Contributors: 6
Author Tokens Token Proportion Commits Commit Proportion
Eduard Zingerman 3353 95.75% 3 30.00%
Jakub Kiciński 113 3.23% 2 20.00%
Andrii Nakryiko 12 0.34% 1 10.00%
Quentin Monnet 11 0.31% 1 10.00%
Unknown 7 0.20% 1 10.00%
Alexei Starovoitov 6 0.17% 2 20.00%
Total 3502 10


// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2025 Meta Platforms, Inc. and affiliates. */

#include <linux/bpf_verifier.h>
#include <linux/hashtable.h>
#include <linux/jhash.h>
#include <linux/slab.h>

/*
 * This file implements live stack slots analysis. After accumulating
 * stack usage data, the analysis answers queries about whether a
 * particular stack slot may be read by an instruction or any of it's
 * successors.  This data is consumed by the verifier states caching
 * mechanism to decide which stack slots are important when looking for a
 * visited state corresponding to the current state.
 *
 * The analysis is call chain sensitive, meaning that data is collected
 * and queried for tuples (call chain, subprogram instruction index).
 * Such sensitivity allows identifying if some subprogram call always
 * leads to writes in the caller's stack.
 *
 * The basic idea is as follows:
 * - As the verifier accumulates a set of visited states, the analysis instance
 *   accumulates a conservative estimate of stack slots that can be read
 *   or must be written for each visited tuple (call chain, instruction index).
 * - If several states happen to visit the same instruction with the same
 *   call chain, stack usage information for the corresponding tuple is joined:
 *   - "may_read" set represents a union of all possibly read slots
 *     (any slot in "may_read" set might be read at or after the instruction);
 *   - "must_write" set represents an intersection of all possibly written slots
 *     (any slot in "must_write" set is guaranteed to be written by the instruction).
 * - The analysis is split into two phases:
 *   - read and write marks accumulation;
 *   - read and write marks propagation.
 * - The propagation phase is a textbook live variable data flow analysis:
 *
 *     state[cc, i].live_after = U [state[cc, s].live_before for s in insn_successors(i)]
 *     state[cc, i].live_before =
 *       (state[cc, i].live_after / state[cc, i].must_write) U state[i].may_read
 *
 *   Where:
 *   - `U`  stands for set union
 *   - `/`  stands for set difference;
 *   - `cc` stands for a call chain;
 *   - `i` and `s` are instruction indexes;
 *
 *   The above equations are computed for each call chain and instruction
 *   index until state stops changing.
 * - Additionally, in order to transfer "must_write" information from a
 *   subprogram to call instructions invoking this subprogram,
 *   the "must_write_acc" set is tracked for each (cc, i) tuple.
 *   A set of stack slots that are guaranteed to be written by this
 *   instruction or any of its successors (within the subprogram).
 *   The equation for "must_write_acc" propagation looks as follows:
 *
 *     state[cc, i].must_write_acc =
 *       ∩ [state[cc, s].must_write_acc for s in insn_successors(i)]
 *       U state[cc, i].must_write
 *
 *   (An intersection of all "must_write_acc" for instruction successors
 *    plus all "must_write" slots for the instruction itself).
 * - After the propagation phase completes for a subprogram, information from
 *   (cc, 0) tuple (subprogram entry) is transferred to the caller's call chain:
 *   - "must_write_acc" set is intersected with the call site's "must_write" set;
 *   - "may_read" set is added to the call site's "may_read" set.
 * - Any live stack queries must be taken after the propagation phase.
 * - Accumulation and propagation phases can be entered multiple times,
 *   at any point in time:
 *   - "may_read" set only grows;
 *   - "must_write" set only shrinks;
 *   - for each visited verifier state with zero branches, all relevant
 *     read and write marks are already recorded by the analysis instance.
 *
 * Technically, the analysis is facilitated by the following data structures:
 * - Call chain: for given verifier state, the call chain is a tuple of call
 *   instruction indexes leading to the current subprogram plus the subprogram
 *   entry point index.
 * - Function instance: for a given call chain, for each instruction in
 *   the current subprogram, a mapping between instruction index and a
 *   set of "may_read", "must_write" and other marks accumulated for this
 *   instruction.
 * - A hash table mapping call chains to function instances.
 */

struct callchain {
	u32 callsites[MAX_CALL_FRAMES];	/* instruction pointer for each frame */
	/* cached subprog_info[*].start for functions owning the frames:
	 * - sp_starts[curframe] used to get insn relative index within current function;
	 * - sp_starts[0..current-1] used for fast callchain_frame_up().
	 */
	u32 sp_starts[MAX_CALL_FRAMES];
	u32 curframe;			/* depth of callsites and sp_starts arrays */
};

struct per_frame_masks {
	u64 may_read;		/* stack slots that may be read by this instruction */
	u64 must_write;		/* stack slots written by this instruction */
	u64 must_write_acc;	/* stack slots written by this instruction and its successors */
	u64 live_before;	/* stack slots that may be read by this insn and its successors */
};

/*
 * A function instance created for a specific callchain.
 * Encapsulates read and write marks for each instruction in the function.
 * Marks are tracked for each frame in the callchain.
 */
struct func_instance {
	struct hlist_node hl_node;
	struct callchain callchain;
	u32 insn_cnt;		/* cached number of insns in the function */
	bool updated;
	bool must_write_dropped;
	/* Per frame, per instruction masks, frames allocated lazily. */
	struct per_frame_masks *frames[MAX_CALL_FRAMES];
	/* For each instruction a flag telling if "must_write" had been initialized for it. */
	bool *must_write_set;
};

struct live_stack_query {
	struct func_instance *instances[MAX_CALL_FRAMES]; /* valid in range [0..curframe] */
	u32 curframe;
	u32 insn_idx;
};

struct bpf_liveness {
	DECLARE_HASHTABLE(func_instances, 8);		/* maps callchain to func_instance */
	struct live_stack_query live_stack_query;	/* cache to avoid repetitive ht lookups */
	/* Cached instance corresponding to env->cur_state, avoids per-instruction ht lookup */
	struct func_instance *cur_instance;
	/*
	 * Below fields are used to accumulate stack write marks for instruction at
	 * @write_insn_idx before submitting the marks to @cur_instance.
	 */
	u64 write_masks_acc[MAX_CALL_FRAMES];
	u32 write_insn_idx;
};

/* Compute callchain corresponding to state @st at depth @frameno */
static void compute_callchain(struct bpf_verifier_env *env, struct bpf_verifier_state *st,
			      struct callchain *callchain, u32 frameno)
{
	struct bpf_subprog_info *subprog_info = env->subprog_info;
	u32 i;

	memset(callchain, 0, sizeof(*callchain));
	for (i = 0; i <= frameno; i++) {
		callchain->sp_starts[i] = subprog_info[st->frame[i]->subprogno].start;
		if (i < st->curframe)
			callchain->callsites[i] = st->frame[i + 1]->callsite;
	}
	callchain->curframe = frameno;
	callchain->callsites[callchain->curframe] = callchain->sp_starts[callchain->curframe];
}

static u32 hash_callchain(struct callchain *callchain)
{
	return jhash2(callchain->callsites, callchain->curframe, 0);
}

static bool same_callsites(struct callchain *a, struct callchain *b)
{
	int i;

	if (a->curframe != b->curframe)
		return false;
	for (i = a->curframe; i >= 0; i--)
		if (a->callsites[i] != b->callsites[i])
			return false;
	return true;
}

/*
 * Find existing or allocate new function instance corresponding to @callchain.
 * Instances are accumulated in env->liveness->func_instances and persist
 * until the end of the verification process.
 */
static struct func_instance *__lookup_instance(struct bpf_verifier_env *env,
					       struct callchain *callchain)
{
	struct bpf_liveness *liveness = env->liveness;
	struct bpf_subprog_info *subprog;
	struct func_instance *result;
	u32 subprog_sz, size, key;

	key = hash_callchain(callchain);
	hash_for_each_possible(liveness->func_instances, result, hl_node, key)
		if (same_callsites(&result->callchain, callchain))
			return result;

	subprog = bpf_find_containing_subprog(env, callchain->sp_starts[callchain->curframe]);
	subprog_sz = (subprog + 1)->start - subprog->start;
	size = sizeof(struct func_instance);
	result = kvzalloc(size, GFP_KERNEL_ACCOUNT);
	if (!result)
		return ERR_PTR(-ENOMEM);
	result->must_write_set = kvcalloc(subprog_sz, sizeof(*result->must_write_set),
					  GFP_KERNEL_ACCOUNT);
	if (!result->must_write_set) {
		kvfree(result);
		return ERR_PTR(-ENOMEM);
	}
	memcpy(&result->callchain, callchain, sizeof(*callchain));
	result->insn_cnt = subprog_sz;
	hash_add(liveness->func_instances, &result->hl_node, key);
	return result;
}

static struct func_instance *lookup_instance(struct bpf_verifier_env *env,
					     struct bpf_verifier_state *st,
					     u32 frameno)
{
	struct callchain callchain;

	compute_callchain(env, st, &callchain, frameno);
	return __lookup_instance(env, &callchain);
}

int bpf_stack_liveness_init(struct bpf_verifier_env *env)
{
	env->liveness = kvzalloc(sizeof(*env->liveness), GFP_KERNEL_ACCOUNT);
	if (!env->liveness)
		return -ENOMEM;
	hash_init(env->liveness->func_instances);
	return 0;
}

void bpf_stack_liveness_free(struct bpf_verifier_env *env)
{
	struct func_instance *instance;
	struct hlist_node *tmp;
	int bkt, i;

	if (!env->liveness)
		return;
	hash_for_each_safe(env->liveness->func_instances, bkt, tmp, instance, hl_node) {
		for (i = 0; i <= instance->callchain.curframe; i++)
			kvfree(instance->frames[i]);
		kvfree(instance->must_write_set);
		kvfree(instance);
	}
	kvfree(env->liveness);
}

/*
 * Convert absolute instruction index @insn_idx to an index relative
 * to start of the function corresponding to @instance.
 */
static int relative_idx(struct func_instance *instance, u32 insn_idx)
{
	return insn_idx - instance->callchain.sp_starts[instance->callchain.curframe];
}

static struct per_frame_masks *get_frame_masks(struct func_instance *instance,
					       u32 frame, u32 insn_idx)
{
	if (!instance->frames[frame])
		return NULL;

	return &instance->frames[frame][relative_idx(instance, insn_idx)];
}

static struct per_frame_masks *alloc_frame_masks(struct bpf_verifier_env *env,
						 struct func_instance *instance,
						 u32 frame, u32 insn_idx)
{
	struct per_frame_masks *arr;

	if (!instance->frames[frame]) {
		arr = kvcalloc(instance->insn_cnt, sizeof(*arr), GFP_KERNEL_ACCOUNT);
		instance->frames[frame] = arr;
		if (!arr)
			return ERR_PTR(-ENOMEM);
	}
	return get_frame_masks(instance, frame, insn_idx);
}

void bpf_reset_live_stack_callchain(struct bpf_verifier_env *env)
{
	env->liveness->cur_instance = NULL;
}

/* If @env->liveness->cur_instance is null, set it to instance corresponding to @env->cur_state. */
static int ensure_cur_instance(struct bpf_verifier_env *env)
{
	struct bpf_liveness *liveness = env->liveness;
	struct func_instance *instance;

	if (liveness->cur_instance)
		return 0;

	instance = lookup_instance(env, env->cur_state, env->cur_state->curframe);
	if (IS_ERR(instance))
		return PTR_ERR(instance);

	liveness->cur_instance = instance;
	return 0;
}

/* Accumulate may_read masks for @frame at @insn_idx */
static int mark_stack_read(struct bpf_verifier_env *env,
			   struct func_instance *instance, u32 frame, u32 insn_idx, u64 mask)
{
	struct per_frame_masks *masks;
	u64 new_may_read;

	masks = alloc_frame_masks(env, instance, frame, insn_idx);
	if (IS_ERR(masks))
		return PTR_ERR(masks);
	new_may_read = masks->may_read | mask;
	if (new_may_read != masks->may_read &&
	    ((new_may_read | masks->live_before) != masks->live_before))
		instance->updated = true;
	masks->may_read |= mask;
	return 0;
}

int bpf_mark_stack_read(struct bpf_verifier_env *env, u32 frame, u32 insn_idx, u64 mask)
{
	int err;

	err = ensure_cur_instance(env);
	err = err ?: mark_stack_read(env, env->liveness->cur_instance, frame, insn_idx, mask);
	return err;
}

static void reset_stack_write_marks(struct bpf_verifier_env *env,
				    struct func_instance *instance, u32 insn_idx)
{
	struct bpf_liveness *liveness = env->liveness;
	int i;

	liveness->write_insn_idx = insn_idx;
	for (i = 0; i <= instance->callchain.curframe; i++)
		liveness->write_masks_acc[i] = 0;
}

int bpf_reset_stack_write_marks(struct bpf_verifier_env *env, u32 insn_idx)
{
	struct bpf_liveness *liveness = env->liveness;
	int err;

	err = ensure_cur_instance(env);
	if (err)
		return err;

	reset_stack_write_marks(env, liveness->cur_instance, insn_idx);
	return 0;
}

void bpf_mark_stack_write(struct bpf_verifier_env *env, u32 frame, u64 mask)
{
	env->liveness->write_masks_acc[frame] |= mask;
}

static int commit_stack_write_marks(struct bpf_verifier_env *env,
				    struct func_instance *instance)
{
	struct bpf_liveness *liveness = env->liveness;
	u32 idx, frame, curframe, old_must_write;
	struct per_frame_masks *masks;
	u64 mask;

	if (!instance)
		return 0;

	curframe = instance->callchain.curframe;
	idx = relative_idx(instance, liveness->write_insn_idx);
	for (frame = 0; frame <= curframe; frame++) {
		mask = liveness->write_masks_acc[frame];
		/* avoid allocating frames for zero masks */
		if (mask == 0 && !instance->must_write_set[idx])
			continue;
		masks = alloc_frame_masks(env, instance, frame, liveness->write_insn_idx);
		if (IS_ERR(masks))
			return PTR_ERR(masks);
		old_must_write = masks->must_write;
		/*
		 * If instruction at this callchain is seen for a first time, set must_write equal
		 * to @mask. Otherwise take intersection with the previous value.
		 */
		if (instance->must_write_set[idx])
			mask &= old_must_write;
		if (old_must_write != mask) {
			masks->must_write = mask;
			instance->updated = true;
		}
		if (old_must_write & ~mask)
			instance->must_write_dropped = true;
	}
	instance->must_write_set[idx] = true;
	liveness->write_insn_idx = 0;
	return 0;
}

/*
 * Merge stack writes marks in @env->liveness->write_masks_acc
 * with information already in @env->liveness->cur_instance.
 */
int bpf_commit_stack_write_marks(struct bpf_verifier_env *env)
{
	return commit_stack_write_marks(env, env->liveness->cur_instance);
}

static char *fmt_callchain(struct bpf_verifier_env *env, struct callchain *callchain)
{
	char *buf_end = env->tmp_str_buf + sizeof(env->tmp_str_buf);
	char *buf = env->tmp_str_buf;
	int i;

	buf += snprintf(buf, buf_end - buf, "(");
	for (i = 0; i <= callchain->curframe; i++)
		buf += snprintf(buf, buf_end - buf, "%s%d", i ? "," : "", callchain->callsites[i]);
	snprintf(buf, buf_end - buf, ")");
	return env->tmp_str_buf;
}

static void log_mask_change(struct bpf_verifier_env *env, struct callchain *callchain,
			    char *pfx, u32 frame, u32 insn_idx, u64 old, u64 new)
{
	u64 changed_bits = old ^ new;
	u64 new_ones = new & changed_bits;
	u64 new_zeros = ~new & changed_bits;

	if (!changed_bits)
		return;
	bpf_log(&env->log, "%s frame %d insn %d ", fmt_callchain(env, callchain), frame, insn_idx);
	if (new_ones) {
		bpf_fmt_stack_mask(env->tmp_str_buf, sizeof(env->tmp_str_buf), new_ones);
		bpf_log(&env->log, "+%s %s ", pfx, env->tmp_str_buf);
	}
	if (new_zeros) {
		bpf_fmt_stack_mask(env->tmp_str_buf, sizeof(env->tmp_str_buf), new_zeros);
		bpf_log(&env->log, "-%s %s", pfx, env->tmp_str_buf);
	}
	bpf_log(&env->log, "\n");
}

int bpf_jmp_offset(struct bpf_insn *insn)
{
	u8 code = insn->code;

	if (code == (BPF_JMP32 | BPF_JA))
		return insn->imm;
	return insn->off;
}

__diag_push();
__diag_ignore_all("-Woverride-init", "Allow field initialization overrides for opcode_info_tbl");

inline int bpf_insn_successors(struct bpf_prog *prog, u32 idx, u32 succ[2])
{
	static const struct opcode_info {
		bool can_jump;
		bool can_fallthrough;
	} opcode_info_tbl[256] = {
		[0 ... 255] = {.can_jump = false, .can_fallthrough = true},
	#define _J(code, ...) \
		[BPF_JMP   | code] = __VA_ARGS__, \
		[BPF_JMP32 | code] = __VA_ARGS__

		_J(BPF_EXIT,  {.can_jump = false, .can_fallthrough = false}),
		_J(BPF_JA,    {.can_jump = true,  .can_fallthrough = false}),
		_J(BPF_JEQ,   {.can_jump = true,  .can_fallthrough = true}),
		_J(BPF_JNE,   {.can_jump = true,  .can_fallthrough = true}),
		_J(BPF_JLT,   {.can_jump = true,  .can_fallthrough = true}),
		_J(BPF_JLE,   {.can_jump = true,  .can_fallthrough = true}),
		_J(BPF_JGT,   {.can_jump = true,  .can_fallthrough = true}),
		_J(BPF_JGE,   {.can_jump = true,  .can_fallthrough = true}),
		_J(BPF_JSGT,  {.can_jump = true,  .can_fallthrough = true}),
		_J(BPF_JSGE,  {.can_jump = true,  .can_fallthrough = true}),
		_J(BPF_JSLT,  {.can_jump = true,  .can_fallthrough = true}),
		_J(BPF_JSLE,  {.can_jump = true,  .can_fallthrough = true}),
		_J(BPF_JCOND, {.can_jump = true,  .can_fallthrough = true}),
		_J(BPF_JSET,  {.can_jump = true,  .can_fallthrough = true}),
	#undef _J
	};
	struct bpf_insn *insn = &prog->insnsi[idx];
	const struct opcode_info *opcode_info;
	int i = 0, insn_sz;

	opcode_info = &opcode_info_tbl[BPF_CLASS(insn->code) | BPF_OP(insn->code)];
	insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
	if (opcode_info->can_fallthrough)
		succ[i++] = idx + insn_sz;

	if (opcode_info->can_jump)
		succ[i++] = idx + bpf_jmp_offset(insn) + 1;

	return i;
}

__diag_pop();

static struct func_instance *get_outer_instance(struct bpf_verifier_env *env,
						struct func_instance *instance)
{
	struct callchain callchain = instance->callchain;

	/* Adjust @callchain to represent callchain one frame up */
	callchain.callsites[callchain.curframe] = 0;
	callchain.sp_starts[callchain.curframe] = 0;
	callchain.curframe--;
	callchain.callsites[callchain.curframe] = callchain.sp_starts[callchain.curframe];
	return __lookup_instance(env, &callchain);
}

static u32 callchain_subprog_start(struct callchain *callchain)
{
	return callchain->sp_starts[callchain->curframe];
}

/*
 * Transfer @may_read and @must_write_acc marks from the first instruction of @instance,
 * to the call instruction in function instance calling @instance.
 */
static int propagate_to_outer_instance(struct bpf_verifier_env *env,
				       struct func_instance *instance)
{
	struct callchain *callchain = &instance->callchain;
	u32 this_subprog_start, callsite, frame;
	struct func_instance *outer_instance;
	struct per_frame_masks *insn;
	int err;

	this_subprog_start = callchain_subprog_start(callchain);
	outer_instance = get_outer_instance(env, instance);
	callsite = callchain->callsites[callchain->curframe - 1];

	reset_stack_write_marks(env, outer_instance, callsite);
	for (frame = 0; frame < callchain->curframe; frame++) {
		insn = get_frame_masks(instance, frame, this_subprog_start);
		if (!insn)
			continue;
		bpf_mark_stack_write(env, frame, insn->must_write_acc);
		err = mark_stack_read(env, outer_instance, frame, callsite, insn->live_before);
		if (err)
			return err;
	}
	commit_stack_write_marks(env, outer_instance);
	return 0;
}

static inline bool update_insn(struct bpf_verifier_env *env,
			       struct func_instance *instance, u32 frame, u32 insn_idx)
{
	struct bpf_insn_aux_data *aux = env->insn_aux_data;
	u64 new_before, new_after, must_write_acc;
	struct per_frame_masks *insn, *succ_insn;
	u32 succ_num, s, succ[2];
	bool changed;

	succ_num = bpf_insn_successors(env->prog, insn_idx, succ);
	if (unlikely(succ_num == 0))
		return false;

	changed = false;
	insn = get_frame_masks(instance, frame, insn_idx);
	new_before = 0;
	new_after = 0;
	/*
	 * New "must_write_acc" is an intersection of all "must_write_acc"
	 * of successors plus all "must_write" slots of instruction itself.
	 */
	must_write_acc = U64_MAX;
	for (s = 0; s < succ_num; ++s) {
		succ_insn = get_frame_masks(instance, frame, succ[s]);
		new_after |= succ_insn->live_before;
		must_write_acc &= succ_insn->must_write_acc;
	}
	must_write_acc |= insn->must_write;
	/*
	 * New "live_before" is a union of all "live_before" of successors
	 * minus slots written by instruction plus slots read by instruction.
	 */
	new_before = (new_after & ~insn->must_write) | insn->may_read;
	changed |= new_before != insn->live_before;
	changed |= must_write_acc != insn->must_write_acc;
	if (unlikely(env->log.level & BPF_LOG_LEVEL2) &&
	    (insn->may_read || insn->must_write ||
	     insn_idx == callchain_subprog_start(&instance->callchain) ||
	     aux[insn_idx].prune_point)) {
		log_mask_change(env, &instance->callchain, "live",
				frame, insn_idx, insn->live_before, new_before);
		log_mask_change(env, &instance->callchain, "written",
				frame, insn_idx, insn->must_write_acc, must_write_acc);
	}
	insn->live_before = new_before;
	insn->must_write_acc = must_write_acc;
	return changed;
}

/* Fixed-point computation of @live_before and @must_write_acc marks */
static int update_instance(struct bpf_verifier_env *env, struct func_instance *instance)
{
	u32 i, frame, po_start, po_end, cnt, this_subprog_start;
	struct callchain *callchain = &instance->callchain;
	int *insn_postorder = env->cfg.insn_postorder;
	struct bpf_subprog_info *subprog;
	struct per_frame_masks *insn;
	bool changed;
	int err;

	this_subprog_start = callchain_subprog_start(callchain);
	/*
	 * If must_write marks were updated must_write_acc needs to be reset
	 * (to account for the case when new must_write sets became smaller).
	 */
	if (instance->must_write_dropped) {
		for (frame = 0; frame <= callchain->curframe; frame++) {
			if (!instance->frames[frame])
				continue;

			for (i = 0; i < instance->insn_cnt; i++) {
				insn = get_frame_masks(instance, frame, this_subprog_start + i);
				insn->must_write_acc = 0;
			}
		}
	}

	subprog = bpf_find_containing_subprog(env, this_subprog_start);
	po_start = subprog->postorder_start;
	po_end = (subprog + 1)->postorder_start;
	cnt = 0;
	/* repeat until fixed point is reached */
	do {
		cnt++;
		changed = false;
		for (frame = 0; frame <= instance->callchain.curframe; frame++) {
			if (!instance->frames[frame])
				continue;

			for (i = po_start; i < po_end; i++)
				changed |= update_insn(env, instance, frame, insn_postorder[i]);
		}
	} while (changed);

	if (env->log.level & BPF_LOG_LEVEL2)
		bpf_log(&env->log, "%s live stack update done in %d iterations\n",
			fmt_callchain(env, callchain), cnt);

	/* transfer marks accumulated for outer frames to outer func instance (caller) */
	if (callchain->curframe > 0) {
		err = propagate_to_outer_instance(env, instance);
		if (err)
			return err;
	}

	return 0;
}

/*
 * Prepare all callchains within @env->cur_state for querying.
 * This function should be called after each verifier.c:pop_stack()
 * and whenever verifier.c:do_check_insn() processes subprogram exit.
 * This would guarantee that visited verifier states with zero branches
 * have their bpf_mark_stack_{read,write}() effects propagated in
 * @env->liveness.
 */
int bpf_update_live_stack(struct bpf_verifier_env *env)
{
	struct func_instance *instance;
	int err, frame;

	bpf_reset_live_stack_callchain(env);
	for (frame = env->cur_state->curframe; frame >= 0; --frame) {
		instance = lookup_instance(env, env->cur_state, frame);
		if (IS_ERR(instance))
			return PTR_ERR(instance);

		if (instance->updated) {
			err = update_instance(env, instance);
			if (err)
				return err;
			instance->updated = false;
			instance->must_write_dropped = false;
		}
	}
	return 0;
}

static bool is_live_before(struct func_instance *instance, u32 insn_idx, u32 frameno, u32 spi)
{
	struct per_frame_masks *masks;

	masks = get_frame_masks(instance, frameno, insn_idx);
	return masks && (masks->live_before & BIT(spi));
}

int bpf_live_stack_query_init(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
{
	struct live_stack_query *q = &env->liveness->live_stack_query;
	struct func_instance *instance;
	u32 frame;

	memset(q, 0, sizeof(*q));
	for (frame = 0; frame <= st->curframe; frame++) {
		instance = lookup_instance(env, st, frame);
		if (IS_ERR(instance))
			return PTR_ERR(instance);
		q->instances[frame] = instance;
	}
	q->curframe = st->curframe;
	q->insn_idx = st->insn_idx;
	return 0;
}

bool bpf_stack_slot_alive(struct bpf_verifier_env *env, u32 frameno, u32 spi)
{
	/*
	 * Slot is alive if it is read before q->st->insn_idx in current func instance,
	 * or if for some outer func instance:
	 * - alive before callsite if callsite calls callback, otherwise
	 * - alive after callsite
	 */
	struct live_stack_query *q = &env->liveness->live_stack_query;
	struct func_instance *instance, *curframe_instance;
	u32 i, callsite;
	bool alive;

	curframe_instance = q->instances[q->curframe];
	if (is_live_before(curframe_instance, q->insn_idx, frameno, spi))
		return true;

	for (i = frameno; i < q->curframe; i++) {
		callsite = curframe_instance->callchain.callsites[i];
		instance = q->instances[i];
		alive = bpf_calls_callback(env, callsite)
			? is_live_before(instance, callsite, frameno, spi)
			: is_live_before(instance, callsite + 1, frameno, spi);
		if (alive)
			return true;
	}

	return false;
}