Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Heiko Stübner | 4645 | 99.76% | 1 | 20.00% |
Maxime Ripard | 6 | 0.13% | 3 | 60.00% |
Paul Cercueil | 5 | 0.11% | 1 | 20.00% |
Total | 4656 | 5 |
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 2024, Fuzhou Rockchip Electronics Co., Ltd * * Modified by Heiko Stuebner <heiko.stuebner@cherry.de> * This generic Synopsys DesignWare MIPI DSI2 host driver is based on the * Rockchip version from rockchip/dw-mipi-dsi2.c converted to use bridge APIs. */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/iopoll.h> #include <linux/media-bus-format.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/reset.h> #include <video/mipi_display.h> #include <drm/bridge/dw_mipi_dsi2.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_bridge.h> #include <drm/drm_mipi_dsi.h> #include <drm/drm_of.h> #include <drm/drm_print.h> #define DSI2_PWR_UP 0x000c #define RESET 0 #define POWER_UP BIT(0) #define CMD_TX_MODE(x) FIELD_PREP(BIT(24), x) #define DSI2_SOFT_RESET 0x0010 #define SYS_RSTN BIT(2) #define PHY_RSTN BIT(1) #define IPI_RSTN BIT(0) #define INT_ST_MAIN 0x0014 #define DSI2_MODE_CTRL 0x0018 #define DSI2_MODE_STATUS 0x001c #define DSI2_CORE_STATUS 0x0020 #define PRI_RD_DATA_AVAIL BIT(26) #define PRI_FIFOS_NOT_EMPTY BIT(25) #define PRI_BUSY BIT(24) #define CRI_RD_DATA_AVAIL BIT(18) #define CRT_FIFOS_NOT_EMPTY BIT(17) #define CRI_BUSY BIT(16) #define IPI_FIFOS_NOT_EMPTY BIT(9) #define IPI_BUSY BIT(8) #define CORE_FIFOS_NOT_EMPTY BIT(1) #define CORE_BUSY BIT(0) #define MANUAL_MODE_CFG 0x0024 #define MANUAL_MODE_EN BIT(0) #define DSI2_TIMEOUT_HSTX_CFG 0x0048 #define TO_HSTX(x) FIELD_PREP(GENMASK(15, 0), x) #define DSI2_TIMEOUT_HSTXRDY_CFG 0x004c #define TO_HSTXRDY(x) FIELD_PREP(GENMASK(15, 0), x) #define DSI2_TIMEOUT_LPRX_CFG 0x0050 #define TO_LPRXRDY(x) FIELD_PREP(GENMASK(15, 0), x) #define DSI2_TIMEOUT_LPTXRDY_CFG 0x0054 #define TO_LPTXRDY(x) FIELD_PREP(GENMASK(15, 0), x) #define DSI2_TIMEOUT_LPTXTRIG_CFG 0x0058 #define TO_LPTXTRIG(x) FIELD_PREP(GENMASK(15, 0), x) #define DSI2_TIMEOUT_LPTXULPS_CFG 0x005c #define TO_LPTXULPS(x) FIELD_PREP(GENMASK(15, 0), x) #define DSI2_TIMEOUT_BTA_CFG 0x60 #define TO_BTA(x) FIELD_PREP(GENMASK(15, 0), x) #define DSI2_PHY_MODE_CFG 0x0100 #define PPI_WIDTH(x) FIELD_PREP(GENMASK(9, 8), x) #define PHY_LANES(x) FIELD_PREP(GENMASK(5, 4), (x) - 1) #define PHY_TYPE(x) FIELD_PREP(BIT(0), x) #define DSI2_PHY_CLK_CFG 0X0104 #define PHY_LPTX_CLK_DIV(x) FIELD_PREP(GENMASK(12, 8), x) #define CLK_TYPE_MASK BIT(0) #define NON_CONTINUOUS_CLK BIT(0) #define CONTINUOUS_CLK 0 #define DSI2_PHY_LP2HS_MAN_CFG 0x010c #define PHY_LP2HS_TIME(x) FIELD_PREP(GENMASK(28, 0), x) #define DSI2_PHY_HS2LP_MAN_CFG 0x0114 #define PHY_HS2LP_TIME(x) FIELD_PREP(GENMASK(28, 0), x) #define DSI2_PHY_MAX_RD_T_MAN_CFG 0x011c #define PHY_MAX_RD_TIME(x) FIELD_PREP(GENMASK(26, 0), x) #define DSI2_PHY_ESC_CMD_T_MAN_CFG 0x0124 #define PHY_ESC_CMD_TIME(x) FIELD_PREP(GENMASK(28, 0), x) #define DSI2_PHY_ESC_BYTE_T_MAN_CFG 0x012c #define PHY_ESC_BYTE_TIME(x) FIELD_PREP(GENMASK(28, 0), x) #define DSI2_PHY_IPI_RATIO_MAN_CFG 0x0134 #define PHY_IPI_RATIO(x) FIELD_PREP(GENMASK(21, 0), x) #define DSI2_PHY_SYS_RATIO_MAN_CFG 0x013C #define PHY_SYS_RATIO(x) FIELD_PREP(GENMASK(16, 0), x) #define DSI2_DSI_GENERAL_CFG 0x0200 #define BTA_EN BIT(1) #define EOTP_TX_EN BIT(0) #define DSI2_DSI_VCID_CFG 0x0204 #define TX_VCID(x) FIELD_PREP(GENMASK(1, 0), x) #define DSI2_DSI_SCRAMBLING_CFG 0x0208 #define SCRAMBLING_SEED(x) FIELD_PREP(GENMASK(31, 16), x) #define SCRAMBLING_EN BIT(0) #define DSI2_DSI_VID_TX_CFG 0x020c #define LPDT_DISPLAY_CMD_EN BIT(20) #define BLK_VFP_HS_EN BIT(14) #define BLK_VBP_HS_EN BIT(13) #define BLK_VSA_HS_EN BIT(12) #define BLK_HFP_HS_EN BIT(6) #define BLK_HBP_HS_EN BIT(5) #define BLK_HSA_HS_EN BIT(4) #define VID_MODE_TYPE(x) FIELD_PREP(GENMASK(1, 0), x) #define DSI2_CRI_TX_HDR 0x02c0 #define CMD_TX_MODE(x) FIELD_PREP(BIT(24), x) #define DSI2_CRI_TX_PLD 0x02c4 #define DSI2_CRI_RX_HDR 0x02c8 #define DSI2_CRI_RX_PLD 0x02cc #define DSI2_IPI_COLOR_MAN_CFG 0x0300 #define IPI_DEPTH(x) FIELD_PREP(GENMASK(7, 4), x) #define IPI_DEPTH_5_6_5_BITS 0x02 #define IPI_DEPTH_6_BITS 0x03 #define IPI_DEPTH_8_BITS 0x05 #define IPI_DEPTH_10_BITS 0x06 #define IPI_FORMAT(x) FIELD_PREP(GENMASK(3, 0), x) #define IPI_FORMAT_RGB 0x0 #define IPI_FORMAT_DSC 0x0b #define DSI2_IPI_VID_HSA_MAN_CFG 0x0304 #define VID_HSA_TIME(x) FIELD_PREP(GENMASK(29, 0), x) #define DSI2_IPI_VID_HBP_MAN_CFG 0x030c #define VID_HBP_TIME(x) FIELD_PREP(GENMASK(29, 0), x) #define DSI2_IPI_VID_HACT_MAN_CFG 0x0314 #define VID_HACT_TIME(x) FIELD_PREP(GENMASK(29, 0), x) #define DSI2_IPI_VID_HLINE_MAN_CFG 0x031c #define VID_HLINE_TIME(x) FIELD_PREP(GENMASK(29, 0), x) #define DSI2_IPI_VID_VSA_MAN_CFG 0x0324 #define VID_VSA_LINES(x) FIELD_PREP(GENMASK(9, 0), x) #define DSI2_IPI_VID_VBP_MAN_CFG 0X032C #define VID_VBP_LINES(x) FIELD_PREP(GENMASK(9, 0), x) #define DSI2_IPI_VID_VACT_MAN_CFG 0X0334 #define VID_VACT_LINES(x) FIELD_PREP(GENMASK(13, 0), x) #define DSI2_IPI_VID_VFP_MAN_CFG 0X033C #define VID_VFP_LINES(x) FIELD_PREP(GENMASK(9, 0), x) #define DSI2_IPI_PIX_PKT_CFG 0x0344 #define MAX_PIX_PKT(x) FIELD_PREP(GENMASK(15, 0), x) #define DSI2_INT_ST_PHY 0x0400 #define DSI2_INT_MASK_PHY 0x0404 #define DSI2_INT_ST_TO 0x0410 #define DSI2_INT_MASK_TO 0x0414 #define DSI2_INT_ST_ACK 0x0420 #define DSI2_INT_MASK_ACK 0x0424 #define DSI2_INT_ST_IPI 0x0430 #define DSI2_INT_MASK_IPI 0x0434 #define DSI2_INT_ST_FIFO 0x0440 #define DSI2_INT_MASK_FIFO 0x0444 #define DSI2_INT_ST_PRI 0x0450 #define DSI2_INT_MASK_PRI 0x0454 #define DSI2_INT_ST_CRI 0x0460 #define DSI2_INT_MASK_CRI 0x0464 #define DSI2_INT_FORCE_CRI 0x0468 #define DSI2_MAX_REGISGER DSI2_INT_FORCE_CRI #define MODE_STATUS_TIMEOUT_US 10000 #define CMD_PKT_STATUS_TIMEOUT_US 20000 enum vid_mode_type { VID_MODE_TYPE_NON_BURST_SYNC_PULSES, VID_MODE_TYPE_NON_BURST_SYNC_EVENTS, VID_MODE_TYPE_BURST, }; enum mode_ctrl { IDLE_MODE, AUTOCALC_MODE, COMMAND_MODE, VIDEO_MODE, DATA_STREAM_MODE, VIDEO_TEST_MODE, DATA_STREAM_TEST_MODE, }; enum ppi_width { PPI_WIDTH_8_BITS, PPI_WIDTH_16_BITS, PPI_WIDTH_32_BITS, }; struct cmd_header { u8 cmd_type; u8 delay; u8 payload_length; }; struct dw_mipi_dsi2 { struct drm_bridge bridge; struct mipi_dsi_host dsi_host; struct drm_bridge *panel_bridge; struct device *dev; struct regmap *regmap; struct clk *pclk; struct clk *sys_clk; unsigned int lane_mbps; /* per lane */ u32 channel; u32 lanes; u32 format; unsigned long mode_flags; struct drm_display_mode mode; const struct dw_mipi_dsi2_plat_data *plat_data; }; static inline struct dw_mipi_dsi2 *host_to_dsi2(struct mipi_dsi_host *host) { return container_of(host, struct dw_mipi_dsi2, dsi_host); } static inline struct dw_mipi_dsi2 *bridge_to_dsi2(struct drm_bridge *bridge) { return container_of(bridge, struct dw_mipi_dsi2, bridge); } static int cri_fifos_wait_avail(struct dw_mipi_dsi2 *dsi2) { u32 sts, mask; int ret; mask = CRI_BUSY | CRT_FIFOS_NOT_EMPTY; ret = regmap_read_poll_timeout(dsi2->regmap, DSI2_CORE_STATUS, sts, !(sts & mask), 0, CMD_PKT_STATUS_TIMEOUT_US); if (ret < 0) { dev_err(dsi2->dev, "command interface is busy\n"); return ret; } return 0; } static void dw_mipi_dsi2_set_vid_mode(struct dw_mipi_dsi2 *dsi2) { u32 val = 0, mode; int ret; if (dsi2->mode_flags & MIPI_DSI_MODE_VIDEO_NO_HFP) val |= BLK_HFP_HS_EN; if (dsi2->mode_flags & MIPI_DSI_MODE_VIDEO_NO_HBP) val |= BLK_HBP_HS_EN; if (dsi2->mode_flags & MIPI_DSI_MODE_VIDEO_NO_HSA) val |= BLK_HSA_HS_EN; if (dsi2->mode_flags & MIPI_DSI_MODE_VIDEO_BURST) val |= VID_MODE_TYPE_BURST; else if (dsi2->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) val |= VID_MODE_TYPE_NON_BURST_SYNC_PULSES; else val |= VID_MODE_TYPE_NON_BURST_SYNC_EVENTS; regmap_write(dsi2->regmap, DSI2_DSI_VID_TX_CFG, val); regmap_write(dsi2->regmap, DSI2_MODE_CTRL, VIDEO_MODE); ret = regmap_read_poll_timeout(dsi2->regmap, DSI2_MODE_STATUS, mode, mode & VIDEO_MODE, 1000, MODE_STATUS_TIMEOUT_US); if (ret < 0) dev_err(dsi2->dev, "failed to enter video mode\n"); } static void dw_mipi_dsi2_set_data_stream_mode(struct dw_mipi_dsi2 *dsi2) { u32 mode; int ret; regmap_write(dsi2->regmap, DSI2_MODE_CTRL, DATA_STREAM_MODE); ret = regmap_read_poll_timeout(dsi2->regmap, DSI2_MODE_STATUS, mode, mode & DATA_STREAM_MODE, 1000, MODE_STATUS_TIMEOUT_US); if (ret < 0) dev_err(dsi2->dev, "failed to enter data stream mode\n"); } static void dw_mipi_dsi2_set_cmd_mode(struct dw_mipi_dsi2 *dsi2) { u32 mode; int ret; regmap_write(dsi2->regmap, DSI2_MODE_CTRL, COMMAND_MODE); ret = regmap_read_poll_timeout(dsi2->regmap, DSI2_MODE_STATUS, mode, mode & COMMAND_MODE, 1000, MODE_STATUS_TIMEOUT_US); if (ret < 0) dev_err(dsi2->dev, "failed to enter data stream mode\n"); } static void dw_mipi_dsi2_host_softrst(struct dw_mipi_dsi2 *dsi2) { regmap_write(dsi2->regmap, DSI2_SOFT_RESET, 0x0); usleep_range(50, 100); regmap_write(dsi2->regmap, DSI2_SOFT_RESET, SYS_RSTN | PHY_RSTN | IPI_RSTN); } static void dw_mipi_dsi2_phy_clk_mode_cfg(struct dw_mipi_dsi2 *dsi2) { u32 sys_clk, esc_clk_div; u32 val = 0; /* * clk_type should be NON_CONTINUOUS_CLK before * initial deskew calibration be sent. */ val |= NON_CONTINUOUS_CLK; /* The maximum value of the escape clock frequency is 20MHz */ sys_clk = clk_get_rate(dsi2->sys_clk) / USEC_PER_SEC; esc_clk_div = DIV_ROUND_UP(sys_clk, 20 * 2); val |= PHY_LPTX_CLK_DIV(esc_clk_div); regmap_write(dsi2->regmap, DSI2_PHY_CLK_CFG, val); } static void dw_mipi_dsi2_phy_ratio_cfg(struct dw_mipi_dsi2 *dsi2) { struct drm_display_mode *mode = &dsi2->mode; u64 sys_clk = clk_get_rate(dsi2->sys_clk); u64 pixel_clk, ipi_clk, phy_hsclk; u64 tmp; /* * in DPHY mode, the phy_hstx_clk is exactly 1/16 the Lane high-speed * data rate; In CPHY mode, the phy_hstx_clk is exactly 1/7 the trio * high speed symbol rate. */ phy_hsclk = DIV_ROUND_CLOSEST_ULL(dsi2->lane_mbps * USEC_PER_SEC, 16); /* IPI_RATIO_MAN_CFG = PHY_HSTX_CLK / IPI_CLK */ pixel_clk = mode->crtc_clock * MSEC_PER_SEC; ipi_clk = pixel_clk / 4; tmp = DIV_ROUND_CLOSEST_ULL(phy_hsclk << 16, ipi_clk); regmap_write(dsi2->regmap, DSI2_PHY_IPI_RATIO_MAN_CFG, PHY_IPI_RATIO(tmp)); /* * SYS_RATIO_MAN_CFG = MIPI_DCPHY_HSCLK_Freq / MIPI_DCPHY_HSCLK_Freq */ tmp = DIV_ROUND_CLOSEST_ULL(phy_hsclk << 16, sys_clk); regmap_write(dsi2->regmap, DSI2_PHY_SYS_RATIO_MAN_CFG, PHY_SYS_RATIO(tmp)); } static void dw_mipi_dsi2_lp2hs_or_hs2lp_cfg(struct dw_mipi_dsi2 *dsi2) { const struct dw_mipi_dsi2_phy_ops *phy_ops = dsi2->plat_data->phy_ops; struct dw_mipi_dsi2_phy_timing timing; int ret; ret = phy_ops->get_timing(dsi2->plat_data->priv_data, dsi2->lane_mbps, &timing); if (ret) dev_err(dsi2->dev, "Retrieving phy timings failed\n"); regmap_write(dsi2->regmap, DSI2_PHY_LP2HS_MAN_CFG, PHY_LP2HS_TIME(timing.data_lp2hs)); regmap_write(dsi2->regmap, DSI2_PHY_HS2LP_MAN_CFG, PHY_HS2LP_TIME(timing.data_hs2lp)); } static void dw_mipi_dsi2_phy_init(struct dw_mipi_dsi2 *dsi2) { const struct dw_mipi_dsi2_phy_ops *phy_ops = dsi2->plat_data->phy_ops; struct dw_mipi_dsi2_phy_iface iface; u32 val = 0; phy_ops->get_interface(dsi2->plat_data->priv_data, &iface); switch (iface.ppi_width) { case 8: val |= PPI_WIDTH(PPI_WIDTH_8_BITS); break; case 16: val |= PPI_WIDTH(PPI_WIDTH_16_BITS); break; case 32: val |= PPI_WIDTH(PPI_WIDTH_32_BITS); break; default: /* Caught in probe */ break; } val |= PHY_LANES(dsi2->lanes); val |= PHY_TYPE(DW_MIPI_DSI2_DPHY); regmap_write(dsi2->regmap, DSI2_PHY_MODE_CFG, val); dw_mipi_dsi2_phy_clk_mode_cfg(dsi2); dw_mipi_dsi2_phy_ratio_cfg(dsi2); dw_mipi_dsi2_lp2hs_or_hs2lp_cfg(dsi2); /* phy configuration 8 - 10 */ } static void dw_mipi_dsi2_tx_option_set(struct dw_mipi_dsi2 *dsi2) { u32 val; val = BTA_EN | EOTP_TX_EN; if (dsi2->mode_flags & MIPI_DSI_MODE_NO_EOT_PACKET) val &= ~EOTP_TX_EN; regmap_write(dsi2->regmap, DSI2_DSI_GENERAL_CFG, val); regmap_write(dsi2->regmap, DSI2_DSI_VCID_CFG, TX_VCID(dsi2->channel)); } static void dw_mipi_dsi2_ipi_color_coding_cfg(struct dw_mipi_dsi2 *dsi2) { u32 val, color_depth; switch (dsi2->format) { case MIPI_DSI_FMT_RGB666: case MIPI_DSI_FMT_RGB666_PACKED: color_depth = IPI_DEPTH_6_BITS; break; case MIPI_DSI_FMT_RGB565: color_depth = IPI_DEPTH_5_6_5_BITS; break; case MIPI_DSI_FMT_RGB888: default: color_depth = IPI_DEPTH_8_BITS; break; } val = IPI_DEPTH(color_depth) | IPI_FORMAT(IPI_FORMAT_RGB); regmap_write(dsi2->regmap, DSI2_IPI_COLOR_MAN_CFG, val); } static void dw_mipi_dsi2_vertical_timing_config(struct dw_mipi_dsi2 *dsi2, const struct drm_display_mode *mode) { u32 vactive, vsa, vfp, vbp; vactive = mode->vdisplay; vsa = mode->vsync_end - mode->vsync_start; vfp = mode->vsync_start - mode->vdisplay; vbp = mode->vtotal - mode->vsync_end; regmap_write(dsi2->regmap, DSI2_IPI_VID_VSA_MAN_CFG, VID_VSA_LINES(vsa)); regmap_write(dsi2->regmap, DSI2_IPI_VID_VBP_MAN_CFG, VID_VBP_LINES(vbp)); regmap_write(dsi2->regmap, DSI2_IPI_VID_VACT_MAN_CFG, VID_VACT_LINES(vactive)); regmap_write(dsi2->regmap, DSI2_IPI_VID_VFP_MAN_CFG, VID_VFP_LINES(vfp)); } static void dw_mipi_dsi2_ipi_set(struct dw_mipi_dsi2 *dsi2) { struct drm_display_mode *mode = &dsi2->mode; u32 hline, hsa, hbp, hact; u64 hline_time, hsa_time, hbp_time, hact_time, tmp; u64 pixel_clk, phy_hs_clk; u16 val; val = mode->hdisplay; regmap_write(dsi2->regmap, DSI2_IPI_PIX_PKT_CFG, MAX_PIX_PKT(val)); dw_mipi_dsi2_ipi_color_coding_cfg(dsi2); /* * if the controller is intended to operate in data stream mode, * no more steps are required. */ if (!(dsi2->mode_flags & MIPI_DSI_MODE_VIDEO)) return; hact = mode->hdisplay; hsa = mode->hsync_end - mode->hsync_start; hbp = mode->htotal - mode->hsync_end; hline = mode->htotal; pixel_clk = mode->crtc_clock * MSEC_PER_SEC; phy_hs_clk = DIV_ROUND_CLOSEST_ULL(dsi2->lane_mbps * USEC_PER_SEC, 16); tmp = hsa * phy_hs_clk; hsa_time = DIV_ROUND_CLOSEST_ULL(tmp << 16, pixel_clk); regmap_write(dsi2->regmap, DSI2_IPI_VID_HSA_MAN_CFG, VID_HSA_TIME(hsa_time)); tmp = hbp * phy_hs_clk; hbp_time = DIV_ROUND_CLOSEST_ULL(tmp << 16, pixel_clk); regmap_write(dsi2->regmap, DSI2_IPI_VID_HBP_MAN_CFG, VID_HBP_TIME(hbp_time)); tmp = hact * phy_hs_clk; hact_time = DIV_ROUND_CLOSEST_ULL(tmp << 16, pixel_clk); regmap_write(dsi2->regmap, DSI2_IPI_VID_HACT_MAN_CFG, VID_HACT_TIME(hact_time)); tmp = hline * phy_hs_clk; hline_time = DIV_ROUND_CLOSEST_ULL(tmp << 16, pixel_clk); regmap_write(dsi2->regmap, DSI2_IPI_VID_HLINE_MAN_CFG, VID_HLINE_TIME(hline_time)); dw_mipi_dsi2_vertical_timing_config(dsi2, mode); } static void dw_mipi_dsi2_work_mode(struct dw_mipi_dsi2 *dsi2, u32 mode) { /* * select controller work in Manual mode * Manual: MANUAL_MODE_EN * Automatic: 0 */ regmap_write(dsi2->regmap, MANUAL_MODE_CFG, mode); } static int dw_mipi_dsi2_host_attach(struct mipi_dsi_host *host, struct mipi_dsi_device *device) { struct dw_mipi_dsi2 *dsi2 = host_to_dsi2(host); const struct dw_mipi_dsi2_plat_data *pdata = dsi2->plat_data; struct drm_bridge *bridge; int ret; if (device->lanes > dsi2->plat_data->max_data_lanes) { dev_err(dsi2->dev, "the number of data lanes(%u) is too many\n", device->lanes); return -EINVAL; } dsi2->lanes = device->lanes; dsi2->channel = device->channel; dsi2->format = device->format; dsi2->mode_flags = device->mode_flags; bridge = devm_drm_of_get_bridge(dsi2->dev, dsi2->dev->of_node, 1, 0); if (IS_ERR(bridge)) return PTR_ERR(bridge); bridge->pre_enable_prev_first = true; dsi2->panel_bridge = bridge; drm_bridge_add(&dsi2->bridge); if (pdata->host_ops && pdata->host_ops->attach) { ret = pdata->host_ops->attach(pdata->priv_data, device); if (ret < 0) return ret; } return 0; } static int dw_mipi_dsi2_host_detach(struct mipi_dsi_host *host, struct mipi_dsi_device *device) { struct dw_mipi_dsi2 *dsi2 = host_to_dsi2(host); const struct dw_mipi_dsi2_plat_data *pdata = dsi2->plat_data; int ret; if (pdata->host_ops && pdata->host_ops->detach) { ret = pdata->host_ops->detach(pdata->priv_data, device); if (ret < 0) return ret; } drm_bridge_remove(&dsi2->bridge); drm_of_panel_bridge_remove(host->dev->of_node, 1, 0); return 0; } static int dw_mipi_dsi2_gen_pkt_hdr_write(struct dw_mipi_dsi2 *dsi2, u32 hdr_val, bool lpm) { int ret; regmap_write(dsi2->regmap, DSI2_CRI_TX_HDR, hdr_val | CMD_TX_MODE(lpm)); ret = cri_fifos_wait_avail(dsi2); if (ret) { dev_err(dsi2->dev, "failed to write command header\n"); return ret; } return 0; } static int dw_mipi_dsi2_write(struct dw_mipi_dsi2 *dsi2, const struct mipi_dsi_packet *packet, bool lpm) { const u8 *tx_buf = packet->payload; int len = packet->payload_length, pld_data_bytes = sizeof(u32); __le32 word; /* Send payload */ while (len) { if (len < pld_data_bytes) { word = 0; memcpy(&word, tx_buf, len); regmap_write(dsi2->regmap, DSI2_CRI_TX_PLD, le32_to_cpu(word)); len = 0; } else { memcpy(&word, tx_buf, pld_data_bytes); regmap_write(dsi2->regmap, DSI2_CRI_TX_PLD, le32_to_cpu(word)); tx_buf += pld_data_bytes; len -= pld_data_bytes; } } word = 0; memcpy(&word, packet->header, sizeof(packet->header)); return dw_mipi_dsi2_gen_pkt_hdr_write(dsi2, le32_to_cpu(word), lpm); } static int dw_mipi_dsi2_read(struct dw_mipi_dsi2 *dsi2, const struct mipi_dsi_msg *msg) { u8 *payload = msg->rx_buf; int i, j, ret, len = msg->rx_len; u8 data_type; u16 wc; u32 val; ret = regmap_read_poll_timeout(dsi2->regmap, DSI2_CORE_STATUS, val, val & CRI_RD_DATA_AVAIL, 100, CMD_PKT_STATUS_TIMEOUT_US); if (ret) { dev_err(dsi2->dev, "CRI has no available read data\n"); return ret; } regmap_read(dsi2->regmap, DSI2_CRI_RX_HDR, &val); data_type = val & 0x3f; if (mipi_dsi_packet_format_is_short(data_type)) { for (i = 0; i < len && i < 2; i++) payload[i] = (val >> (8 * (i + 1))) & 0xff; return 0; } wc = (val >> 8) & 0xffff; /* Receive payload */ for (i = 0; i < len && i < wc; i += 4) { regmap_read(dsi2->regmap, DSI2_CRI_RX_PLD, &val); for (j = 0; j < 4 && j + i < len && j + i < wc; j++) payload[i + j] = val >> (8 * j); } return 0; } static ssize_t dw_mipi_dsi2_host_transfer(struct mipi_dsi_host *host, const struct mipi_dsi_msg *msg) { struct dw_mipi_dsi2 *dsi2 = host_to_dsi2(host); bool lpm = msg->flags & MIPI_DSI_MSG_USE_LPM; struct mipi_dsi_packet packet; int ret, nb_bytes; regmap_update_bits(dsi2->regmap, DSI2_DSI_VID_TX_CFG, LPDT_DISPLAY_CMD_EN, lpm ? LPDT_DISPLAY_CMD_EN : 0); /* create a packet to the DSI protocol */ ret = mipi_dsi_create_packet(&packet, msg); if (ret) { dev_err(dsi2->dev, "failed to create packet: %d\n", ret); return ret; } ret = cri_fifos_wait_avail(dsi2); if (ret) return ret; ret = dw_mipi_dsi2_write(dsi2, &packet, lpm); if (ret) return ret; if (msg->rx_buf && msg->rx_len) { ret = dw_mipi_dsi2_read(dsi2, msg); if (ret < 0) return ret; nb_bytes = msg->rx_len; } else { nb_bytes = packet.size; } return nb_bytes; } static const struct mipi_dsi_host_ops dw_mipi_dsi2_host_ops = { .attach = dw_mipi_dsi2_host_attach, .detach = dw_mipi_dsi2_host_detach, .transfer = dw_mipi_dsi2_host_transfer, }; static u32 * dw_mipi_dsi2_bridge_atomic_get_input_bus_fmts(struct drm_bridge *bridge, struct drm_bridge_state *bridge_state, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state, u32 output_fmt, unsigned int *num_input_fmts) { struct dw_mipi_dsi2 *dsi2 = bridge_to_dsi2(bridge); const struct dw_mipi_dsi2_plat_data *pdata = dsi2->plat_data; u32 *input_fmts; if (pdata->get_input_bus_fmts) return pdata->get_input_bus_fmts(pdata->priv_data, bridge, bridge_state, crtc_state, conn_state, output_fmt, num_input_fmts); /* Fall back to MEDIA_BUS_FMT_FIXED as the only input format. */ input_fmts = kmalloc(sizeof(*input_fmts), GFP_KERNEL); if (!input_fmts) return NULL; input_fmts[0] = MEDIA_BUS_FMT_FIXED; *num_input_fmts = 1; return input_fmts; } static int dw_mipi_dsi2_bridge_atomic_check(struct drm_bridge *bridge, struct drm_bridge_state *bridge_state, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct dw_mipi_dsi2 *dsi2 = bridge_to_dsi2(bridge); const struct dw_mipi_dsi2_plat_data *pdata = dsi2->plat_data; bool ret; bridge_state->input_bus_cfg.flags = DRM_BUS_FLAG_DE_HIGH | DRM_BUS_FLAG_PIXDATA_SAMPLE_NEGEDGE; if (pdata->mode_fixup) { ret = pdata->mode_fixup(pdata->priv_data, &crtc_state->mode, &crtc_state->adjusted_mode); if (!ret) { DRM_DEBUG_DRIVER("failed to fixup mode " DRM_MODE_FMT "\n", DRM_MODE_ARG(&crtc_state->mode)); return -EINVAL; } } return 0; } static void dw_mipi_dsi2_bridge_post_atomic_disable(struct drm_bridge *bridge, struct drm_atomic_state *state) { struct dw_mipi_dsi2 *dsi2 = bridge_to_dsi2(bridge); const struct dw_mipi_dsi2_phy_ops *phy_ops = dsi2->plat_data->phy_ops; regmap_write(dsi2->regmap, DSI2_IPI_PIX_PKT_CFG, 0); /* * Switch to command mode before panel-bridge post_disable & * panel unprepare. * Note: panel-bridge disable & panel disable has been called * before by the drm framework. */ dw_mipi_dsi2_set_cmd_mode(dsi2); regmap_write(dsi2->regmap, DSI2_PWR_UP, RESET); if (phy_ops->power_off) phy_ops->power_off(dsi2->plat_data->priv_data); clk_disable_unprepare(dsi2->sys_clk); clk_disable_unprepare(dsi2->pclk); pm_runtime_put(dsi2->dev); } static unsigned int dw_mipi_dsi2_get_lanes(struct dw_mipi_dsi2 *dsi2) { /* single-dsi, so no other instance to consider */ return dsi2->lanes; } static void dw_mipi_dsi2_mode_set(struct dw_mipi_dsi2 *dsi2, const struct drm_display_mode *adjusted_mode) { const struct dw_mipi_dsi2_phy_ops *phy_ops = dsi2->plat_data->phy_ops; void *priv_data = dsi2->plat_data->priv_data; u32 lanes = dw_mipi_dsi2_get_lanes(dsi2); int ret; clk_prepare_enable(dsi2->pclk); clk_prepare_enable(dsi2->sys_clk); ret = phy_ops->get_lane_mbps(priv_data, adjusted_mode, dsi2->mode_flags, lanes, dsi2->format, &dsi2->lane_mbps); if (ret) DRM_DEBUG_DRIVER("Phy get_lane_mbps() failed\n"); pm_runtime_get_sync(dsi2->dev); dw_mipi_dsi2_host_softrst(dsi2); regmap_write(dsi2->regmap, DSI2_PWR_UP, RESET); dw_mipi_dsi2_work_mode(dsi2, MANUAL_MODE_EN); dw_mipi_dsi2_phy_init(dsi2); if (phy_ops->power_on) phy_ops->power_on(dsi2->plat_data->priv_data); dw_mipi_dsi2_tx_option_set(dsi2); /* * initial deskew calibration is send after phy_power_on, * then we can configure clk_type. */ regmap_update_bits(dsi2->regmap, DSI2_PHY_CLK_CFG, CLK_TYPE_MASK, dsi2->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS ? NON_CONTINUOUS_CLK : CONTINUOUS_CLK); regmap_write(dsi2->regmap, DSI2_PWR_UP, POWER_UP); dw_mipi_dsi2_set_cmd_mode(dsi2); dw_mipi_dsi2_ipi_set(dsi2); } static void dw_mipi_dsi2_bridge_atomic_pre_enable(struct drm_bridge *bridge, struct drm_atomic_state *state) { struct dw_mipi_dsi2 *dsi2 = bridge_to_dsi2(bridge); /* Power up the dsi ctl into a command mode */ dw_mipi_dsi2_mode_set(dsi2, &dsi2->mode); } static void dw_mipi_dsi2_bridge_mode_set(struct drm_bridge *bridge, const struct drm_display_mode *mode, const struct drm_display_mode *adjusted_mode) { struct dw_mipi_dsi2 *dsi2 = bridge_to_dsi2(bridge); /* Store the display mode for later use in pre_enable callback */ drm_mode_copy(&dsi2->mode, adjusted_mode); } static void dw_mipi_dsi2_bridge_atomic_enable(struct drm_bridge *bridge, struct drm_atomic_state *state) { struct dw_mipi_dsi2 *dsi2 = bridge_to_dsi2(bridge); /* Switch to video mode for panel-bridge enable & panel enable */ if (dsi2->mode_flags & MIPI_DSI_MODE_VIDEO) dw_mipi_dsi2_set_vid_mode(dsi2); else dw_mipi_dsi2_set_data_stream_mode(dsi2); } static enum drm_mode_status dw_mipi_dsi2_bridge_mode_valid(struct drm_bridge *bridge, const struct drm_display_info *info, const struct drm_display_mode *mode) { struct dw_mipi_dsi2 *dsi2 = bridge_to_dsi2(bridge); const struct dw_mipi_dsi2_plat_data *pdata = dsi2->plat_data; enum drm_mode_status mode_status = MODE_OK; if (pdata->mode_valid) mode_status = pdata->mode_valid(pdata->priv_data, mode, dsi2->mode_flags, dw_mipi_dsi2_get_lanes(dsi2), dsi2->format); return mode_status; } static int dw_mipi_dsi2_bridge_attach(struct drm_bridge *bridge, struct drm_encoder *encoder, enum drm_bridge_attach_flags flags) { struct dw_mipi_dsi2 *dsi2 = bridge_to_dsi2(bridge); /* Set the encoder type as caller does not know it */ encoder->encoder_type = DRM_MODE_ENCODER_DSI; /* Attach the panel-bridge to the dsi bridge */ return drm_bridge_attach(encoder, dsi2->panel_bridge, bridge, flags); } static const struct drm_bridge_funcs dw_mipi_dsi2_bridge_funcs = { .atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state, .atomic_destroy_state = drm_atomic_helper_bridge_destroy_state, .atomic_get_input_bus_fmts = dw_mipi_dsi2_bridge_atomic_get_input_bus_fmts, .atomic_check = dw_mipi_dsi2_bridge_atomic_check, .atomic_reset = drm_atomic_helper_bridge_reset, .atomic_pre_enable = dw_mipi_dsi2_bridge_atomic_pre_enable, .atomic_enable = dw_mipi_dsi2_bridge_atomic_enable, .atomic_post_disable = dw_mipi_dsi2_bridge_post_atomic_disable, .mode_set = dw_mipi_dsi2_bridge_mode_set, .mode_valid = dw_mipi_dsi2_bridge_mode_valid, .attach = dw_mipi_dsi2_bridge_attach, }; static const struct regmap_config dw_mipi_dsi2_regmap_config = { .name = "dsi2-host", .reg_bits = 32, .val_bits = 32, .reg_stride = 4, .fast_io = true, }; static struct dw_mipi_dsi2 * __dw_mipi_dsi2_probe(struct platform_device *pdev, const struct dw_mipi_dsi2_plat_data *plat_data) { struct device *dev = &pdev->dev; struct reset_control *apb_rst; struct dw_mipi_dsi2 *dsi2; int ret; dsi2 = devm_kzalloc(dev, sizeof(*dsi2), GFP_KERNEL); if (!dsi2) return ERR_PTR(-ENOMEM); dsi2->dev = dev; dsi2->plat_data = plat_data; if (!plat_data->phy_ops->init || !plat_data->phy_ops->get_lane_mbps || !plat_data->phy_ops->get_timing) return dev_err_ptr_probe(dev, -ENODEV, "Phy not properly configured\n"); if (!plat_data->regmap) { void __iomem *base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return dev_err_cast_probe(dev, base, "failed to registers\n"); dsi2->regmap = devm_regmap_init_mmio(dev, base, &dw_mipi_dsi2_regmap_config); if (IS_ERR(dsi2->regmap)) return dev_err_cast_probe(dev, dsi2->regmap, "failed to init regmap\n"); } else { dsi2->regmap = plat_data->regmap; } dsi2->pclk = devm_clk_get(dev, "pclk"); if (IS_ERR(dsi2->pclk)) return dev_err_cast_probe(dev, dsi2->pclk, "Unable to get pclk\n"); dsi2->sys_clk = devm_clk_get(dev, "sys"); if (IS_ERR(dsi2->sys_clk)) return dev_err_cast_probe(dev, dsi2->sys_clk, "Unable to get sys_clk\n"); /* * Note that the reset was not defined in the initial device tree, so * we have to be prepared for it not being found. */ apb_rst = devm_reset_control_get_optional_exclusive(dev, "apb"); if (IS_ERR(apb_rst)) return dev_err_cast_probe(dev, apb_rst, "Unable to get reset control\n"); if (apb_rst) { ret = clk_prepare_enable(dsi2->pclk); if (ret) { dev_err(dev, "%s: Failed to enable pclk\n", __func__); return ERR_PTR(ret); } reset_control_assert(apb_rst); usleep_range(10, 20); reset_control_deassert(apb_rst); clk_disable_unprepare(dsi2->pclk); } devm_pm_runtime_enable(dev); dsi2->dsi_host.ops = &dw_mipi_dsi2_host_ops; dsi2->dsi_host.dev = dev; ret = mipi_dsi_host_register(&dsi2->dsi_host); if (ret) { dev_err(dev, "Failed to register MIPI host: %d\n", ret); pm_runtime_disable(dev); return ERR_PTR(ret); } dsi2->bridge.driver_private = dsi2; dsi2->bridge.funcs = &dw_mipi_dsi2_bridge_funcs; dsi2->bridge.of_node = pdev->dev.of_node; return dsi2; } static void __dw_mipi_dsi2_remove(struct dw_mipi_dsi2 *dsi2) { mipi_dsi_host_unregister(&dsi2->dsi_host); } /* * Probe/remove API, used to create the bridge instance. */ struct dw_mipi_dsi2 * dw_mipi_dsi2_probe(struct platform_device *pdev, const struct dw_mipi_dsi2_plat_data *plat_data) { return __dw_mipi_dsi2_probe(pdev, plat_data); } EXPORT_SYMBOL_GPL(dw_mipi_dsi2_probe); void dw_mipi_dsi2_remove(struct dw_mipi_dsi2 *dsi2) { __dw_mipi_dsi2_remove(dsi2); } EXPORT_SYMBOL_GPL(dw_mipi_dsi2_remove); /* * Bind/unbind API, used from platforms based on the component framework * to attach the bridge to an encoder. */ int dw_mipi_dsi2_bind(struct dw_mipi_dsi2 *dsi2, struct drm_encoder *encoder) { return drm_bridge_attach(encoder, &dsi2->bridge, NULL, 0); } EXPORT_SYMBOL_GPL(dw_mipi_dsi2_bind); void dw_mipi_dsi2_unbind(struct dw_mipi_dsi2 *dsi2) { } EXPORT_SYMBOL_GPL(dw_mipi_dsi2_unbind); MODULE_AUTHOR("Guochun Huang <hero.huang@rock-chips.com>"); MODULE_AUTHOR("Heiko Stuebner <heiko.stuebner@cherry.de>"); MODULE_DESCRIPTION("DW MIPI DSI2 host controller driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:dw-mipi-dsi2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1