Contributors: 6
Author Tokens Token Proportion Commits Commit Proportion
Abel Vesa 1566 58.45% 1 9.09%
Ivaylo Ivanov 1039 38.78% 6 54.55%
Neil Armstrong 52 1.94% 1 9.09%
Harshit Mogalapalli 13 0.49% 1 9.09%
Vinod Koul 6 0.22% 1 9.09%
Rob Herring 3 0.11% 1 9.09%
Total 2679 11


// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (c) 2023, Linaro Limited
 */

#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/iopoll.h>
#include <linux/mod_devicetable.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>

#define EXYNOS_USB_PHY_HS_PHY_CTRL_RST	(0x0)
#define USB_PHY_RST_MASK		GENMASK(1, 0)
#define UTMI_PORT_RST_MASK		GENMASK(5, 4)

#define EXYNOS_USB_PHY_HS_PHY_CTRL_COMMON	(0x4)
#define RPTR_MODE			BIT(10)
#define FSEL_20_MHZ_VAL			(0x1)
#define FSEL_24_MHZ_VAL			(0x2)
#define FSEL_26_MHZ_VAL			(0x3)
#define FSEL_48_MHZ_VAL			(0x2)

#define EXYNOS_USB_PHY_CFG_PLLCFG0	(0x8)
#define PHY_CFG_PLL_FB_DIV_19_8_MASK	GENMASK(19, 8)
#define DIV_19_8_19_2_MHZ_VAL		(0x170)
#define DIV_19_8_20_MHZ_VAL		(0x160)
#define DIV_19_8_24_MHZ_VAL		(0x120)
#define DIV_19_8_26_MHZ_VAL		(0x107)
#define DIV_19_8_48_MHZ_VAL		(0x120)

#define EXYNOS_USB_PHY_CFG_PLLCFG1	(0xc)
#define EXYNOS_PHY_CFG_PLL_FB_DIV_11_8_MASK	GENMASK(11, 8)
#define EXYNOS_DIV_11_8_19_2_MHZ_VAL	(0x0)
#define EXYNOS_DIV_11_8_20_MHZ_VAL	(0x0)
#define EXYNOS_DIV_11_8_24_MHZ_VAL	(0x0)
#define EXYNOS_DIV_11_8_26_MHZ_VAL	(0x0)
#define EXYNOS_DIV_11_8_48_MHZ_VAL	(0x1)

#define EXYNOS_PHY_CFG_TX		(0x14)
#define EXYNOS_PHY_CFG_TX_FSLS_VREF_TUNE_MASK	GENMASK(2, 1)

#define EXYNOS_USB_PHY_UTMI_TESTSE	(0x20)
#define TEST_IDDQ			BIT(6)

#define QCOM_USB_PHY_UTMI_CTRL0		(0x3c)
#define SLEEPM				BIT(0)
#define OPMODE_MASK			GENMASK(4, 3)
#define OPMODE_NONDRIVING		BIT(3)

#define QCOM_USB_PHY_UTMI_CTRL5		(0x50)
#define POR				BIT(1)

#define QCOM_USB_PHY_HS_PHY_CTRL_COMMON0	(0x54)
#define PHY_ENABLE			BIT(0)
#define SIDDQ_SEL			BIT(1)
#define SIDDQ				BIT(2)
#define RETENABLEN			BIT(3)
#define FSEL_MASK			GENMASK(6, 4)
#define FSEL_19_2_MHZ_VAL		(0x0)
#define FSEL_38_4_MHZ_VAL		(0x4)

#define QCOM_USB_PHY_CFG_CTRL_1		(0x58)
#define PHY_CFG_PLL_CPBIAS_CNTRL_MASK	GENMASK(7, 1)

#define QCOM_USB_PHY_CFG_CTRL_2		(0x5c)
#define PHY_CFG_PLL_FB_DIV_7_0_MASK	GENMASK(7, 0)
#define DIV_7_0_19_2_MHZ_VAL		(0x90)
#define DIV_7_0_38_4_MHZ_VAL		(0xc8)

#define QCOM_USB_PHY_CFG_CTRL_3		(0x60)
#define PHY_CFG_PLL_FB_DIV_11_8_MASK	GENMASK(3, 0)
#define DIV_11_8_19_2_MHZ_VAL		(0x1)
#define DIV_11_8_38_4_MHZ_VAL		(0x0)

#define PHY_CFG_PLL_REF_DIV		GENMASK(7, 4)
#define PLL_REF_DIV_VAL			(0x0)

#define QCOM_USB_PHY_HS_PHY_CTRL2	(0x64)
#define VBUSVLDEXT0			BIT(0)
#define USB2_SUSPEND_N			BIT(2)
#define USB2_SUSPEND_N_SEL		BIT(3)
#define VBUS_DET_EXT_SEL		BIT(4)

#define QCOM_USB_PHY_CFG_CTRL_4		(0x68)
#define PHY_CFG_PLL_GMP_CNTRL_MASK	GENMASK(1, 0)
#define PHY_CFG_PLL_INT_CNTRL_MASK	GENMASK(7, 2)

#define QCOM_USB_PHY_CFG_CTRL_5		(0x6c)
#define PHY_CFG_PLL_PROP_CNTRL_MASK	GENMASK(4, 0)
#define PHY_CFG_PLL_VREF_TUNE_MASK	GENMASK(7, 6)

#define QCOM_USB_PHY_CFG_CTRL_6		(0x70)
#define PHY_CFG_PLL_VCO_CNTRL_MASK	GENMASK(2, 0)

#define QCOM_USB_PHY_CFG_CTRL_7		(0x74)

#define QCOM_USB_PHY_CFG_CTRL_8		(0x78)
#define PHY_CFG_TX_FSLS_VREF_TUNE_MASK	GENMASK(1, 0)
#define PHY_CFG_TX_FSLS_VREG_BYPASS	BIT(2)
#define PHY_CFG_TX_HS_VREF_TUNE_MASK	GENMASK(5, 3)
#define PHY_CFG_TX_HS_XV_TUNE_MASK	GENMASK(7, 6)

#define QCOM_USB_PHY_CFG_CTRL_9		(0x7c)
#define PHY_CFG_TX_PREEMP_TUNE_MASK	GENMASK(2, 0)
#define PHY_CFG_TX_RES_TUNE_MASK	GENMASK(4, 3)
#define PHY_CFG_TX_RISE_TUNE_MASK	GENMASK(6, 5)
#define PHY_CFG_RCAL_BYPASS		BIT(7)

#define QCOM_USB_PHY_CFG_CTRL_10	(0x80)

#define QCOM_USB_PHY_CFG0		(0x94)
#define DATAPATH_CTRL_OVERRIDE_EN	BIT(0)
#define CMN_CTRL_OVERRIDE_EN		BIT(1)

#define QCOM_UTMI_PHY_CMN_CTRL0		(0x98)
#define TESTBURNIN			BIT(6)

#define QCOM_USB_PHY_FSEL_SEL		(0xb8)
#define FSEL_SEL			BIT(0)

#define QCOM_USB_PHY_APB_ACCESS_CMD	(0x130)
#define RW_ACCESS			BIT(0)
#define APB_START_CMD			BIT(1)
#define APB_LOGIC_RESET			BIT(2)

#define QCOM_USB_PHY_APB_ACCESS_STATUS	(0x134)
#define ACCESS_DONE			BIT(0)
#define TIMED_OUT			BIT(1)
#define ACCESS_ERROR			BIT(2)
#define ACCESS_IN_PROGRESS		BIT(3)

#define QCOM_USB_PHY_APB_ADDRESS	(0x138)
#define APB_REG_ADDR_MASK		GENMASK(7, 0)

#define QCOM_USB_PHY_APB_WRDATA_LSB	(0x13c)
#define APB_REG_WRDATA_7_0_MASK		GENMASK(3, 0)

#define QCOM_USB_PHY_APB_WRDATA_MSB	(0x140)
#define APB_REG_WRDATA_15_8_MASK	GENMASK(7, 4)

#define QCOM_USB_PHY_APB_RDDATA_LSB	(0x144)
#define APB_REG_RDDATA_7_0_MASK		GENMASK(3, 0)

#define QCOM_USB_PHY_APB_RDDATA_MSB	(0x148)
#define APB_REG_RDDATA_15_8_MASK	GENMASK(7, 4)

static const char * const eusb2_hsphy_vreg_names[] = {
	"vdd", "vdda12",
};

#define EUSB2_NUM_VREGS		ARRAY_SIZE(eusb2_hsphy_vreg_names)

struct snps_eusb2_phy_drvdata {
	int (*phy_init)(struct phy *p);
	const char * const *clk_names;
	int num_clks;
};

struct snps_eusb2_hsphy {
	struct phy *phy;
	void __iomem *base;

	struct clk *ref_clk;
	struct clk_bulk_data *clks;
	struct reset_control *phy_reset;

	struct regulator_bulk_data vregs[EUSB2_NUM_VREGS];

	enum phy_mode mode;

	struct phy *repeater;

	const struct snps_eusb2_phy_drvdata *data;
};

static int snps_eusb2_hsphy_set_mode(struct phy *p, enum phy_mode mode, int submode)
{
	struct snps_eusb2_hsphy *phy = phy_get_drvdata(p);

	phy->mode = mode;

	return phy_set_mode_ext(phy->repeater, mode, submode);
}

static void snps_eusb2_hsphy_write_mask(void __iomem *base, u32 offset,
					u32 mask, u32 val)
{
	u32 reg;

	reg = readl_relaxed(base + offset);
	reg &= ~mask;
	reg |= val & mask;
	writel_relaxed(reg, base + offset);

	/* Ensure above write is completed */
	readl_relaxed(base + offset);
}

static void qcom_eusb2_default_parameters(struct snps_eusb2_hsphy *phy)
{
	/* default parameters: tx pre-emphasis */
	snps_eusb2_hsphy_write_mask(phy->base, QCOM_USB_PHY_CFG_CTRL_9,
				    PHY_CFG_TX_PREEMP_TUNE_MASK,
				    FIELD_PREP(PHY_CFG_TX_PREEMP_TUNE_MASK, 0));

	/* tx rise/fall time */
	snps_eusb2_hsphy_write_mask(phy->base, QCOM_USB_PHY_CFG_CTRL_9,
				    PHY_CFG_TX_RISE_TUNE_MASK,
				    FIELD_PREP(PHY_CFG_TX_RISE_TUNE_MASK, 0x2));

	/* source impedance adjustment */
	snps_eusb2_hsphy_write_mask(phy->base, QCOM_USB_PHY_CFG_CTRL_9,
				    PHY_CFG_TX_RES_TUNE_MASK,
				    FIELD_PREP(PHY_CFG_TX_RES_TUNE_MASK, 0x1));

	/* dc voltage level adjustement */
	snps_eusb2_hsphy_write_mask(phy->base, QCOM_USB_PHY_CFG_CTRL_8,
				    PHY_CFG_TX_HS_VREF_TUNE_MASK,
				    FIELD_PREP(PHY_CFG_TX_HS_VREF_TUNE_MASK, 0x3));

	/* transmitter HS crossover adjustement */
	snps_eusb2_hsphy_write_mask(phy->base, QCOM_USB_PHY_CFG_CTRL_8,
				    PHY_CFG_TX_HS_XV_TUNE_MASK,
				    FIELD_PREP(PHY_CFG_TX_HS_XV_TUNE_MASK, 0x0));
}

struct snps_eusb2_ref_clk {
	unsigned long freq;
	u32 fsel_val;
	u32 div_7_0_val;
	u32 div_11_8_val;
};

static const struct snps_eusb2_ref_clk exynos_eusb2_ref_clk[] = {
	{ 19200000, FSEL_19_2_MHZ_VAL, DIV_19_8_19_2_MHZ_VAL, EXYNOS_DIV_11_8_19_2_MHZ_VAL },
	{ 20000000, FSEL_20_MHZ_VAL, DIV_19_8_20_MHZ_VAL, EXYNOS_DIV_11_8_20_MHZ_VAL },
	{ 24000000, FSEL_24_MHZ_VAL, DIV_19_8_24_MHZ_VAL, EXYNOS_DIV_11_8_24_MHZ_VAL },
	{ 26000000, FSEL_26_MHZ_VAL, DIV_19_8_26_MHZ_VAL, EXYNOS_DIV_11_8_26_MHZ_VAL },
	{ 48000000, FSEL_48_MHZ_VAL, DIV_19_8_48_MHZ_VAL, EXYNOS_DIV_11_8_48_MHZ_VAL },
};

static int exynos_eusb2_ref_clk_init(struct snps_eusb2_hsphy *phy)
{
	const struct snps_eusb2_ref_clk *config = NULL;
	unsigned long ref_clk_freq = clk_get_rate(phy->ref_clk);

	for (int i = 0; i < ARRAY_SIZE(exynos_eusb2_ref_clk); i++) {
		if (exynos_eusb2_ref_clk[i].freq == ref_clk_freq) {
			config = &exynos_eusb2_ref_clk[i];
			break;
		}
	}

	if (!config) {
		dev_err(&phy->phy->dev, "unsupported ref_clk_freq:%lu\n", ref_clk_freq);
		return -EINVAL;
	}

	snps_eusb2_hsphy_write_mask(phy->base, EXYNOS_USB_PHY_HS_PHY_CTRL_COMMON,
				    FSEL_MASK,
				    FIELD_PREP(FSEL_MASK, config->fsel_val));

	snps_eusb2_hsphy_write_mask(phy->base, EXYNOS_USB_PHY_CFG_PLLCFG0,
				    PHY_CFG_PLL_FB_DIV_19_8_MASK,
				    FIELD_PREP(PHY_CFG_PLL_FB_DIV_19_8_MASK,
					       config->div_7_0_val));

	snps_eusb2_hsphy_write_mask(phy->base, EXYNOS_USB_PHY_CFG_PLLCFG1,
				    EXYNOS_PHY_CFG_PLL_FB_DIV_11_8_MASK,
				    config->div_11_8_val);
	return 0;
}

static const struct snps_eusb2_ref_clk qcom_eusb2_ref_clk[] = {
	{ 19200000, FSEL_19_2_MHZ_VAL, DIV_7_0_19_2_MHZ_VAL, DIV_11_8_19_2_MHZ_VAL },
	{ 38400000, FSEL_38_4_MHZ_VAL, DIV_7_0_38_4_MHZ_VAL, DIV_11_8_38_4_MHZ_VAL },
};

static int qcom_eusb2_ref_clk_init(struct snps_eusb2_hsphy *phy)
{
	const struct snps_eusb2_ref_clk *config = NULL;
	unsigned long ref_clk_freq = clk_get_rate(phy->ref_clk);

	for (int i = 0; i < ARRAY_SIZE(qcom_eusb2_ref_clk); i++) {
		if (qcom_eusb2_ref_clk[i].freq == ref_clk_freq) {
			config = &qcom_eusb2_ref_clk[i];
			break;
		}
	}

	if (!config) {
		dev_err(&phy->phy->dev, "unsupported ref_clk_freq:%lu\n", ref_clk_freq);
		return -EINVAL;
	}

	snps_eusb2_hsphy_write_mask(phy->base, QCOM_USB_PHY_HS_PHY_CTRL_COMMON0,
				    FSEL_MASK,
				    FIELD_PREP(FSEL_MASK, config->fsel_val));

	snps_eusb2_hsphy_write_mask(phy->base, QCOM_USB_PHY_CFG_CTRL_2,
				    PHY_CFG_PLL_FB_DIV_7_0_MASK,
				    config->div_7_0_val);

	snps_eusb2_hsphy_write_mask(phy->base, QCOM_USB_PHY_CFG_CTRL_3,
				    PHY_CFG_PLL_FB_DIV_11_8_MASK,
				    config->div_11_8_val);

	snps_eusb2_hsphy_write_mask(phy->base, QCOM_USB_PHY_CFG_CTRL_3,
				    PHY_CFG_PLL_REF_DIV, PLL_REF_DIV_VAL);

	return 0;
}

static int exynos_snps_eusb2_hsphy_init(struct phy *p)
{
	struct snps_eusb2_hsphy *phy = phy_get_drvdata(p);
	int ret;

	snps_eusb2_hsphy_write_mask(phy->base, EXYNOS_USB_PHY_HS_PHY_CTRL_RST,
				    USB_PHY_RST_MASK | UTMI_PORT_RST_MASK,
				    USB_PHY_RST_MASK | UTMI_PORT_RST_MASK);
	fsleep(50); /* required after holding phy in reset */

	snps_eusb2_hsphy_write_mask(phy->base, EXYNOS_USB_PHY_HS_PHY_CTRL_COMMON,
				    RPTR_MODE, RPTR_MODE);

	/* update ref_clk related registers */
	ret = exynos_eusb2_ref_clk_init(phy);
	if (ret)
		return ret;

	/* default parameter: tx fsls-vref */
	snps_eusb2_hsphy_write_mask(phy->base, EXYNOS_PHY_CFG_TX,
				    EXYNOS_PHY_CFG_TX_FSLS_VREF_TUNE_MASK,
				    FIELD_PREP(EXYNOS_PHY_CFG_TX_FSLS_VREF_TUNE_MASK, 0x0));

	snps_eusb2_hsphy_write_mask(phy->base, EXYNOS_USB_PHY_UTMI_TESTSE,
				    TEST_IDDQ, 0);
	fsleep(10); /* required after releasing test_iddq */

	snps_eusb2_hsphy_write_mask(phy->base, EXYNOS_USB_PHY_HS_PHY_CTRL_RST,
				    USB_PHY_RST_MASK, 0);

	snps_eusb2_hsphy_write_mask(phy->base, EXYNOS_USB_PHY_HS_PHY_CTRL_COMMON,
				    PHY_ENABLE, PHY_ENABLE);

	snps_eusb2_hsphy_write_mask(phy->base, EXYNOS_USB_PHY_HS_PHY_CTRL_RST,
				    UTMI_PORT_RST_MASK, 0);

	return 0;
}

static const char * const exynos_eusb2_hsphy_clock_names[] = {
	"ref", "bus", "ctrl",
};

static const struct snps_eusb2_phy_drvdata exynos2200_snps_eusb2_phy = {
	.phy_init	= exynos_snps_eusb2_hsphy_init,
	.clk_names	= exynos_eusb2_hsphy_clock_names,
	.num_clks	= ARRAY_SIZE(exynos_eusb2_hsphy_clock_names),
};

static int qcom_snps_eusb2_hsphy_init(struct phy *p)
{
	struct snps_eusb2_hsphy *phy = phy_get_drvdata(p);
	int ret;

	snps_eusb2_hsphy_write_mask(phy->base, QCOM_USB_PHY_CFG0,
				    CMN_CTRL_OVERRIDE_EN, CMN_CTRL_OVERRIDE_EN);

	snps_eusb2_hsphy_write_mask(phy->base, QCOM_USB_PHY_UTMI_CTRL5, POR, POR);

	snps_eusb2_hsphy_write_mask(phy->base, QCOM_USB_PHY_HS_PHY_CTRL_COMMON0,
				    PHY_ENABLE | RETENABLEN, PHY_ENABLE | RETENABLEN);

	snps_eusb2_hsphy_write_mask(phy->base, QCOM_USB_PHY_APB_ACCESS_CMD,
				    APB_LOGIC_RESET, APB_LOGIC_RESET);

	snps_eusb2_hsphy_write_mask(phy->base, QCOM_UTMI_PHY_CMN_CTRL0, TESTBURNIN, 0);

	snps_eusb2_hsphy_write_mask(phy->base, QCOM_USB_PHY_FSEL_SEL,
				    FSEL_SEL, FSEL_SEL);

	/* update ref_clk related registers */
	ret = qcom_eusb2_ref_clk_init(phy);
	if (ret)
		return ret;

	snps_eusb2_hsphy_write_mask(phy->base, QCOM_USB_PHY_CFG_CTRL_1,
				    PHY_CFG_PLL_CPBIAS_CNTRL_MASK,
				    FIELD_PREP(PHY_CFG_PLL_CPBIAS_CNTRL_MASK, 0x1));

	snps_eusb2_hsphy_write_mask(phy->base, QCOM_USB_PHY_CFG_CTRL_4,
				    PHY_CFG_PLL_INT_CNTRL_MASK,
				    FIELD_PREP(PHY_CFG_PLL_INT_CNTRL_MASK, 0x8));

	snps_eusb2_hsphy_write_mask(phy->base, QCOM_USB_PHY_CFG_CTRL_4,
				    PHY_CFG_PLL_GMP_CNTRL_MASK,
				    FIELD_PREP(PHY_CFG_PLL_GMP_CNTRL_MASK, 0x1));

	snps_eusb2_hsphy_write_mask(phy->base, QCOM_USB_PHY_CFG_CTRL_5,
				    PHY_CFG_PLL_PROP_CNTRL_MASK,
				    FIELD_PREP(PHY_CFG_PLL_PROP_CNTRL_MASK, 0x10));

	snps_eusb2_hsphy_write_mask(phy->base, QCOM_USB_PHY_CFG_CTRL_6,
				    PHY_CFG_PLL_VCO_CNTRL_MASK,
				    FIELD_PREP(PHY_CFG_PLL_VCO_CNTRL_MASK, 0x0));

	snps_eusb2_hsphy_write_mask(phy->base, QCOM_USB_PHY_CFG_CTRL_5,
				    PHY_CFG_PLL_VREF_TUNE_MASK,
				    FIELD_PREP(PHY_CFG_PLL_VREF_TUNE_MASK, 0x1));

	snps_eusb2_hsphy_write_mask(phy->base, QCOM_USB_PHY_HS_PHY_CTRL2,
				    VBUS_DET_EXT_SEL, VBUS_DET_EXT_SEL);

	/* set default parameters */
	qcom_eusb2_default_parameters(phy);

	snps_eusb2_hsphy_write_mask(phy->base, QCOM_USB_PHY_HS_PHY_CTRL2,
				    USB2_SUSPEND_N_SEL | USB2_SUSPEND_N,
				    USB2_SUSPEND_N_SEL | USB2_SUSPEND_N);

	snps_eusb2_hsphy_write_mask(phy->base, QCOM_USB_PHY_UTMI_CTRL0, SLEEPM, SLEEPM);

	snps_eusb2_hsphy_write_mask(phy->base, QCOM_USB_PHY_HS_PHY_CTRL_COMMON0,
				    SIDDQ_SEL, SIDDQ_SEL);

	snps_eusb2_hsphy_write_mask(phy->base, QCOM_USB_PHY_HS_PHY_CTRL_COMMON0,
				    SIDDQ, 0);

	snps_eusb2_hsphy_write_mask(phy->base, QCOM_USB_PHY_UTMI_CTRL5, POR, 0);

	snps_eusb2_hsphy_write_mask(phy->base, QCOM_USB_PHY_HS_PHY_CTRL2,
				    USB2_SUSPEND_N_SEL, 0);

	return 0;
}

static const char * const qcom_eusb2_hsphy_clock_names[] = {
	"ref",
};

static const struct snps_eusb2_phy_drvdata sm8550_snps_eusb2_phy = {
	.phy_init	= qcom_snps_eusb2_hsphy_init,
	.clk_names      = qcom_eusb2_hsphy_clock_names,
	.num_clks       = ARRAY_SIZE(qcom_eusb2_hsphy_clock_names),
};

static int snps_eusb2_hsphy_init(struct phy *p)
{
	struct snps_eusb2_hsphy *phy = phy_get_drvdata(p);
	int ret;

	ret = regulator_bulk_enable(ARRAY_SIZE(phy->vregs), phy->vregs);
	if (ret)
		return ret;

	ret = phy_init(phy->repeater);
	if (ret) {
		dev_err(&p->dev, "repeater init failed. %d\n", ret);
		goto disable_vreg;
	}

	ret = clk_bulk_prepare_enable(phy->data->num_clks, phy->clks);
	if (ret) {
		dev_err(&p->dev, "failed to enable ref clock, %d\n", ret);
		goto disable_vreg;
	}

	ret = reset_control_assert(phy->phy_reset);
	if (ret) {
		dev_err(&p->dev, "failed to assert phy_reset, %d\n", ret);
		goto disable_ref_clk;
	}

	usleep_range(100, 150);

	ret = reset_control_deassert(phy->phy_reset);
	if (ret) {
		dev_err(&p->dev, "failed to de-assert phy_reset, %d\n", ret);
		goto disable_ref_clk;
	}

	ret = phy->data->phy_init(p);
	if (ret)
		goto disable_ref_clk;

	return 0;

disable_ref_clk:
	clk_bulk_disable_unprepare(phy->data->num_clks, phy->clks);

disable_vreg:
	regulator_bulk_disable(ARRAY_SIZE(phy->vregs), phy->vregs);

	return ret;
}

static int snps_eusb2_hsphy_exit(struct phy *p)
{
	struct snps_eusb2_hsphy *phy = phy_get_drvdata(p);

	clk_disable_unprepare(phy->ref_clk);

	regulator_bulk_disable(ARRAY_SIZE(phy->vregs), phy->vregs);

	phy_exit(phy->repeater);

	return 0;
}

static const struct phy_ops snps_eusb2_hsphy_ops = {
	.init		= snps_eusb2_hsphy_init,
	.exit		= snps_eusb2_hsphy_exit,
	.set_mode	= snps_eusb2_hsphy_set_mode,
	.owner		= THIS_MODULE,
};

static int snps_eusb2_hsphy_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct device_node *np = dev->of_node;
	struct snps_eusb2_hsphy *phy;
	struct phy_provider *phy_provider;
	struct phy *generic_phy;
	int ret, i;
	int num;

	phy = devm_kzalloc(dev, sizeof(*phy), GFP_KERNEL);
	if (!phy)
		return -ENOMEM;

	phy->data = device_get_match_data(dev);
	if (!phy->data)
		return -EINVAL;

	phy->base = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(phy->base))
		return PTR_ERR(phy->base);

	phy->phy_reset = devm_reset_control_get_optional_exclusive(dev, NULL);
	if (IS_ERR(phy->phy_reset))
		return PTR_ERR(phy->phy_reset);

	phy->clks = devm_kcalloc(dev, phy->data->num_clks, sizeof(*phy->clks),
				 GFP_KERNEL);
	if (!phy->clks)
		return -ENOMEM;

	for (int i = 0; i < phy->data->num_clks; ++i)
		phy->clks[i].id = phy->data->clk_names[i];

	ret = devm_clk_bulk_get(dev, phy->data->num_clks, phy->clks);
	if (ret)
		return dev_err_probe(dev, ret,
				     "failed to get phy clock(s)\n");

	phy->ref_clk = NULL;
	for (int i = 0; i < phy->data->num_clks; ++i) {
		if (!strcmp(phy->clks[i].id, "ref")) {
			phy->ref_clk = phy->clks[i].clk;
			break;
		}
	}

	if (IS_ERR_OR_NULL(phy->ref_clk)) {
		ret = phy->ref_clk ? PTR_ERR(phy->ref_clk) : -ENOENT;
		return dev_err_probe(dev, ret,
				     "failed to get ref clk\n");
	}

	num = ARRAY_SIZE(phy->vregs);
	for (i = 0; i < num; i++)
		phy->vregs[i].supply = eusb2_hsphy_vreg_names[i];

	ret = devm_regulator_bulk_get(dev, num, phy->vregs);
	if (ret)
		return dev_err_probe(dev, ret,
				     "failed to get regulator supplies\n");

	phy->repeater = devm_of_phy_optional_get(dev, np, 0);
	if (IS_ERR(phy->repeater))
		return dev_err_probe(dev, PTR_ERR(phy->repeater),
				     "failed to get repeater\n");

	generic_phy = devm_phy_create(dev, NULL, &snps_eusb2_hsphy_ops);
	if (IS_ERR(generic_phy)) {
		dev_err(dev, "failed to create phy %d\n", ret);
		return PTR_ERR(generic_phy);
	}

	dev_set_drvdata(dev, phy);
	phy_set_drvdata(generic_phy, phy);

	phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
	if (IS_ERR(phy_provider))
		return PTR_ERR(phy_provider);

	dev_info(dev, "Registered Snps-eUSB2 phy\n");

	return 0;
}

static const struct of_device_id snps_eusb2_hsphy_of_match_table[] = {
	{
		.compatible = "qcom,sm8550-snps-eusb2-phy",
		.data = &sm8550_snps_eusb2_phy,
	}, {
		.compatible = "samsung,exynos2200-eusb2-phy",
		.data = &exynos2200_snps_eusb2_phy,
	}, { },
};
MODULE_DEVICE_TABLE(of, snps_eusb2_hsphy_of_match_table);

static struct platform_driver snps_eusb2_hsphy_driver = {
	.probe		= snps_eusb2_hsphy_probe,
	.driver = {
		.name	= "snps-eusb2-hsphy",
		.of_match_table = snps_eusb2_hsphy_of_match_table,
	},
};

module_platform_driver(snps_eusb2_hsphy_driver);
MODULE_DESCRIPTION("Synopsys eUSB2 HS PHY driver");
MODULE_LICENSE("GPL");