Contributors: 8
Author Tokens Token Proportion Commits Commit Proportion
Wedson Almeida Filho 1081 59.89% 2 13.33%
Alice Ryhl 665 36.84% 4 26.67%
Filipe Xavier 20 1.11% 1 6.67%
Tamir Duberstein 18 1.00% 3 20.00%
Gary Guo 13 0.72% 2 13.33%
Danilo Krummrich 6 0.33% 1 6.67%
Miguel Ojeda Sandonis 1 0.06% 1 6.67%
Aliet Exposito Garcia 1 0.06% 1 6.67%
Total 1805 15


// SPDX-License-Identifier: GPL-2.0

//! Slices to user space memory regions.
//!
//! C header: [`include/linux/uaccess.h`](srctree/include/linux/uaccess.h)

use crate::{
    alloc::{Allocator, Flags},
    bindings,
    error::Result,
    ffi::{c_char, c_void},
    prelude::*,
    transmute::{AsBytes, FromBytes},
};
use core::mem::{size_of, MaybeUninit};

/// A pointer into userspace.
///
/// This is the Rust equivalent to C pointers tagged with `__user`.
#[repr(transparent)]
#[derive(Copy, Clone)]
pub struct UserPtr(*mut c_void);

impl UserPtr {
    /// Create a `UserPtr` from an integer representing the userspace address.
    #[inline]
    pub fn from_addr(addr: usize) -> Self {
        Self(addr as *mut c_void)
    }

    /// Create a `UserPtr` from a pointer representing the userspace address.
    #[inline]
    pub fn from_ptr(addr: *mut c_void) -> Self {
        Self(addr)
    }

    /// Cast this userspace pointer to a raw const void pointer.
    ///
    /// It is up to the caller to use the returned pointer correctly.
    #[inline]
    pub fn as_const_ptr(self) -> *const c_void {
        self.0
    }

    /// Cast this userspace pointer to a raw mutable void pointer.
    ///
    /// It is up to the caller to use the returned pointer correctly.
    #[inline]
    pub fn as_mut_ptr(self) -> *mut c_void {
        self.0
    }

    /// Increment this user pointer by `add` bytes.
    ///
    /// This addition is wrapping, so wrapping around the address space does not result in a panic
    /// even if `CONFIG_RUST_OVERFLOW_CHECKS` is enabled.
    #[inline]
    pub fn wrapping_byte_add(self, add: usize) -> UserPtr {
        UserPtr(self.0.wrapping_byte_add(add))
    }
}

/// A pointer to an area in userspace memory, which can be either read-only or read-write.
///
/// All methods on this struct are safe: attempting to read or write on bad addresses (either out of
/// the bound of the slice or unmapped addresses) will return [`EFAULT`]. Concurrent access,
/// *including data races to/from userspace memory*, is permitted, because fundamentally another
/// userspace thread/process could always be modifying memory at the same time (in the same way that
/// userspace Rust's [`std::io`] permits data races with the contents of files on disk). In the
/// presence of a race, the exact byte values read/written are unspecified but the operation is
/// well-defined. Kernelspace code should validate its copy of data after completing a read, and not
/// expect that multiple reads of the same address will return the same value.
///
/// These APIs are designed to make it difficult to accidentally write TOCTOU (time-of-check to
/// time-of-use) bugs. Every time a memory location is read, the reader's position is advanced by
/// the read length and the next read will start from there. This helps prevent accidentally reading
/// the same location twice and causing a TOCTOU bug.
///
/// Creating a [`UserSliceReader`] and/or [`UserSliceWriter`] consumes the `UserSlice`, helping
/// ensure that there aren't multiple readers or writers to the same location.
///
/// If double-fetching a memory location is necessary for some reason, then that is done by creating
/// multiple readers to the same memory location, e.g. using [`clone_reader`].
///
/// # Examples
///
/// Takes a region of userspace memory from the current process, and modify it by adding one to
/// every byte in the region.
///
/// ```no_run
/// use kernel::ffi::c_void;
/// use kernel::uaccess::{UserPtr, UserSlice};
///
/// fn bytes_add_one(uptr: UserPtr, len: usize) -> Result {
///     let (read, mut write) = UserSlice::new(uptr, len).reader_writer();
///
///     let mut buf = KVec::new();
///     read.read_all(&mut buf, GFP_KERNEL)?;
///
///     for b in &mut buf {
///         *b = b.wrapping_add(1);
///     }
///
///     write.write_slice(&buf)?;
///     Ok(())
/// }
/// ```
///
/// Example illustrating a TOCTOU (time-of-check to time-of-use) bug.
///
/// ```no_run
/// use kernel::ffi::c_void;
/// use kernel::uaccess::{UserPtr, UserSlice};
///
/// /// Returns whether the data in this region is valid.
/// fn is_valid(uptr: UserPtr, len: usize) -> Result<bool> {
///     let read = UserSlice::new(uptr, len).reader();
///
///     let mut buf = KVec::new();
///     read.read_all(&mut buf, GFP_KERNEL)?;
///
///     todo!()
/// }
///
/// /// Returns the bytes behind this user pointer if they are valid.
/// fn get_bytes_if_valid(uptr: UserPtr, len: usize) -> Result<KVec<u8>> {
///     if !is_valid(uptr, len)? {
///         return Err(EINVAL);
///     }
///
///     let read = UserSlice::new(uptr, len).reader();
///
///     let mut buf = KVec::new();
///     read.read_all(&mut buf, GFP_KERNEL)?;
///
///     // THIS IS A BUG! The bytes could have changed since we checked them.
///     //
///     // To avoid this kind of bug, don't call `UserSlice::new` multiple
///     // times with the same address.
///     Ok(buf)
/// }
/// ```
///
/// [`std::io`]: https://doc.rust-lang.org/std/io/index.html
/// [`clone_reader`]: UserSliceReader::clone_reader
pub struct UserSlice {
    ptr: UserPtr,
    length: usize,
}

impl UserSlice {
    /// Constructs a user slice from a raw pointer and a length in bytes.
    ///
    /// Constructing a [`UserSlice`] performs no checks on the provided address and length, it can
    /// safely be constructed inside a kernel thread with no current userspace process. Reads and
    /// writes wrap the kernel APIs `copy_from_user` and `copy_to_user`, which check the memory map
    /// of the current process and enforce that the address range is within the user range (no
    /// additional calls to `access_ok` are needed). Validity of the pointer is checked when you
    /// attempt to read or write, not in the call to `UserSlice::new`.
    ///
    /// Callers must be careful to avoid time-of-check-time-of-use (TOCTOU) issues. The simplest way
    /// is to create a single instance of [`UserSlice`] per user memory block as it reads each byte
    /// at most once.
    pub fn new(ptr: UserPtr, length: usize) -> Self {
        UserSlice { ptr, length }
    }

    /// Reads the entirety of the user slice, appending it to the end of the provided buffer.
    ///
    /// Fails with [`EFAULT`] if the read happens on a bad address.
    pub fn read_all<A: Allocator>(self, buf: &mut Vec<u8, A>, flags: Flags) -> Result {
        self.reader().read_all(buf, flags)
    }

    /// Constructs a [`UserSliceReader`].
    pub fn reader(self) -> UserSliceReader {
        UserSliceReader {
            ptr: self.ptr,
            length: self.length,
        }
    }

    /// Constructs a [`UserSliceWriter`].
    pub fn writer(self) -> UserSliceWriter {
        UserSliceWriter {
            ptr: self.ptr,
            length: self.length,
        }
    }

    /// Constructs both a [`UserSliceReader`] and a [`UserSliceWriter`].
    ///
    /// Usually when this is used, you will first read the data, and then overwrite it afterwards.
    pub fn reader_writer(self) -> (UserSliceReader, UserSliceWriter) {
        (
            UserSliceReader {
                ptr: self.ptr,
                length: self.length,
            },
            UserSliceWriter {
                ptr: self.ptr,
                length: self.length,
            },
        )
    }
}

/// A reader for [`UserSlice`].
///
/// Used to incrementally read from the user slice.
pub struct UserSliceReader {
    ptr: UserPtr,
    length: usize,
}

impl UserSliceReader {
    /// Skip the provided number of bytes.
    ///
    /// Returns an error if skipping more than the length of the buffer.
    pub fn skip(&mut self, num_skip: usize) -> Result {
        // Update `self.length` first since that's the fallible part of this operation.
        self.length = self.length.checked_sub(num_skip).ok_or(EFAULT)?;
        self.ptr = self.ptr.wrapping_byte_add(num_skip);
        Ok(())
    }

    /// Create a reader that can access the same range of data.
    ///
    /// Reading from the clone does not advance the current reader.
    ///
    /// The caller should take care to not introduce TOCTOU issues, as described in the
    /// documentation for [`UserSlice`].
    pub fn clone_reader(&self) -> UserSliceReader {
        UserSliceReader {
            ptr: self.ptr,
            length: self.length,
        }
    }

    /// Returns the number of bytes left to be read from this reader.
    ///
    /// Note that even reading less than this number of bytes may fail.
    pub fn len(&self) -> usize {
        self.length
    }

    /// Returns `true` if no data is available in the io buffer.
    pub fn is_empty(&self) -> bool {
        self.length == 0
    }

    /// Reads raw data from the user slice into a kernel buffer.
    ///
    /// For a version that uses `&mut [u8]`, please see [`UserSliceReader::read_slice`].
    ///
    /// Fails with [`EFAULT`] if the read happens on a bad address, or if the read goes out of
    /// bounds of this [`UserSliceReader`]. This call may modify `out` even if it returns an error.
    ///
    /// # Guarantees
    ///
    /// After a successful call to this method, all bytes in `out` are initialized.
    pub fn read_raw(&mut self, out: &mut [MaybeUninit<u8>]) -> Result {
        let len = out.len();
        let out_ptr = out.as_mut_ptr().cast::<c_void>();
        if len > self.length {
            return Err(EFAULT);
        }
        // SAFETY: `out_ptr` points into a mutable slice of length `len`, so we may write
        // that many bytes to it.
        let res = unsafe { bindings::copy_from_user(out_ptr, self.ptr.as_const_ptr(), len) };
        if res != 0 {
            return Err(EFAULT);
        }
        self.ptr = self.ptr.wrapping_byte_add(len);
        self.length -= len;
        Ok(())
    }

    /// Reads raw data from the user slice into a kernel buffer.
    ///
    /// Fails with [`EFAULT`] if the read happens on a bad address, or if the read goes out of
    /// bounds of this [`UserSliceReader`]. This call may modify `out` even if it returns an error.
    pub fn read_slice(&mut self, out: &mut [u8]) -> Result {
        // SAFETY: The types are compatible and `read_raw` doesn't write uninitialized bytes to
        // `out`.
        let out = unsafe { &mut *(core::ptr::from_mut(out) as *mut [MaybeUninit<u8>]) };
        self.read_raw(out)
    }

    /// Reads a value of the specified type.
    ///
    /// Fails with [`EFAULT`] if the read happens on a bad address, or if the read goes out of
    /// bounds of this [`UserSliceReader`].
    pub fn read<T: FromBytes>(&mut self) -> Result<T> {
        let len = size_of::<T>();
        if len > self.length {
            return Err(EFAULT);
        }
        let mut out: MaybeUninit<T> = MaybeUninit::uninit();
        // SAFETY: The local variable `out` is valid for writing `size_of::<T>()` bytes.
        //
        // By using the _copy_from_user variant, we skip the check_object_size check that verifies
        // the kernel pointer. This mirrors the logic on the C side that skips the check when the
        // length is a compile-time constant.
        let res = unsafe {
            bindings::_copy_from_user(
                out.as_mut_ptr().cast::<c_void>(),
                self.ptr.as_const_ptr(),
                len,
            )
        };
        if res != 0 {
            return Err(EFAULT);
        }
        self.ptr = self.ptr.wrapping_byte_add(len);
        self.length -= len;
        // SAFETY: The read above has initialized all bytes in `out`, and since `T` implements
        // `FromBytes`, any bit-pattern is a valid value for this type.
        Ok(unsafe { out.assume_init() })
    }

    /// Reads the entirety of the user slice, appending it to the end of the provided buffer.
    ///
    /// Fails with [`EFAULT`] if the read happens on a bad address.
    pub fn read_all<A: Allocator>(mut self, buf: &mut Vec<u8, A>, flags: Flags) -> Result {
        let len = self.length;
        buf.reserve(len, flags)?;

        // The call to `reserve` was successful, so the spare capacity is at least `len` bytes long.
        self.read_raw(&mut buf.spare_capacity_mut()[..len])?;

        // SAFETY: Since the call to `read_raw` was successful, so the next `len` bytes of the
        // vector have been initialized.
        unsafe { buf.inc_len(len) };
        Ok(())
    }

    /// Read a NUL-terminated string from userspace and return it.
    ///
    /// The string is read into `buf` and a NUL-terminator is added if the end of `buf` is reached.
    /// Since there must be space to add a NUL-terminator, the buffer must not be empty. The
    /// returned `&CStr` points into `buf`.
    ///
    /// Fails with [`EFAULT`] if the read happens on a bad address (some data may have been
    /// copied).
    #[doc(alias = "strncpy_from_user")]
    pub fn strcpy_into_buf<'buf>(self, buf: &'buf mut [u8]) -> Result<&'buf CStr> {
        if buf.is_empty() {
            return Err(EINVAL);
        }

        // SAFETY: The types are compatible and `strncpy_from_user` doesn't write uninitialized
        // bytes to `buf`.
        let mut dst = unsafe { &mut *(core::ptr::from_mut(buf) as *mut [MaybeUninit<u8>]) };

        // We never read more than `self.length` bytes.
        if dst.len() > self.length {
            dst = &mut dst[..self.length];
        }

        let mut len = raw_strncpy_from_user(dst, self.ptr)?;
        if len < dst.len() {
            // Add one to include the NUL-terminator.
            len += 1;
        } else if len < buf.len() {
            // This implies that `len == dst.len() < buf.len()`.
            //
            // This means that we could not fill the entire buffer, but we had to stop reading
            // because we hit the `self.length` limit of this `UserSliceReader`. Since we did not
            // fill the buffer, we treat this case as if we tried to read past the `self.length`
            // limit and received a page fault, which is consistent with other `UserSliceReader`
            // methods that also return page faults when you exceed `self.length`.
            return Err(EFAULT);
        } else {
            // This implies that `len == buf.len()`.
            //
            // This means that we filled the buffer exactly. In this case, we add a NUL-terminator
            // and return it. Unlike the `len < dst.len()` branch, don't modify `len` because it
            // already represents the length including the NUL-terminator.
            //
            // SAFETY: Due to the check at the beginning, the buffer is not empty.
            unsafe { *buf.last_mut().unwrap_unchecked() = 0 };
        }

        // This method consumes `self`, so it can only be called once, thus we do not need to
        // update `self.length`. This sidesteps concerns such as whether `self.length` should be
        // incremented by `len` or `len-1` in the `len == buf.len()` case.

        // SAFETY: There are two cases:
        // * If we hit the `len < dst.len()` case, then `raw_strncpy_from_user` guarantees that
        //   this slice contains exactly one NUL byte at the end of the string.
        // * Otherwise, `raw_strncpy_from_user` guarantees that the string contained no NUL bytes,
        //   and we have since added a NUL byte at the end.
        Ok(unsafe { CStr::from_bytes_with_nul_unchecked(&buf[..len]) })
    }
}

/// A writer for [`UserSlice`].
///
/// Used to incrementally write into the user slice.
pub struct UserSliceWriter {
    ptr: UserPtr,
    length: usize,
}

impl UserSliceWriter {
    /// Returns the amount of space remaining in this buffer.
    ///
    /// Note that even writing less than this number of bytes may fail.
    pub fn len(&self) -> usize {
        self.length
    }

    /// Returns `true` if no more data can be written to this buffer.
    pub fn is_empty(&self) -> bool {
        self.length == 0
    }

    /// Writes raw data to this user pointer from a kernel buffer.
    ///
    /// Fails with [`EFAULT`] if the write happens on a bad address, or if the write goes out of
    /// bounds of this [`UserSliceWriter`]. This call may modify the associated userspace slice even
    /// if it returns an error.
    pub fn write_slice(&mut self, data: &[u8]) -> Result {
        let len = data.len();
        let data_ptr = data.as_ptr().cast::<c_void>();
        if len > self.length {
            return Err(EFAULT);
        }
        // SAFETY: `data_ptr` points into an immutable slice of length `len`, so we may read
        // that many bytes from it.
        let res = unsafe { bindings::copy_to_user(self.ptr.as_mut_ptr(), data_ptr, len) };
        if res != 0 {
            return Err(EFAULT);
        }
        self.ptr = self.ptr.wrapping_byte_add(len);
        self.length -= len;
        Ok(())
    }

    /// Writes the provided Rust value to this userspace pointer.
    ///
    /// Fails with [`EFAULT`] if the write happens on a bad address, or if the write goes out of
    /// bounds of this [`UserSliceWriter`]. This call may modify the associated userspace slice even
    /// if it returns an error.
    pub fn write<T: AsBytes>(&mut self, value: &T) -> Result {
        let len = size_of::<T>();
        if len > self.length {
            return Err(EFAULT);
        }
        // SAFETY: The reference points to a value of type `T`, so it is valid for reading
        // `size_of::<T>()` bytes.
        //
        // By using the _copy_to_user variant, we skip the check_object_size check that verifies the
        // kernel pointer. This mirrors the logic on the C side that skips the check when the length
        // is a compile-time constant.
        let res = unsafe {
            bindings::_copy_to_user(
                self.ptr.as_mut_ptr(),
                core::ptr::from_ref(value).cast::<c_void>(),
                len,
            )
        };
        if res != 0 {
            return Err(EFAULT);
        }
        self.ptr = self.ptr.wrapping_byte_add(len);
        self.length -= len;
        Ok(())
    }
}

/// Reads a nul-terminated string into `dst` and returns the length.
///
/// This reads from userspace until a NUL byte is encountered, or until `dst.len()` bytes have been
/// read. Fails with [`EFAULT`] if a read happens on a bad address (some data may have been
/// copied). When the end of the buffer is encountered, no NUL byte is added, so the string is
/// *not* guaranteed to be NUL-terminated when `Ok(dst.len())` is returned.
///
/// # Guarantees
///
/// When this function returns `Ok(len)`, it is guaranteed that the first `len` bytes of `dst` are
/// initialized and non-zero. Furthermore, if `len < dst.len()`, then `dst[len]` is a NUL byte.
#[inline]
fn raw_strncpy_from_user(dst: &mut [MaybeUninit<u8>], src: UserPtr) -> Result<usize> {
    // CAST: Slice lengths are guaranteed to be `<= isize::MAX`.
    let len = dst.len() as isize;

    // SAFETY: `dst` is valid for writing `dst.len()` bytes.
    let res = unsafe {
        bindings::strncpy_from_user(
            dst.as_mut_ptr().cast::<c_char>(),
            src.as_const_ptr().cast::<c_char>(),
            len,
        )
    };

    if res < 0 {
        return Err(Error::from_errno(res as i32));
    }

    #[cfg(CONFIG_RUST_OVERFLOW_CHECKS)]
    assert!(res <= len);

    // GUARANTEES: `strncpy_from_user` was successful, so `dst` has contents in accordance with the
    // guarantees of this function.
    Ok(res as usize)
}