Contributors: 2
Author Tokens Token Proportion Commits Commit Proportion
Heimir Thor Sverrisson 4849 99.92% 1 50.00%
Sakari Ailus 4 0.08% 1 50.00%
Total 4853 2


// SPDX-License-Identifier: GPL-2.0
// Copyright (c) 2022 Intel Corporation.

#include <linux/acpi.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/version.h>
#include <media/v4l2-cci.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-fwnode.h>

#define OV02C10_LINK_FREQ_400MHZ	400000000ULL
#define OV02C10_MCLK			19200000
#define OV02C10_RGB_DEPTH		10

#define OV02C10_REG_CHIP_ID		CCI_REG16(0x300a)
#define OV02C10_CHIP_ID			0x5602

#define OV02C10_REG_STREAM_CONTROL	CCI_REG8(0x0100)

#define OV02C10_REG_HTS			CCI_REG16(0x380c)

/* vertical-timings from sensor */
#define OV02C10_REG_VTS			CCI_REG16(0x380e)
#define OV02C10_VTS_MAX			0xffff

/* Exposure controls from sensor */
#define OV02C10_REG_EXPOSURE		CCI_REG16(0x3501)
#define OV02C10_EXPOSURE_MIN		4
#define OV02C10_EXPOSURE_MAX_MARGIN	8
#define OV02C10_EXPOSURE_STEP		1

/* Analog gain controls from sensor */
#define OV02C10_REG_ANALOG_GAIN		CCI_REG16(0x3508)
#define OV02C10_ANAL_GAIN_MIN		0x10
#define OV02C10_ANAL_GAIN_MAX		0xf8
#define OV02C10_ANAL_GAIN_STEP		1
#define OV02C10_ANAL_GAIN_DEFAULT	0x10

/* Digital gain controls from sensor */
#define OV02C10_REG_DIGITAL_GAIN	CCI_REG24(0x350a)
#define OV02C10_DGTL_GAIN_MIN		0x0400
#define OV02C10_DGTL_GAIN_MAX		0x3fff
#define OV02C10_DGTL_GAIN_STEP		1
#define OV02C10_DGTL_GAIN_DEFAULT	0x0400

/* Rotate */
#define OV02C10_ROTATE_CONTROL		CCI_REG8(0x3820)
#define OV02C10_ISP_X_WIN_CONTROL	CCI_REG16(0x3810)
#define OV02C10_ISP_Y_WIN_CONTROL	CCI_REG16(0x3812)
#define OV02C10_CONFIG_ROTATE		0x18

/* Test Pattern Control */
#define OV02C10_REG_TEST_PATTERN		CCI_REG8(0x4503)
#define OV02C10_TEST_PATTERN_ENABLE		BIT(7)

struct ov02c10_mode {
	/* Frame width in pixels */
	u32 width;

	/* Frame height in pixels */
	u32 height;

	/* Horizontal timining size */
	u32 hts;

	/* Min vertical timining size */
	u32 vts_min;

	/* Sensor register settings for this resolution */
	const struct reg_sequence *reg_sequence;
	const int sequence_length;
	/* Sensor register settings for 1 or 2 lane config */
	const struct reg_sequence *lane_settings[2];
	const int lane_settings_length[2];
};

static const struct reg_sequence sensor_1928x1092_30fps_setting[] = {
	{0x0301, 0x08},
	{0x0303, 0x06},
	{0x0304, 0x01},
	{0x0305, 0xe0},
	{0x0313, 0x40},
	{0x031c, 0x4f},
	{0x3020, 0x97},
	{0x3022, 0x01},
	{0x3026, 0xb4},
	{0x303b, 0x00},
	{0x303c, 0x4f},
	{0x303d, 0xe6},
	{0x303e, 0x00},
	{0x303f, 0x03},
	{0x3021, 0x23},
	{0x3501, 0x04},
	{0x3502, 0x6c},
	{0x3504, 0x0c},
	{0x3507, 0x00},
	{0x3508, 0x08},
	{0x3509, 0x00},
	{0x350a, 0x01},
	{0x350b, 0x00},
	{0x350c, 0x41},
	{0x3600, 0x84},
	{0x3603, 0x08},
	{0x3610, 0x57},
	{0x3611, 0x1b},
	{0x3613, 0x78},
	{0x3623, 0x00},
	{0x3632, 0xa0},
	{0x3642, 0xe8},
	{0x364c, 0x70},
	{0x365f, 0x0f},
	{0x3708, 0x30},
	{0x3714, 0x24},
	{0x3725, 0x02},
	{0x3737, 0x08},
	{0x3739, 0x28},
	{0x3749, 0x32},
	{0x374a, 0x32},
	{0x374b, 0x32},
	{0x374c, 0x32},
	{0x374d, 0x81},
	{0x374e, 0x81},
	{0x374f, 0x81},
	{0x3752, 0x36},
	{0x3753, 0x36},
	{0x3754, 0x36},
	{0x3761, 0x00},
	{0x376c, 0x81},
	{0x3774, 0x18},
	{0x3776, 0x08},
	{0x377c, 0x81},
	{0x377d, 0x81},
	{0x377e, 0x81},
	{0x37a0, 0x44},
	{0x37a6, 0x44},
	{0x37aa, 0x0d},
	{0x37ae, 0x00},
	{0x37cb, 0x03},
	{0x37cc, 0x01},
	{0x37d8, 0x02},
	{0x37d9, 0x10},
	{0x37e1, 0x10},
	{0x37e2, 0x18},
	{0x37e3, 0x08},
	{0x37e4, 0x08},
	{0x37e5, 0x02},
	{0x37e6, 0x08},

	/* 1928x1092 */
	{0x3800, 0x00},
	{0x3801, 0x00},
	{0x3802, 0x00},
	{0x3803, 0x00},
	{0x3804, 0x07},
	{0x3805, 0x8f},
	{0x3806, 0x04},
	{0x3807, 0x47},
	{0x3808, 0x07},
	{0x3809, 0x88},
	{0x380a, 0x04},
	{0x380b, 0x44},
	{0x3810, 0x00},
	{0x3811, 0x02},
	{0x3812, 0x00},
	{0x3813, 0x02},
	{0x3814, 0x01},
	{0x3815, 0x01},
	{0x3816, 0x01},
	{0x3817, 0x01},

	{0x3820, 0xb0},
	{0x3821, 0x00},
	{0x3822, 0x80},
	{0x3823, 0x08},
	{0x3824, 0x00},
	{0x3825, 0x20},
	{0x3826, 0x00},
	{0x3827, 0x08},
	{0x382a, 0x00},
	{0x382b, 0x08},
	{0x382d, 0x00},
	{0x382e, 0x00},
	{0x382f, 0x23},
	{0x3834, 0x00},
	{0x3839, 0x00},
	{0x383a, 0xd1},
	{0x383e, 0x03},
	{0x393d, 0x29},
	{0x393f, 0x6e},
	{0x394b, 0x06},
	{0x394c, 0x06},
	{0x394d, 0x08},
	{0x394f, 0x01},
	{0x3950, 0x01},
	{0x3951, 0x01},
	{0x3952, 0x01},
	{0x3953, 0x01},
	{0x3954, 0x01},
	{0x3955, 0x01},
	{0x3956, 0x01},
	{0x3957, 0x0e},
	{0x3958, 0x08},
	{0x3959, 0x08},
	{0x395a, 0x08},
	{0x395b, 0x13},
	{0x395c, 0x09},
	{0x395d, 0x05},
	{0x395e, 0x02},
	{0x395f, 0x00},
	{0x395f, 0x00},
	{0x3960, 0x00},
	{0x3961, 0x00},
	{0x3962, 0x00},
	{0x3963, 0x00},
	{0x3964, 0x00},
	{0x3965, 0x00},
	{0x3966, 0x00},
	{0x3967, 0x00},
	{0x3968, 0x01},
	{0x3969, 0x01},
	{0x396a, 0x01},
	{0x396b, 0x01},
	{0x396c, 0x10},
	{0x396d, 0xf0},
	{0x396e, 0x11},
	{0x396f, 0x00},
	{0x3970, 0x37},
	{0x3971, 0x37},
	{0x3972, 0x37},
	{0x3973, 0x37},
	{0x3974, 0x00},
	{0x3975, 0x3c},
	{0x3976, 0x3c},
	{0x3977, 0x3c},
	{0x3978, 0x3c},
	{0x3c00, 0x0f},
	{0x3c20, 0x01},
	{0x3c21, 0x08},
	{0x3f00, 0x8b},
	{0x3f02, 0x0f},
	{0x4000, 0xc3},
	{0x4001, 0xe0},
	{0x4002, 0x00},
	{0x4003, 0x40},
	{0x4008, 0x04},
	{0x4009, 0x23},
	{0x400a, 0x04},
	{0x400b, 0x01},
	{0x4077, 0x06},
	{0x4078, 0x00},
	{0x4079, 0x1a},
	{0x407a, 0x7f},
	{0x407b, 0x01},
	{0x4080, 0x03},
	{0x4081, 0x84},
	{0x4308, 0x03},
	{0x4309, 0xff},
	{0x430d, 0x00},
	{0x4806, 0x00},
	{0x4813, 0x00},
	{0x4837, 0x10},
	{0x4857, 0x05},
	{0x4500, 0x07},
	{0x4501, 0x00},
	{0x4503, 0x00},
	{0x450a, 0x04},
	{0x450e, 0x00},
	{0x450f, 0x00},
	{0x4900, 0x00},
	{0x4901, 0x00},
	{0x4902, 0x01},
	{0x5001, 0x50},
	{0x5006, 0x00},
	{0x5080, 0x40},
	{0x5181, 0x2b},
	{0x5202, 0xa3},
	{0x5206, 0x01},
	{0x5207, 0x00},
	{0x520a, 0x01},
	{0x520b, 0x00},
	{0x365d, 0x00},
	{0x4815, 0x40},
	{0x4816, 0x12},
	{0x4f00, 0x01},
};

static const struct reg_sequence sensor_1928x1092_30fps_1lane_setting[] = {
	{0x301b, 0xd2},
	{0x3027, 0xe1},
	{0x380c, 0x08},
	{0x380d, 0xe8},
	{0x380e, 0x04},
	{0x380f, 0x8c},
	{0x394e, 0x0b},
	{0x4800, 0x24},
	{0x5000, 0xf5},
	/* plls */
	{0x0303, 0x05},
	{0x0305, 0x90},
	{0x0316, 0x90},
	{0x3016, 0x12},
};

static const struct reg_sequence sensor_1928x1092_30fps_2lane_setting[] = {
	{0x301b, 0xf0},
	{0x3027, 0xf1},
	{0x380c, 0x04},
	{0x380d, 0x74},
	{0x380e, 0x09},
	{0x380f, 0x18},
	{0x394e, 0x0a},
	{0x4041, 0x20},
	{0x4884, 0x04},
	{0x4800, 0x64},
	{0x4d00, 0x03},
	{0x4d01, 0xd8},
	{0x4d02, 0xba},
	{0x4d03, 0xa0},
	{0x4d04, 0xb7},
	{0x4d05, 0x34},
	{0x4d0d, 0x00},
	{0x5000, 0xfd},
	{0x481f, 0x30},
	/* plls */
	{0x0303, 0x05},
	{0x0305, 0x90},
	{0x0316, 0x90},
	{0x3016, 0x32},
};

static const char * const ov02c10_test_pattern_menu[] = {
	"Disabled",
	"Color Bar",
	"Top-Bottom Darker Color Bar",
	"Right-Left Darker Color Bar",
	"Color Bar type 4",
};

static const s64 link_freq_menu_items[] = {
	OV02C10_LINK_FREQ_400MHZ,
};

static const struct ov02c10_mode supported_modes[] = {
	{
		.width = 1928,
		.height = 1092,
		.hts = 2280,
		.vts_min = 1164,
		.reg_sequence = sensor_1928x1092_30fps_setting,
		.sequence_length = ARRAY_SIZE(sensor_1928x1092_30fps_setting),
		.lane_settings = {
			sensor_1928x1092_30fps_1lane_setting,
			sensor_1928x1092_30fps_2lane_setting
		},
		.lane_settings_length = {
			ARRAY_SIZE(sensor_1928x1092_30fps_1lane_setting),
			ARRAY_SIZE(sensor_1928x1092_30fps_2lane_setting),
		},
	},
};

static const char * const ov02c10_supply_names[] = {
	"dovdd",	/* Digital I/O power */
	"avdd",		/* Analog power */
	"dvdd",		/* Digital core power */
};

struct ov02c10 {
	struct v4l2_subdev sd;
	struct media_pad pad;
	struct v4l2_ctrl_handler ctrl_handler;
	struct regmap *regmap;

	/* V4L2 Controls */
	struct v4l2_ctrl *link_freq;
	struct v4l2_ctrl *pixel_rate;
	struct v4l2_ctrl *vblank;
	struct v4l2_ctrl *hblank;
	struct v4l2_ctrl *exposure;

	struct clk *img_clk;
	struct gpio_desc *reset;
	struct regulator_bulk_data supplies[ARRAY_SIZE(ov02c10_supply_names)];

	/* MIPI lane info */
	u32 link_freq_index;
	u8 mipi_lanes;
};

static inline struct ov02c10 *to_ov02c10(struct v4l2_subdev *subdev)
{
	return container_of(subdev, struct ov02c10, sd);
}

static int ov02c10_test_pattern(struct ov02c10 *ov02c10, int pattern)
{
	int ret = 0;

	if (!pattern)
		return cci_update_bits(ov02c10->regmap, OV02C10_REG_TEST_PATTERN,
				       BIT(7), 0, NULL);

	cci_update_bits(ov02c10->regmap, OV02C10_REG_TEST_PATTERN,
			0x03, pattern - 1, &ret);
	cci_update_bits(ov02c10->regmap, OV02C10_REG_TEST_PATTERN,
			BIT(7), OV02C10_TEST_PATTERN_ENABLE, &ret);
	return ret;
}

static int ov02c10_set_ctrl(struct v4l2_ctrl *ctrl)
{
	struct ov02c10 *ov02c10 = container_of(ctrl->handler,
					     struct ov02c10, ctrl_handler);
	struct i2c_client *client = v4l2_get_subdevdata(&ov02c10->sd);
	const u32 height = supported_modes[0].height;
	s64 exposure_max;
	int ret = 0;

	/* Propagate change of current control to all related controls */
	if (ctrl->id == V4L2_CID_VBLANK) {
		/* Update max exposure while meeting expected vblanking */
		exposure_max = height + ctrl->val - OV02C10_EXPOSURE_MAX_MARGIN;
		__v4l2_ctrl_modify_range(ov02c10->exposure,
					 ov02c10->exposure->minimum,
					 exposure_max, ov02c10->exposure->step,
					 exposure_max);
	}

	/* V4L2 controls values will be applied only when power is already up */
	if (!pm_runtime_get_if_in_use(&client->dev))
		return 0;

	switch (ctrl->id) {
	case V4L2_CID_ANALOGUE_GAIN:
		cci_write(ov02c10->regmap, OV02C10_REG_ANALOG_GAIN,
			  ctrl->val << 4, &ret);
		break;

	case V4L2_CID_DIGITAL_GAIN:
		cci_write(ov02c10->regmap, OV02C10_REG_DIGITAL_GAIN,
			  ctrl->val << 6, &ret);
		break;

	case V4L2_CID_EXPOSURE:
		cci_write(ov02c10->regmap, OV02C10_REG_EXPOSURE,
			  ctrl->val, &ret);
		break;

	case V4L2_CID_VBLANK:
		cci_write(ov02c10->regmap, OV02C10_REG_VTS, height + ctrl->val,
			  &ret);
		break;

	case V4L2_CID_TEST_PATTERN:
		ret = ov02c10_test_pattern(ov02c10, ctrl->val);
		break;

	default:
		ret = -EINVAL;
		break;
	}

	pm_runtime_put(&client->dev);

	return ret;
}

static const struct v4l2_ctrl_ops ov02c10_ctrl_ops = {
	.s_ctrl = ov02c10_set_ctrl,
};

static int ov02c10_init_controls(struct ov02c10 *ov02c10)
{
	struct i2c_client *client = v4l2_get_subdevdata(&ov02c10->sd);
	struct v4l2_ctrl_handler *ctrl_hdlr = &ov02c10->ctrl_handler;
	const struct ov02c10_mode *mode = &supported_modes[0];
	u32 vblank_min, vblank_max, vblank_default, vts_def;
	struct v4l2_fwnode_device_properties props;
	s64 exposure_max, h_blank, pixel_rate;
	int ret;

	v4l2_ctrl_handler_init(ctrl_hdlr, 10);

	ov02c10->link_freq = v4l2_ctrl_new_int_menu(ctrl_hdlr,
						    &ov02c10_ctrl_ops,
						    V4L2_CID_LINK_FREQ,
						    ov02c10->link_freq_index, 0,
						    link_freq_menu_items);
	if (ov02c10->link_freq)
		ov02c10->link_freq->flags |= V4L2_CTRL_FLAG_READ_ONLY;

	/* MIPI lanes are DDR -> use link-freq * 2 */
	pixel_rate = div_u64(link_freq_menu_items[ov02c10->link_freq_index] *
			     2 * ov02c10->mipi_lanes, OV02C10_RGB_DEPTH);

	ov02c10->pixel_rate = v4l2_ctrl_new_std(ctrl_hdlr, &ov02c10_ctrl_ops,
						V4L2_CID_PIXEL_RATE, 0,
						pixel_rate, 1, pixel_rate);

	/*
	 * For default multiple min by number of lanes to keep the default
	 * FPS the same indepenedent of the lane count.
	 */
	vts_def = mode->vts_min * ov02c10->mipi_lanes;

	vblank_min = mode->vts_min - mode->height;
	vblank_max = OV02C10_VTS_MAX - mode->height;
	vblank_default = vts_def - mode->height;
	ov02c10->vblank = v4l2_ctrl_new_std(ctrl_hdlr, &ov02c10_ctrl_ops,
					    V4L2_CID_VBLANK, vblank_min,
					    vblank_max, 1, vblank_default);

	h_blank = mode->hts - mode->width;
	ov02c10->hblank = v4l2_ctrl_new_std(ctrl_hdlr, &ov02c10_ctrl_ops,
					    V4L2_CID_HBLANK, h_blank, h_blank,
					    1, h_blank);
	if (ov02c10->hblank)
		ov02c10->hblank->flags |= V4L2_CTRL_FLAG_READ_ONLY;

	v4l2_ctrl_new_std(ctrl_hdlr, &ov02c10_ctrl_ops, V4L2_CID_ANALOGUE_GAIN,
			  OV02C10_ANAL_GAIN_MIN, OV02C10_ANAL_GAIN_MAX,
			  OV02C10_ANAL_GAIN_STEP, OV02C10_ANAL_GAIN_DEFAULT);
	v4l2_ctrl_new_std(ctrl_hdlr, &ov02c10_ctrl_ops, V4L2_CID_DIGITAL_GAIN,
			  OV02C10_DGTL_GAIN_MIN, OV02C10_DGTL_GAIN_MAX,
			  OV02C10_DGTL_GAIN_STEP, OV02C10_DGTL_GAIN_DEFAULT);
	exposure_max = vts_def - OV02C10_EXPOSURE_MAX_MARGIN;
	ov02c10->exposure = v4l2_ctrl_new_std(ctrl_hdlr, &ov02c10_ctrl_ops,
					      V4L2_CID_EXPOSURE,
					      OV02C10_EXPOSURE_MIN,
					      exposure_max,
					      OV02C10_EXPOSURE_STEP,
					      exposure_max);
	v4l2_ctrl_new_std_menu_items(ctrl_hdlr, &ov02c10_ctrl_ops,
				     V4L2_CID_TEST_PATTERN,
				     ARRAY_SIZE(ov02c10_test_pattern_menu) - 1,
				     0, 0, ov02c10_test_pattern_menu);

	ret = v4l2_fwnode_device_parse(&client->dev, &props);
	if (ret)
		return ret;

	v4l2_ctrl_new_fwnode_properties(ctrl_hdlr, &ov02c10_ctrl_ops, &props);

	if (ctrl_hdlr->error)
		return ctrl_hdlr->error;

	ov02c10->sd.ctrl_handler = ctrl_hdlr;

	return 0;
}

static void ov02c10_update_pad_format(const struct ov02c10_mode *mode,
				      struct v4l2_mbus_framefmt *fmt)
{
	fmt->width = mode->width;
	fmt->height = mode->height;
	fmt->code = MEDIA_BUS_FMT_SGRBG10_1X10;
	fmt->field = V4L2_FIELD_NONE;
}

static int ov02c10_enable_streams(struct v4l2_subdev *sd,
				  struct v4l2_subdev_state *state,
				  u32 pad, u64 streams_mask)
{
	const struct ov02c10_mode *mode = &supported_modes[0];
	struct i2c_client *client = v4l2_get_subdevdata(sd);
	struct ov02c10 *ov02c10 = to_ov02c10(sd);
	const struct reg_sequence *reg_sequence;
	int ret, sequence_length;

	ret = pm_runtime_resume_and_get(&client->dev);
	if (ret)
		return ret;

	reg_sequence = mode->reg_sequence;
	sequence_length = mode->sequence_length;
	ret = regmap_multi_reg_write(ov02c10->regmap,
				     reg_sequence, sequence_length);
	if (ret) {
		dev_err(&client->dev, "failed to set mode\n");
		goto out;
	}

	reg_sequence = mode->lane_settings[ov02c10->mipi_lanes - 1];
	sequence_length = mode->lane_settings_length[ov02c10->mipi_lanes - 1];
	ret = regmap_multi_reg_write(ov02c10->regmap,
				     reg_sequence, sequence_length);
	if (ret) {
		dev_err(&client->dev, "failed to write lane settings\n");
		goto out;
	}

	ret = __v4l2_ctrl_handler_setup(ov02c10->sd.ctrl_handler);
	if (ret)
		goto out;

	ret = cci_write(ov02c10->regmap, OV02C10_REG_STREAM_CONTROL, 1, NULL);
out:
	if (ret)
		pm_runtime_put(&client->dev);

	return ret;
}

static int ov02c10_disable_streams(struct v4l2_subdev *sd,
				   struct v4l2_subdev_state *state,
				   u32 pad, u64 streams_mask)
{
	struct i2c_client *client = v4l2_get_subdevdata(sd);
	struct ov02c10 *ov02c10 = to_ov02c10(sd);

	cci_write(ov02c10->regmap, OV02C10_REG_STREAM_CONTROL, 0, NULL);
	pm_runtime_put(&client->dev);

	return 0;
}

/* This function tries to get power control resources */
static int ov02c10_get_pm_resources(struct device *dev)
{
	struct v4l2_subdev *sd = dev_get_drvdata(dev);
	struct ov02c10 *ov02c10 = to_ov02c10(sd);
	int i;

	ov02c10->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
	if (IS_ERR(ov02c10->reset))
		return dev_err_probe(dev, PTR_ERR(ov02c10->reset),
				     "failed to get reset gpio\n");

	for (i = 0; i < ARRAY_SIZE(ov02c10_supply_names); i++)
		ov02c10->supplies[i].supply = ov02c10_supply_names[i];

	return devm_regulator_bulk_get(dev, ARRAY_SIZE(ov02c10_supply_names),
				       ov02c10->supplies);
}

static int ov02c10_power_off(struct device *dev)
{
	struct v4l2_subdev *sd = dev_get_drvdata(dev);
	struct ov02c10 *ov02c10 = to_ov02c10(sd);

	gpiod_set_value_cansleep(ov02c10->reset, 1);

	regulator_bulk_disable(ARRAY_SIZE(ov02c10_supply_names),
			       ov02c10->supplies);

	clk_disable_unprepare(ov02c10->img_clk);

	return 0;
}

static int ov02c10_power_on(struct device *dev)
{
	struct v4l2_subdev *sd = dev_get_drvdata(dev);
	struct ov02c10 *ov02c10 = to_ov02c10(sd);
	int ret;

	ret = clk_prepare_enable(ov02c10->img_clk);
	if (ret < 0) {
		dev_err(dev, "failed to enable imaging clock: %d", ret);
		return ret;
	}

	ret = regulator_bulk_enable(ARRAY_SIZE(ov02c10_supply_names),
				    ov02c10->supplies);
	if (ret < 0) {
		dev_err(dev, "failed to enable regulators: %d", ret);
		clk_disable_unprepare(ov02c10->img_clk);
		return ret;
	}

	if (ov02c10->reset) {
		/* Assert reset for at least 2ms on back to back off-on */
		usleep_range(2000, 2200);
		gpiod_set_value_cansleep(ov02c10->reset, 0);
		usleep_range(5000, 5100);
	}

	return 0;
}

static int ov02c10_set_format(struct v4l2_subdev *sd,
			      struct v4l2_subdev_state *sd_state,
			      struct v4l2_subdev_format *fmt)
{
	const struct ov02c10_mode *mode = &supported_modes[0];
	struct ov02c10 *ov02c10 = to_ov02c10(sd);
	s32 vblank_def, h_blank;

	ov02c10_update_pad_format(mode, &fmt->format);
	*v4l2_subdev_state_get_format(sd_state, fmt->pad) = fmt->format;

	if (fmt->which == V4L2_SUBDEV_FORMAT_TRY)
		return 0;

	/* Update limits and set FPS to default */
	vblank_def = mode->vts_min * ov02c10->mipi_lanes - mode->height;
	__v4l2_ctrl_modify_range(ov02c10->vblank, mode->vts_min - mode->height,
				 OV02C10_VTS_MAX - mode->height, 1, vblank_def);
	__v4l2_ctrl_s_ctrl(ov02c10->vblank, vblank_def);
	h_blank = mode->hts - mode->width;
	__v4l2_ctrl_modify_range(ov02c10->hblank, h_blank, h_blank, 1, h_blank);

	return 0;
}

static int ov02c10_enum_mbus_code(struct v4l2_subdev *sd,
				  struct v4l2_subdev_state *sd_state,
				  struct v4l2_subdev_mbus_code_enum *code)
{
	if (code->index > 0)
		return -EINVAL;

	code->code = MEDIA_BUS_FMT_SGRBG10_1X10;

	return 0;
}

static int ov02c10_enum_frame_size(struct v4l2_subdev *sd,
				   struct v4l2_subdev_state *sd_state,
				   struct v4l2_subdev_frame_size_enum *fse)
{
	if (fse->index >= ARRAY_SIZE(supported_modes))
		return -EINVAL;

	if (fse->code != MEDIA_BUS_FMT_SGRBG10_1X10)
		return -EINVAL;

	fse->min_width = supported_modes[fse->index].width;
	fse->max_width = fse->min_width;
	fse->min_height = supported_modes[fse->index].height;
	fse->max_height = fse->min_height;

	return 0;
}

static int ov02c10_init_state(struct v4l2_subdev *sd,
			      struct v4l2_subdev_state *sd_state)
{
	ov02c10_update_pad_format(&supported_modes[0],
				  v4l2_subdev_state_get_format(sd_state, 0));

	return 0;
}

static const struct v4l2_subdev_video_ops ov02c10_video_ops = {
	.s_stream = v4l2_subdev_s_stream_helper,
};

static const struct v4l2_subdev_pad_ops ov02c10_pad_ops = {
	.set_fmt = ov02c10_set_format,
	.get_fmt = v4l2_subdev_get_fmt,
	.enum_mbus_code = ov02c10_enum_mbus_code,
	.enum_frame_size = ov02c10_enum_frame_size,
	.enable_streams = ov02c10_enable_streams,
	.disable_streams = ov02c10_disable_streams,
};

static const struct v4l2_subdev_ops ov02c10_subdev_ops = {
	.video = &ov02c10_video_ops,
	.pad = &ov02c10_pad_ops,
};

static const struct media_entity_operations ov02c10_subdev_entity_ops = {
	.link_validate = v4l2_subdev_link_validate,
};

static const struct v4l2_subdev_internal_ops ov02c10_internal_ops = {
	.init_state = ov02c10_init_state,
};

static int ov02c10_identify_module(struct ov02c10 *ov02c10)
{
	struct i2c_client *client = v4l2_get_subdevdata(&ov02c10->sd);
	u64 chip_id;
	int ret;

	ret = cci_read(ov02c10->regmap, OV02C10_REG_CHIP_ID, &chip_id, NULL);
	if (ret)
		return ret;

	if (chip_id != OV02C10_CHIP_ID) {
		dev_err(&client->dev, "chip id mismatch: %x!=%llx",
			OV02C10_CHIP_ID, chip_id);
		return -ENXIO;
	}

	return 0;
}

static int ov02c10_check_hwcfg(struct device *dev, struct ov02c10 *ov02c10)
{
	struct v4l2_fwnode_endpoint bus_cfg = {
		.bus_type = V4L2_MBUS_CSI2_DPHY
	};
	struct fwnode_handle *ep, *fwnode = dev_fwnode(dev);
	unsigned long link_freq_bitmap;
	u32 mclk;
	int ret;

	/*
	 * Sometimes the fwnode graph is initialized by the bridge driver,
	 * wait for this.
	 */
	ep = fwnode_graph_get_endpoint_by_id(fwnode, 0, 0, 0);
	if (!ep)
		return dev_err_probe(dev, -EPROBE_DEFER,
				     "waiting for fwnode graph endpoint\n");

	ov02c10->img_clk = devm_clk_get_optional(dev, NULL);
	if (IS_ERR(ov02c10->img_clk)) {
		fwnode_handle_put(ep);
		return dev_err_probe(dev, PTR_ERR(ov02c10->img_clk),
				     "failed to get imaging clock\n");
	}

	if (ov02c10->img_clk) {
		mclk = clk_get_rate(ov02c10->img_clk);
	} else {
		ret = fwnode_property_read_u32(fwnode, "clock-frequency", &mclk);
		if (ret) {
			fwnode_handle_put(ep);
			return dev_err_probe(dev, ret,
					     "reading clock-frequency property\n");
		}
	}

	if (mclk != OV02C10_MCLK) {
		fwnode_handle_put(ep);
		return dev_err_probe(dev, -EINVAL,
				     "external clock %u is not supported\n",
				     mclk);
	}

	ret = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg);
	fwnode_handle_put(ep);
	if (ret)
		return dev_err_probe(dev, ret, "parsing endpoint failed\n");

	ret = v4l2_link_freq_to_bitmap(dev, bus_cfg.link_frequencies,
				       bus_cfg.nr_of_link_frequencies,
				       link_freq_menu_items,
				       ARRAY_SIZE(link_freq_menu_items),
				       &link_freq_bitmap);
	if (ret)
		goto check_hwcfg_error;

	/* v4l2_link_freq_to_bitmap() guarantees at least 1 bit is set */
	ov02c10->link_freq_index = ffs(link_freq_bitmap) - 1;

	if (bus_cfg.bus.mipi_csi2.num_data_lanes != 1 &&
	    bus_cfg.bus.mipi_csi2.num_data_lanes != 2) {
		ret = dev_err_probe(dev, -EINVAL,
				    "number of CSI2 data lanes %u is not supported\n",
				    bus_cfg.bus.mipi_csi2.num_data_lanes);
		goto check_hwcfg_error;
	}

	ov02c10->mipi_lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;

check_hwcfg_error:
	v4l2_fwnode_endpoint_free(&bus_cfg);
	return ret;
}

static void ov02c10_remove(struct i2c_client *client)
{
	struct v4l2_subdev *sd = i2c_get_clientdata(client);

	v4l2_async_unregister_subdev(sd);
	v4l2_subdev_cleanup(sd);
	media_entity_cleanup(&sd->entity);
	v4l2_ctrl_handler_free(sd->ctrl_handler);
	pm_runtime_disable(&client->dev);
	if (!pm_runtime_status_suspended(&client->dev)) {
		ov02c10_power_off(&client->dev);
		pm_runtime_set_suspended(&client->dev);
	}
}

static int ov02c10_probe(struct i2c_client *client)
{
	struct ov02c10 *ov02c10;
	int ret;

	ov02c10 = devm_kzalloc(&client->dev, sizeof(*ov02c10), GFP_KERNEL);
	if (!ov02c10)
		return -ENOMEM;

	v4l2_i2c_subdev_init(&ov02c10->sd, client, &ov02c10_subdev_ops);

	/* Check HW config */
	ret = ov02c10_check_hwcfg(&client->dev, ov02c10);
	if (ret)
		return ret;

	ret = ov02c10_get_pm_resources(&client->dev);
	if (ret)
		return ret;

	ov02c10->regmap = devm_cci_regmap_init_i2c(client, 16);
	if (IS_ERR(ov02c10->regmap))
		return PTR_ERR(ov02c10->regmap);

	ret = ov02c10_power_on(&client->dev);
	if (ret) {
		dev_err_probe(&client->dev, ret, "failed to power on\n");
		return ret;
	}

	ret = ov02c10_identify_module(ov02c10);
	if (ret) {
		dev_err(&client->dev, "failed to find sensor: %d", ret);
		goto probe_error_power_off;
	}

	ret = ov02c10_init_controls(ov02c10);
	if (ret) {
		dev_err(&client->dev, "failed to init controls: %d", ret);
		goto probe_error_v4l2_ctrl_handler_free;
	}

	ov02c10->sd.internal_ops = &ov02c10_internal_ops;
	ov02c10->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
	ov02c10->sd.entity.ops = &ov02c10_subdev_entity_ops;
	ov02c10->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
	ov02c10->pad.flags = MEDIA_PAD_FL_SOURCE;
	ret = media_entity_pads_init(&ov02c10->sd.entity, 1, &ov02c10->pad);
	if (ret) {
		dev_err(&client->dev, "failed to init entity pads: %d", ret);
		goto probe_error_v4l2_ctrl_handler_free;
	}

	ov02c10->sd.state_lock = ov02c10->ctrl_handler.lock;
	ret = v4l2_subdev_init_finalize(&ov02c10->sd);
	if (ret < 0) {
		dev_err(&client->dev, "failed to init subdev: %d", ret);
		goto probe_error_media_entity_cleanup;
	}

	pm_runtime_set_active(&client->dev);
	pm_runtime_enable(&client->dev);

	ret = v4l2_async_register_subdev_sensor(&ov02c10->sd);
	if (ret < 0) {
		dev_err(&client->dev, "failed to register V4L2 subdev: %d",
			ret);
		goto probe_error_v4l2_subdev_cleanup;
	}

	pm_runtime_idle(&client->dev);
	return 0;

probe_error_v4l2_subdev_cleanup:
	pm_runtime_disable(&client->dev);
	pm_runtime_set_suspended(&client->dev);
	v4l2_subdev_cleanup(&ov02c10->sd);

probe_error_media_entity_cleanup:
	media_entity_cleanup(&ov02c10->sd.entity);

probe_error_v4l2_ctrl_handler_free:
	v4l2_ctrl_handler_free(ov02c10->sd.ctrl_handler);

probe_error_power_off:
	ov02c10_power_off(&client->dev);

	return ret;
}

static DEFINE_RUNTIME_DEV_PM_OPS(ov02c10_pm_ops, ov02c10_power_off,
				 ov02c10_power_on, NULL);

#ifdef CONFIG_ACPI
static const struct acpi_device_id ov02c10_acpi_ids[] = {
	{ "OVTI02C1" },
	{ /* sentinel */ }
};

MODULE_DEVICE_TABLE(acpi, ov02c10_acpi_ids);
#endif

static const struct of_device_id ov02c10_of_match[] = {
	{ .compatible = "ovti,ov02c10" },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, ov02c10_of_match);

static struct i2c_driver ov02c10_i2c_driver = {
	.driver = {
		.name = "ov02c10",
		.pm = pm_sleep_ptr(&ov02c10_pm_ops),
		.acpi_match_table = ACPI_PTR(ov02c10_acpi_ids),
		.of_match_table = ov02c10_of_match,
	},
	.probe = ov02c10_probe,
	.remove = ov02c10_remove,
};

module_i2c_driver(ov02c10_i2c_driver);

MODULE_AUTHOR("Hao Yao <hao.yao@intel.com>");
MODULE_AUTHOR("Heimir Thor Sverrisson <heimir.sverrisson@gmail.com>");
MODULE_AUTHOR("Hans de Goede <hansg@kernel.org>");
MODULE_DESCRIPTION("OmniVision OV02C10 sensor driver");
MODULE_LICENSE("GPL");