Contributors: 15
Author Tokens Token Proportion Commits Commit Proportion
Marc Zyngier 635 50.60% 14 35.00%
Oliver Upton 424 33.78% 8 20.00%
Jintack Lim 113 9.00% 1 2.50%
James Morse 32 2.55% 3 7.50%
Christoffer Dall 25 1.99% 3 7.50%
Mark Rutland 10 0.80% 2 5.00%
Ard Biesheuvel 4 0.32% 1 2.50%
gengdongjiu 2 0.16% 1 2.50%
Alexandru Elisei 2 0.16% 1 2.50%
Matt Evans 2 0.16% 1 2.50%
Thomas Gleixner 2 0.16% 1 2.50%
Andrew Jones 1 0.08% 1 2.50%
Björn Helgaas 1 0.08% 1 2.50%
Tian Tao 1 0.08% 1 2.50%
Jingyu Wang 1 0.08% 1 2.50%
Total 1255 40


// SPDX-License-Identifier: GPL-2.0-only
/*
 * Fault injection for both 32 and 64bit guests.
 *
 * Copyright (C) 2012,2013 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * Based on arch/arm/kvm/emulate.c
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

#include <linux/kvm_host.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_nested.h>
#include <asm/esr.h>

static unsigned int exception_target_el(struct kvm_vcpu *vcpu)
{
	/* If not nesting, EL1 is the only possible exception target */
	if (likely(!vcpu_has_nv(vcpu)))
		return PSR_MODE_EL1h;

	/*
	 * With NV, we need to pick between EL1 and EL2. Note that we
	 * never deal with a nesting exception here, hence never
	 * changing context, and the exception itself can be delayed
	 * until the next entry.
	 */
	switch(*vcpu_cpsr(vcpu) & PSR_MODE_MASK) {
	case PSR_MODE_EL2h:
	case PSR_MODE_EL2t:
		return PSR_MODE_EL2h;
	case PSR_MODE_EL1h:
	case PSR_MODE_EL1t:
		return PSR_MODE_EL1h;
	case PSR_MODE_EL0t:
		return vcpu_el2_tge_is_set(vcpu) ? PSR_MODE_EL2h : PSR_MODE_EL1h;
	default:
		BUG();
	}
}

static enum vcpu_sysreg exception_esr_elx(struct kvm_vcpu *vcpu)
{
	if (exception_target_el(vcpu) == PSR_MODE_EL2h)
		return ESR_EL2;

	return ESR_EL1;
}

static enum vcpu_sysreg exception_far_elx(struct kvm_vcpu *vcpu)
{
	if (exception_target_el(vcpu) == PSR_MODE_EL2h)
		return FAR_EL2;

	return FAR_EL1;
}

static void pend_sync_exception(struct kvm_vcpu *vcpu)
{
	if (exception_target_el(vcpu) == PSR_MODE_EL1h)
		kvm_pend_exception(vcpu, EXCEPT_AA64_EL1_SYNC);
	else
		kvm_pend_exception(vcpu, EXCEPT_AA64_EL2_SYNC);
}

static void pend_serror_exception(struct kvm_vcpu *vcpu)
{
	if (exception_target_el(vcpu) == PSR_MODE_EL1h)
		kvm_pend_exception(vcpu, EXCEPT_AA64_EL1_SERR);
	else
		kvm_pend_exception(vcpu, EXCEPT_AA64_EL2_SERR);
}

static bool __effective_sctlr2_bit(struct kvm_vcpu *vcpu, unsigned int idx)
{
	u64 sctlr2;

	if (!kvm_has_sctlr2(vcpu->kvm))
		return false;

	if (is_nested_ctxt(vcpu) &&
	    !(__vcpu_sys_reg(vcpu, HCRX_EL2) & HCRX_EL2_SCTLR2En))
		return false;

	if (exception_target_el(vcpu) == PSR_MODE_EL1h)
		sctlr2 = vcpu_read_sys_reg(vcpu, SCTLR2_EL1);
	else
		sctlr2 = vcpu_read_sys_reg(vcpu, SCTLR2_EL2);

	return sctlr2 & BIT(idx);
}

static bool effective_sctlr2_ease(struct kvm_vcpu *vcpu)
{
	return __effective_sctlr2_bit(vcpu, SCTLR2_EL1_EASE_SHIFT);
}

static bool effective_sctlr2_nmea(struct kvm_vcpu *vcpu)
{
	return __effective_sctlr2_bit(vcpu, SCTLR2_EL1_NMEA_SHIFT);
}

static void inject_abt64(struct kvm_vcpu *vcpu, bool is_iabt, unsigned long addr)
{
	unsigned long cpsr = *vcpu_cpsr(vcpu);
	bool is_aarch32 = vcpu_mode_is_32bit(vcpu);
	u64 esr = 0;

	/* This delight is brought to you by FEAT_DoubleFault2. */
	if (effective_sctlr2_ease(vcpu))
		pend_serror_exception(vcpu);
	else
		pend_sync_exception(vcpu);

	/*
	 * Build an {i,d}abort, depending on the level and the
	 * instruction set. Report an external synchronous abort.
	 */
	if (kvm_vcpu_trap_il_is32bit(vcpu))
		esr |= ESR_ELx_IL;

	/*
	 * Here, the guest runs in AArch64 mode when in EL1. If we get
	 * an AArch32 fault, it means we managed to trap an EL0 fault.
	 */
	if (is_aarch32 || (cpsr & PSR_MODE_MASK) == PSR_MODE_EL0t)
		esr |= (ESR_ELx_EC_IABT_LOW << ESR_ELx_EC_SHIFT);
	else
		esr |= (ESR_ELx_EC_IABT_CUR << ESR_ELx_EC_SHIFT);

	if (!is_iabt)
		esr |= ESR_ELx_EC_DABT_LOW << ESR_ELx_EC_SHIFT;

	esr |= ESR_ELx_FSC_EXTABT;

	vcpu_write_sys_reg(vcpu, addr, exception_far_elx(vcpu));
	vcpu_write_sys_reg(vcpu, esr, exception_esr_elx(vcpu));
}

static void inject_undef64(struct kvm_vcpu *vcpu)
{
	u64 esr = (ESR_ELx_EC_UNKNOWN << ESR_ELx_EC_SHIFT);

	pend_sync_exception(vcpu);

	/*
	 * Build an unknown exception, depending on the instruction
	 * set.
	 */
	if (kvm_vcpu_trap_il_is32bit(vcpu))
		esr |= ESR_ELx_IL;

	vcpu_write_sys_reg(vcpu, esr, exception_esr_elx(vcpu));
}

#define DFSR_FSC_EXTABT_LPAE	0x10
#define DFSR_FSC_EXTABT_nLPAE	0x08
#define DFSR_LPAE		BIT(9)
#define TTBCR_EAE		BIT(31)

static void inject_undef32(struct kvm_vcpu *vcpu)
{
	kvm_pend_exception(vcpu, EXCEPT_AA32_UND);
}

/*
 * Modelled after TakeDataAbortException() and TakePrefetchAbortException
 * pseudocode.
 */
static void inject_abt32(struct kvm_vcpu *vcpu, bool is_pabt, u32 addr)
{
	u64 far;
	u32 fsr;

	/* Give the guest an IMPLEMENTATION DEFINED exception */
	if (vcpu_read_sys_reg(vcpu, TCR_EL1) & TTBCR_EAE) {
		fsr = DFSR_LPAE | DFSR_FSC_EXTABT_LPAE;
	} else {
		/* no need to shuffle FS[4] into DFSR[10] as it's 0 */
		fsr = DFSR_FSC_EXTABT_nLPAE;
	}

	far = vcpu_read_sys_reg(vcpu, FAR_EL1);

	if (is_pabt) {
		kvm_pend_exception(vcpu, EXCEPT_AA32_IABT);
		far &= GENMASK(31, 0);
		far |= (u64)addr << 32;
		vcpu_write_sys_reg(vcpu, fsr, IFSR32_EL2);
	} else { /* !iabt */
		kvm_pend_exception(vcpu, EXCEPT_AA32_DABT);
		far &= GENMASK(63, 32);
		far |= addr;
		vcpu_write_sys_reg(vcpu, fsr, ESR_EL1);
	}

	vcpu_write_sys_reg(vcpu, far, FAR_EL1);
}

static void __kvm_inject_sea(struct kvm_vcpu *vcpu, bool iabt, u64 addr)
{
	if (vcpu_el1_is_32bit(vcpu))
		inject_abt32(vcpu, iabt, addr);
	else
		inject_abt64(vcpu, iabt, addr);
}

static bool kvm_sea_target_is_el2(struct kvm_vcpu *vcpu)
{
	if (__vcpu_sys_reg(vcpu, HCR_EL2) & (HCR_TGE | HCR_TEA))
		return true;

	if (!vcpu_mode_priv(vcpu))
		return false;

	return (*vcpu_cpsr(vcpu) & PSR_A_BIT) &&
	       (__vcpu_sys_reg(vcpu, HCRX_EL2) & HCRX_EL2_TMEA);
}

int kvm_inject_sea(struct kvm_vcpu *vcpu, bool iabt, u64 addr)
{
	lockdep_assert_held(&vcpu->mutex);

	if (is_nested_ctxt(vcpu) && kvm_sea_target_is_el2(vcpu))
		return kvm_inject_nested_sea(vcpu, iabt, addr);

	__kvm_inject_sea(vcpu, iabt, addr);
	return 1;
}

void kvm_inject_size_fault(struct kvm_vcpu *vcpu)
{
	unsigned long addr, esr;

	addr  = kvm_vcpu_get_fault_ipa(vcpu);
	addr |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);

	__kvm_inject_sea(vcpu, kvm_vcpu_trap_is_iabt(vcpu), addr);

	/*
	 * If AArch64 or LPAE, set FSC to 0 to indicate an Address
	 * Size Fault at level 0, as if exceeding PARange.
	 *
	 * Non-LPAE guests will only get the external abort, as there
	 * is no way to describe the ASF.
	 */
	if (vcpu_el1_is_32bit(vcpu) &&
	    !(vcpu_read_sys_reg(vcpu, TCR_EL1) & TTBCR_EAE))
		return;

	esr = vcpu_read_sys_reg(vcpu, exception_esr_elx(vcpu));
	esr &= ~GENMASK_ULL(5, 0);
	vcpu_write_sys_reg(vcpu, esr, exception_esr_elx(vcpu));
}

/**
 * kvm_inject_undefined - inject an undefined instruction into the guest
 * @vcpu: The vCPU in which to inject the exception
 *
 * It is assumed that this code is called from the VCPU thread and that the
 * VCPU therefore is not currently executing guest code.
 */
void kvm_inject_undefined(struct kvm_vcpu *vcpu)
{
	if (vcpu_el1_is_32bit(vcpu))
		inject_undef32(vcpu);
	else
		inject_undef64(vcpu);
}

static bool serror_is_masked(struct kvm_vcpu *vcpu)
{
	return (*vcpu_cpsr(vcpu) & PSR_A_BIT) && !effective_sctlr2_nmea(vcpu);
}

static bool kvm_serror_target_is_el2(struct kvm_vcpu *vcpu)
{
	if (is_hyp_ctxt(vcpu) || vcpu_el2_amo_is_set(vcpu))
		return true;

	if (!(__vcpu_sys_reg(vcpu, HCRX_EL2) & HCRX_EL2_TMEA))
		return false;

	/*
	 * In another example where FEAT_DoubleFault2 is entirely backwards,
	 * "masked" as it relates to the routing effects of HCRX_EL2.TMEA
	 * doesn't consider SCTLR2_EL1.NMEA. That is to say, even if EL1 asked
	 * for non-maskable SErrors, the EL2 bit takes priority if A is set.
	 */
	if (vcpu_mode_priv(vcpu))
		return *vcpu_cpsr(vcpu) & PSR_A_BIT;

	/*
	 * Otherwise SErrors are considered unmasked when taken from EL0 and
	 * NMEA is set.
	 */
	return serror_is_masked(vcpu);
}

static bool kvm_serror_undeliverable_at_el2(struct kvm_vcpu *vcpu)
{
	return !(vcpu_el2_tge_is_set(vcpu) || vcpu_el2_amo_is_set(vcpu));
}

int kvm_inject_serror_esr(struct kvm_vcpu *vcpu, u64 esr)
{
	lockdep_assert_held(&vcpu->mutex);

	if (is_nested_ctxt(vcpu) && kvm_serror_target_is_el2(vcpu))
		return kvm_inject_nested_serror(vcpu, esr);

	if (vcpu_is_el2(vcpu) && kvm_serror_undeliverable_at_el2(vcpu)) {
		vcpu_set_vsesr(vcpu, esr);
		vcpu_set_flag(vcpu, NESTED_SERROR_PENDING);
		return 1;
	}

	/*
	 * Emulate the exception entry if SErrors are unmasked. This is useful if
	 * the vCPU is in a nested context w/ vSErrors enabled then we've already
	 * delegated he hardware vSError context (i.e. HCR_EL2.VSE, VSESR_EL2,
	 * VDISR_EL2) to the guest hypervisor.
	 *
	 * As we're emulating the SError injection we need to explicitly populate
	 * ESR_ELx.EC because hardware will not do it on our behalf.
	 */
	if (!serror_is_masked(vcpu)) {
		pend_serror_exception(vcpu);
		esr |= FIELD_PREP(ESR_ELx_EC_MASK, ESR_ELx_EC_SERROR);
		vcpu_write_sys_reg(vcpu, esr, exception_esr_elx(vcpu));
		return 1;
	}

	vcpu_set_vsesr(vcpu, esr & ESR_ELx_ISS_MASK);
	*vcpu_hcr(vcpu) |= HCR_VSE;
	return 1;
}