_pipe->hubp_regs.rq_regs;

		/* Detect pipe interdependent updates */
		if ((old_dlg_regs.dst_y_prefetch != new_dlg_regs->dst_y_prefetch)
			|| (old_dlg_regs.vratio_prefetch != new_dlg_regs->vratio_prefetch)
			|| (old_dlg_regs.vratio_prefetch_c != new_dlg_regs->vratio_prefetch_c)
			|| (old_dlg_regs.dst_y_per_vm_vblank != new_dlg_regs->dst_y_per_vm_vblank)
			|| (old_dlg_regs.dst_y_per_row_vblank != new_dlg_regs->dst_y_per_row_vblank)
			|| (old_dlg_regs.dst_y_per_vm_flip != new_dlg_regs->dst_y_per_vm_flip)
			|| (old_dlg_regs.dst_y_per_row_flip != new_dlg_regs->dst_y_per_row_flip)
			|| (old_dlg_regs.refcyc_per_meta_chunk_vblank_l != new_dlg_regs->refcyc_per_meta_chunk_vblank_l)
			|| (old_dlg_regs.refcyc_per_meta_chunk_vblank_c != new_dlg_regs->refcyc_per_meta_chunk_vblank_c)
			|| (old_dlg_regs.refcyc_per_meta_chunk_flip_l != new_dlg_regs->refcyc_per_meta_chunk_flip_l)
			|| (old_dlg_regs.refcyc_per_line_delivery_pre_l != new_dlg_regs->refcyc_per_line_delivery_pre_l)
			|| (old_dlg_regs.refcyc_per_line_delivery_pre_c != new_dlg_regs->refcyc_per_line_delivery_pre_c)
			|| (old_ttu_regs.refcyc_per_req_delivery_pre_l != new_ttu_regs->refcyc_per_req_delivery_pre_l)
			|| (old_ttu_regs.refcyc_per_req_delivery_pre_c != new_ttu_regs->refcyc_per_req_delivery_pre_c)
			|| (old_ttu_regs.refcyc_per_req_delivery_pre_cur0 !=
				new_ttu_regs->refcyc_per_req_delivery_pre_cur0)
			|| (old_ttu_regs.min_ttu_vblank != new_ttu_regs->min_ttu_vblank)
			|| (old_ttu_regs.qos_level_flip != new_ttu_regs->qos_level_flip)) {
			old_dlg_regs.dst_y_prefetch = new_dlg_regs->dst_y_prefetch;
			old_dlg_regs.vratio_prefetch = new_dlg_regs->vratio_prefetch;
			old_dlg_regs.vratio_prefetch_c = new_dlg_regs->vratio_prefetch_c;
			old_dlg_regs.dst_y_per_vm_vblank = new_dlg_regs->dst_y_per_vm_vblank;
			old_dlg_regs.dst_y_per_row_vblank = new_dlg_regs->dst_y_per_row_vblank;
			old_dlg_regs.dst_y_per_vm_flip = new_dlg_regs->dst_y_per_vm_flip;
			old_dlg_regs.dst_y_per_row_flip = new_dlg_regs->dst_y_per_row_flip;
			old_dlg_regs.refcyc_per_meta_chunk_vblank_l = new_dlg_regs->refcyc_per_meta_chunk_vblank_l;
			old_dlg_regs.refcyc_per_meta_chunk_vblank_c = new_dlg_regs->refcyc_per_meta_chunk_vblank_c;
			old_dlg_regs.refcyc_per_meta_chunk_flip_l = new_dlg_regs->refcyc_per_meta_chunk_flip_l;
			old_dlg_regs.refcyc_per_line_delivery_pre_l = new_dlg_regs->refcyc_per_line_delivery_pre_l;
			old_dlg_regs.refcyc_per_line_delivery_pre_c = new_dlg_regs->refcyc_per_line_delivery_pre_c;
			old_ttu_regs.refcyc_per_req_delivery_pre_l = new_ttu_regs->refcyc_per_req_delivery_pre_l;
			old_ttu_regs.refcyc_per_req_delivery_pre_c = new_ttu_regs->refcyc_per_req_delivery_pre_c;
			old_ttu_regs.refcyc_per_req_delivery_pre_cur0 = new_ttu_regs->refcyc_per_req_delivery_pre_cur0;
			old_ttu_regs.min_ttu_vblank = new_ttu_regs->min_ttu_vblank;
			old_ttu_regs.qos_level_flip = new_ttu_regs->qos_level_flip;
			new_pipe->update_flags.bits.hubp_interdependent = 1;
		}
		/* Detect any other updates to ttu/rq/dlg */
		if (memcmp(&old_dlg_regs, new_dlg_regs, sizeof(old_dlg_regs)) ||
			memcmp(&old_ttu_regs, new_ttu_regs, sizeof(old_ttu_regs)) ||
			memcmp(&old_rq_regs, new_rq_regs, sizeof(old_rq_regs)))
			new_pipe->update_flags.bits.hubp_rq_dlg_ttu = 1;
	}

	if (old_pipe->unbounded_req != new_pipe->unbounded_req)
		new_pipe->update_flags.bits.unbounded_req = 1;

	if (memcmp(&old_pipe->stream_res.test_pattern_params,
		&new_pipe->stream_res.test_pattern_params, sizeof(struct test_pattern_params))) {
		new_pipe->update_flags.bits.test_pattern_changed = 1;
	}
}

void dcn401_plane_atomic_power_down(struct dc *dc,
		struct dpp *dpp,
		struct hubp *hubp)
{
	struct dce_hwseq *hws = dc->hwseq;
	uint32_t org_ip_request_cntl = 0;

	DC_LOGGER_INIT(dc->ctx->logger);

	REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl);
	if (org_ip_request_cntl == 0)
		REG_SET(DC_IP_REQUEST_CNTL, 0,
			IP_REQUEST_EN, 1);

	if (hws->funcs.dpp_pg_control)
		hws->funcs.dpp_pg_control(hws, dpp->inst, false);

	if (hws->funcs.hubp_pg_control)
		hws->funcs.hubp_pg_control(hws, hubp->inst, false);

	hubp->funcs->hubp_reset(hubp);
	dpp->funcs->dpp_reset(dpp);

	if (org_ip_request_cntl == 0)
		REG_SET(DC_IP_REQUEST_CNTL, 0,
			IP_REQUEST_EN, 0);

	DC_LOG_DEBUG(
			"Power gated front end %d\n", hubp->inst);

	if (hws->funcs.dpp_root_clock_control)
		hws->funcs.dpp_root_clock_control(hws, dpp->inst, false);
}