Contributors: 5
Author Tokens Token Proportion Commits Commit Proportion
Daniel Scally 713 57.78% 2 11.11%
Hans de Goede 282 22.85% 12 66.67%
Bingbu Cao 219 17.75% 1 5.56%
Andy Shevchenko 16 1.30% 2 11.11%
ChiYuan Huang 4 0.32% 1 5.56%
Total 1234 18


// SPDX-License-Identifier: GPL-2.0
/* Author: Dan Scally <djrscally@gmail.com> */

#include <linux/acpi.h>
#include <linux/clkdev.h>
#include <linux/clk-provider.h>
#include <linux/device.h>
#include <linux/gpio/consumer.h>
#include <linux/platform_data/x86/int3472.h>
#include <linux/regulator/driver.h>
#include <linux/slab.h>

/*
 * 82c0d13a-78c5-4244-9bb1-eb8b539a8d11
 * This _DSM GUID allows controlling the sensor clk when it is not controlled
 * through a GPIO.
 */
static const guid_t img_clk_guid =
	GUID_INIT(0x82c0d13a, 0x78c5, 0x4244,
		  0x9b, 0xb1, 0xeb, 0x8b, 0x53, 0x9a, 0x8d, 0x11);

static void skl_int3472_enable_clk(struct int3472_clock *clk, int enable)
{
	struct int3472_discrete_device *int3472 = to_int3472_device(clk);
	union acpi_object args[3];
	union acpi_object argv4;

	if (clk->ena_gpio) {
		gpiod_set_value_cansleep(clk->ena_gpio, enable);
		return;
	}

	args[0].integer.type = ACPI_TYPE_INTEGER;
	args[0].integer.value = clk->imgclk_index;
	args[1].integer.type = ACPI_TYPE_INTEGER;
	args[1].integer.value = enable;
	args[2].integer.type = ACPI_TYPE_INTEGER;
	args[2].integer.value = 1;

	argv4.type = ACPI_TYPE_PACKAGE;
	argv4.package.count = 3;
	argv4.package.elements = args;

	acpi_evaluate_dsm(acpi_device_handle(int3472->adev), &img_clk_guid,
			  0, 1, &argv4);
}

/*
 * The regulators have to have .ops to be valid, but the only ops we actually
 * support are .enable and .disable which are handled via .ena_gpiod. Pass an
 * empty struct to clear the check without lying about capabilities.
 */
static const struct regulator_ops int3472_gpio_regulator_ops;

static int skl_int3472_clk_prepare(struct clk_hw *hw)
{
	skl_int3472_enable_clk(to_int3472_clk(hw), 1);
	return 0;
}

static void skl_int3472_clk_unprepare(struct clk_hw *hw)
{
	skl_int3472_enable_clk(to_int3472_clk(hw), 0);
}

static int skl_int3472_clk_enable(struct clk_hw *hw)
{
	/*
	 * We're just turning a GPIO on to enable the clock, which operation
	 * has the potential to sleep. Given .enable() cannot sleep, but
	 * .prepare() can, we toggle the GPIO in .prepare() instead. Thus,
	 * nothing to do here.
	 */
	return 0;
}

static void skl_int3472_clk_disable(struct clk_hw *hw)
{
	/* Likewise, nothing to do here... */
}

static unsigned int skl_int3472_get_clk_frequency(struct int3472_discrete_device *int3472)
{
	union acpi_object *obj;
	unsigned int freq;

	obj = skl_int3472_get_acpi_buffer(int3472->sensor, "SSDB");
	if (IS_ERR(obj))
		return 0; /* report rate as 0 on error */

	if (obj->buffer.length < CIO2_SENSOR_SSDB_MCLKSPEED_OFFSET + sizeof(u32)) {
		dev_err(int3472->dev, "The buffer is too small\n");
		kfree(obj);
		return 0;
	}

	freq = *(u32 *)(obj->buffer.pointer + CIO2_SENSOR_SSDB_MCLKSPEED_OFFSET);

	kfree(obj);
	return freq;
}

static unsigned long skl_int3472_clk_recalc_rate(struct clk_hw *hw,
						 unsigned long parent_rate)
{
	struct int3472_clock *clk = to_int3472_clk(hw);

	return clk->frequency;
}

static const struct clk_ops skl_int3472_clock_ops = {
	.prepare = skl_int3472_clk_prepare,
	.unprepare = skl_int3472_clk_unprepare,
	.enable = skl_int3472_clk_enable,
	.disable = skl_int3472_clk_disable,
	.recalc_rate = skl_int3472_clk_recalc_rate,
};

static int skl_int3472_register_clock(struct int3472_discrete_device *int3472)
{
	struct acpi_device *adev = int3472->adev;
	struct clk_init_data init = {
		.ops = &skl_int3472_clock_ops,
		.flags = CLK_GET_RATE_NOCACHE,
	};
	int ret;

	init.name = kasprintf(GFP_KERNEL, "%s-clk", acpi_dev_name(adev));
	if (!init.name)
		return -ENOMEM;

	int3472->clock.frequency = skl_int3472_get_clk_frequency(int3472);
	int3472->clock.clk_hw.init = &init;
	int3472->clock.clk = clk_register(&adev->dev, &int3472->clock.clk_hw);
	if (IS_ERR(int3472->clock.clk)) {
		ret = PTR_ERR(int3472->clock.clk);
		goto out_free_init_name;
	}

	int3472->clock.cl = clkdev_create(int3472->clock.clk, NULL, int3472->sensor_name);
	if (!int3472->clock.cl) {
		ret = -ENOMEM;
		goto err_unregister_clk;
	}

	kfree(init.name);
	return 0;

err_unregister_clk:
	clk_unregister(int3472->clock.clk);
out_free_init_name:
	kfree(init.name);
	return ret;
}

int skl_int3472_register_dsm_clock(struct int3472_discrete_device *int3472)
{
	if (int3472->clock.cl)
		return 0; /* A GPIO controlled clk has already been registered */

	if (!acpi_check_dsm(int3472->adev->handle, &img_clk_guid, 0, BIT(1)))
		return 0; /* DSM clock control is not available */

	return skl_int3472_register_clock(int3472);
}

int skl_int3472_register_gpio_clock(struct int3472_discrete_device *int3472,
				    struct gpio_desc *gpio)
{
	if (int3472->clock.cl)
		return -EBUSY;

	int3472->clock.ena_gpio = gpio;

	return skl_int3472_register_clock(int3472);
}

void skl_int3472_unregister_clock(struct int3472_discrete_device *int3472)
{
	if (!int3472->clock.cl)
		return;

	clkdev_drop(int3472->clock.cl);
	clk_unregister(int3472->clock.clk);
	gpiod_put(int3472->clock.ena_gpio);
}

int skl_int3472_register_regulator(struct int3472_discrete_device *int3472,
				   struct gpio_desc *gpio,
				   unsigned int enable_time,
				   const char *supply_name,
				   const char *second_sensor)
{
	struct regulator_init_data init_data = { };
	struct int3472_gpio_regulator *regulator;
	struct regulator_config cfg = { };
	int i, j;

	if (int3472->n_regulator_gpios >= INT3472_MAX_REGULATORS) {
		dev_err(int3472->dev, "Too many regulators mapped\n");
		return -EINVAL;
	}

	if (strlen(supply_name) >= GPIO_SUPPLY_NAME_LENGTH) {
		dev_err(int3472->dev, "supply-name '%s' length too long\n", supply_name);
		return -E2BIG;
	}

	regulator = &int3472->regulators[int3472->n_regulator_gpios];
	string_upper(regulator->supply_name_upper, supply_name);

	/* The below code assume that map-count is 2 (upper- and lower-case) */
	static_assert(GPIO_REGULATOR_SUPPLY_MAP_COUNT == 2);

	for (i = 0, j = 0; i < GPIO_REGULATOR_SUPPLY_MAP_COUNT; i++) {
		const char *supply = i ? regulator->supply_name_upper : supply_name;

		regulator->supply_map[j].supply = supply;
		regulator->supply_map[j].dev_name = int3472->sensor_name;
		j++;

		if (second_sensor) {
			regulator->supply_map[j].supply = supply;
			regulator->supply_map[j].dev_name = second_sensor;
			j++;
		}
	}

	init_data.constraints.valid_ops_mask = REGULATOR_CHANGE_STATUS;
	init_data.consumer_supplies = regulator->supply_map;
	init_data.num_consumer_supplies = j;

	snprintf(regulator->regulator_name, sizeof(regulator->regulator_name), "%s-%s",
		 acpi_dev_name(int3472->adev), supply_name);

	regulator->rdesc = INT3472_REGULATOR(regulator->regulator_name,
					     &int3472_gpio_regulator_ops,
					     enable_time, GPIO_REGULATOR_OFF_ON_DELAY);

	cfg.dev = &int3472->adev->dev;
	cfg.init_data = &init_data;
	cfg.ena_gpiod = gpio;

	regulator->rdev = regulator_register(int3472->dev, &regulator->rdesc, &cfg);
	if (IS_ERR(regulator->rdev))
		return PTR_ERR(regulator->rdev);

	int3472->regulators[int3472->n_regulator_gpios].ena_gpio = gpio;
	int3472->n_regulator_gpios++;
	return 0;
}

void skl_int3472_unregister_regulator(struct int3472_discrete_device *int3472)
{
	for (int i = 0; i < int3472->n_regulator_gpios; i++) {
		regulator_unregister(int3472->regulators[i].rdev);
		gpiod_put(int3472->regulators[i].ena_gpio);
	}
}