Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Markus Stockhausen | 1794 | 65.40% | 1 | 6.25% |
Ard Biesheuvel | 458 | 16.70% | 1 | 6.25% |
Eric Biggers | 446 | 16.26% | 1 | 6.25% |
Tadeusz Struk | 10 | 0.36% | 2 | 12.50% |
Jussi Kivilinna | 9 | 0.33% | 2 | 12.50% |
Stephan Mueller | 8 | 0.29% | 2 | 12.50% |
Gerald Schaefer | 6 | 0.22% | 2 | 12.50% |
Huang Ying | 5 | 0.18% | 1 | 6.25% |
Anton Blanchard | 3 | 0.11% | 1 | 6.25% |
Thomas Gleixner | 2 | 0.07% | 1 | 6.25% |
Julia Lawall | 1 | 0.04% | 1 | 6.25% |
shaomin Deng | 1 | 0.04% | 1 | 6.25% |
Total | 2743 | 16 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Glue code for AES implementation for SPE instructions (PPC) * * Based on generic implementation. The assembler module takes care * about the SPE registers so it can run from interrupt context. * * Copyright (c) 2015 Markus Stockhausen <stockhausen@collogia.de> */ #include <crypto/aes.h> #include <linux/module.h> #include <linux/init.h> #include <linux/types.h> #include <linux/errno.h> #include <linux/crypto.h> #include <asm/byteorder.h> #include <asm/switch_to.h> #include <crypto/algapi.h> #include <crypto/internal/skcipher.h> #include <crypto/xts.h> #include <crypto/gf128mul.h> #include <crypto/scatterwalk.h> /* * MAX_BYTES defines the number of bytes that are allowed to be processed * between preempt_disable() and preempt_enable(). e500 cores can issue two * instructions per clock cycle using one 32/64 bit unit (SU1) and one 32 * bit unit (SU2). One of these can be a memory access that is executed via * a single load and store unit (LSU). XTS-AES-256 takes ~780 operations per * 16 byte block or 25 cycles per byte. Thus 768 bytes of input data * will need an estimated maximum of 20,000 cycles. Headroom for cache misses * included. Even with the low end model clocked at 667 MHz this equals to a * critical time window of less than 30us. The value has been chosen to * process a 512 byte disk block in one or a large 1400 bytes IPsec network * packet in two runs. * */ #define MAX_BYTES 768 struct ppc_aes_ctx { u32 key_enc[AES_MAX_KEYLENGTH_U32]; u32 key_dec[AES_MAX_KEYLENGTH_U32]; u32 rounds; }; struct ppc_xts_ctx { u32 key_enc[AES_MAX_KEYLENGTH_U32]; u32 key_dec[AES_MAX_KEYLENGTH_U32]; u32 key_twk[AES_MAX_KEYLENGTH_U32]; u32 rounds; }; extern void ppc_encrypt_aes(u8 *out, const u8 *in, u32 *key_enc, u32 rounds); extern void ppc_decrypt_aes(u8 *out, const u8 *in, u32 *key_dec, u32 rounds); extern void ppc_encrypt_ecb(u8 *out, const u8 *in, u32 *key_enc, u32 rounds, u32 bytes); extern void ppc_decrypt_ecb(u8 *out, const u8 *in, u32 *key_dec, u32 rounds, u32 bytes); extern void ppc_encrypt_cbc(u8 *out, const u8 *in, u32 *key_enc, u32 rounds, u32 bytes, u8 *iv); extern void ppc_decrypt_cbc(u8 *out, const u8 *in, u32 *key_dec, u32 rounds, u32 bytes, u8 *iv); extern void ppc_crypt_ctr (u8 *out, const u8 *in, u32 *key_enc, u32 rounds, u32 bytes, u8 *iv); extern void ppc_encrypt_xts(u8 *out, const u8 *in, u32 *key_enc, u32 rounds, u32 bytes, u8 *iv, u32 *key_twk); extern void ppc_decrypt_xts(u8 *out, const u8 *in, u32 *key_dec, u32 rounds, u32 bytes, u8 *iv, u32 *key_twk); extern void ppc_expand_key_128(u32 *key_enc, const u8 *key); extern void ppc_expand_key_192(u32 *key_enc, const u8 *key); extern void ppc_expand_key_256(u32 *key_enc, const u8 *key); extern void ppc_generate_decrypt_key(u32 *key_dec,u32 *key_enc, unsigned int key_len); static void spe_begin(void) { /* disable preemption and save users SPE registers if required */ preempt_disable(); enable_kernel_spe(); } static void spe_end(void) { disable_kernel_spe(); /* reenable preemption */ preempt_enable(); } static int ppc_aes_setkey(struct crypto_tfm *tfm, const u8 *in_key, unsigned int key_len) { struct ppc_aes_ctx *ctx = crypto_tfm_ctx(tfm); switch (key_len) { case AES_KEYSIZE_128: ctx->rounds = 4; ppc_expand_key_128(ctx->key_enc, in_key); break; case AES_KEYSIZE_192: ctx->rounds = 5; ppc_expand_key_192(ctx->key_enc, in_key); break; case AES_KEYSIZE_256: ctx->rounds = 6; ppc_expand_key_256(ctx->key_enc, in_key); break; default: return -EINVAL; } ppc_generate_decrypt_key(ctx->key_dec, ctx->key_enc, key_len); return 0; } static int ppc_aes_setkey_skcipher(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len) { return ppc_aes_setkey(crypto_skcipher_tfm(tfm), in_key, key_len); } static int ppc_xts_setkey(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len) { struct ppc_xts_ctx *ctx = crypto_skcipher_ctx(tfm); int err; err = xts_verify_key(tfm, in_key, key_len); if (err) return err; key_len >>= 1; switch (key_len) { case AES_KEYSIZE_128: ctx->rounds = 4; ppc_expand_key_128(ctx->key_enc, in_key); ppc_expand_key_128(ctx->key_twk, in_key + AES_KEYSIZE_128); break; case AES_KEYSIZE_192: ctx->rounds = 5; ppc_expand_key_192(ctx->key_enc, in_key); ppc_expand_key_192(ctx->key_twk, in_key + AES_KEYSIZE_192); break; case AES_KEYSIZE_256: ctx->rounds = 6; ppc_expand_key_256(ctx->key_enc, in_key); ppc_expand_key_256(ctx->key_twk, in_key + AES_KEYSIZE_256); break; default: return -EINVAL; } ppc_generate_decrypt_key(ctx->key_dec, ctx->key_enc, key_len); return 0; } static void ppc_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) { struct ppc_aes_ctx *ctx = crypto_tfm_ctx(tfm); spe_begin(); ppc_encrypt_aes(out, in, ctx->key_enc, ctx->rounds); spe_end(); } static void ppc_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) { struct ppc_aes_ctx *ctx = crypto_tfm_ctx(tfm); spe_begin(); ppc_decrypt_aes(out, in, ctx->key_dec, ctx->rounds); spe_end(); } static int ppc_ecb_crypt(struct skcipher_request *req, bool enc) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct ppc_aes_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; unsigned int nbytes; int err; err = skcipher_walk_virt(&walk, req, false); while ((nbytes = walk.nbytes) != 0) { nbytes = min_t(unsigned int, nbytes, MAX_BYTES); nbytes = round_down(nbytes, AES_BLOCK_SIZE); spe_begin(); if (enc) ppc_encrypt_ecb(walk.dst.virt.addr, walk.src.virt.addr, ctx->key_enc, ctx->rounds, nbytes); else ppc_decrypt_ecb(walk.dst.virt.addr, walk.src.virt.addr, ctx->key_dec, ctx->rounds, nbytes); spe_end(); err = skcipher_walk_done(&walk, walk.nbytes - nbytes); } return err; } static int ppc_ecb_encrypt(struct skcipher_request *req) { return ppc_ecb_crypt(req, true); } static int ppc_ecb_decrypt(struct skcipher_request *req) { return ppc_ecb_crypt(req, false); } static int ppc_cbc_crypt(struct skcipher_request *req, bool enc) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct ppc_aes_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; unsigned int nbytes; int err; err = skcipher_walk_virt(&walk, req, false); while ((nbytes = walk.nbytes) != 0) { nbytes = min_t(unsigned int, nbytes, MAX_BYTES); nbytes = round_down(nbytes, AES_BLOCK_SIZE); spe_begin(); if (enc) ppc_encrypt_cbc(walk.dst.virt.addr, walk.src.virt.addr, ctx->key_enc, ctx->rounds, nbytes, walk.iv); else ppc_decrypt_cbc(walk.dst.virt.addr, walk.src.virt.addr, ctx->key_dec, ctx->rounds, nbytes, walk.iv); spe_end(); err = skcipher_walk_done(&walk, walk.nbytes - nbytes); } return err; } static int ppc_cbc_encrypt(struct skcipher_request *req) { return ppc_cbc_crypt(req, true); } static int ppc_cbc_decrypt(struct skcipher_request *req) { return ppc_cbc_crypt(req, false); } static int ppc_ctr_crypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct ppc_aes_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; unsigned int nbytes; int err; err = skcipher_walk_virt(&walk, req, false); while ((nbytes = walk.nbytes) != 0) { nbytes = min_t(unsigned int, nbytes, MAX_BYTES); if (nbytes < walk.total) nbytes = round_down(nbytes, AES_BLOCK_SIZE); spe_begin(); ppc_crypt_ctr(walk.dst.virt.addr, walk.src.virt.addr, ctx->key_enc, ctx->rounds, nbytes, walk.iv); spe_end(); err = skcipher_walk_done(&walk, walk.nbytes - nbytes); } return err; } static int ppc_xts_crypt(struct skcipher_request *req, bool enc) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct ppc_xts_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; unsigned int nbytes; int err; u32 *twk; err = skcipher_walk_virt(&walk, req, false); twk = ctx->key_twk; while ((nbytes = walk.nbytes) != 0) { nbytes = min_t(unsigned int, nbytes, MAX_BYTES); nbytes = round_down(nbytes, AES_BLOCK_SIZE); spe_begin(); if (enc) ppc_encrypt_xts(walk.dst.virt.addr, walk.src.virt.addr, ctx->key_enc, ctx->rounds, nbytes, walk.iv, twk); else ppc_decrypt_xts(walk.dst.virt.addr, walk.src.virt.addr, ctx->key_dec, ctx->rounds, nbytes, walk.iv, twk); spe_end(); twk = NULL; err = skcipher_walk_done(&walk, walk.nbytes - nbytes); } return err; } static int ppc_xts_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct ppc_xts_ctx *ctx = crypto_skcipher_ctx(tfm); int tail = req->cryptlen % AES_BLOCK_SIZE; int offset = req->cryptlen - tail - AES_BLOCK_SIZE; struct skcipher_request subreq; u8 b[2][AES_BLOCK_SIZE]; int err; if (req->cryptlen < AES_BLOCK_SIZE) return -EINVAL; if (tail) { subreq = *req; skcipher_request_set_crypt(&subreq, req->src, req->dst, req->cryptlen - tail, req->iv); req = &subreq; } err = ppc_xts_crypt(req, true); if (err || !tail) return err; scatterwalk_map_and_copy(b[0], req->dst, offset, AES_BLOCK_SIZE, 0); memcpy(b[1], b[0], tail); scatterwalk_map_and_copy(b[0], req->src, offset + AES_BLOCK_SIZE, tail, 0); spe_begin(); ppc_encrypt_xts(b[0], b[0], ctx->key_enc, ctx->rounds, AES_BLOCK_SIZE, req->iv, NULL); spe_end(); scatterwalk_map_and_copy(b[0], req->dst, offset, AES_BLOCK_SIZE + tail, 1); return 0; } static int ppc_xts_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct ppc_xts_ctx *ctx = crypto_skcipher_ctx(tfm); int tail = req->cryptlen % AES_BLOCK_SIZE; int offset = req->cryptlen - tail - AES_BLOCK_SIZE; struct skcipher_request subreq; u8 b[3][AES_BLOCK_SIZE]; le128 twk; int err; if (req->cryptlen < AES_BLOCK_SIZE) return -EINVAL; if (tail) { subreq = *req; skcipher_request_set_crypt(&subreq, req->src, req->dst, offset, req->iv); req = &subreq; } err = ppc_xts_crypt(req, false); if (err || !tail) return err; scatterwalk_map_and_copy(b[1], req->src, offset, AES_BLOCK_SIZE + tail, 0); spe_begin(); if (!offset) ppc_encrypt_ecb(req->iv, req->iv, ctx->key_twk, ctx->rounds, AES_BLOCK_SIZE); gf128mul_x_ble(&twk, (le128 *)req->iv); ppc_decrypt_xts(b[1], b[1], ctx->key_dec, ctx->rounds, AES_BLOCK_SIZE, (u8 *)&twk, NULL); memcpy(b[0], b[2], tail); memcpy(b[0] + tail, b[1] + tail, AES_BLOCK_SIZE - tail); ppc_decrypt_xts(b[0], b[0], ctx->key_dec, ctx->rounds, AES_BLOCK_SIZE, req->iv, NULL); spe_end(); scatterwalk_map_and_copy(b[0], req->dst, offset, AES_BLOCK_SIZE + tail, 1); return 0; } /* * Algorithm definitions. Disabling alignment (cra_alignmask=0) was chosen * because the e500 platform can handle unaligned reads/writes very efficiently. * This improves IPsec thoughput by another few percent. Additionally we assume * that AES context is always aligned to at least 8 bytes because it is created * with kmalloc() in the crypto infrastructure */ static struct crypto_alg aes_cipher_alg = { .cra_name = "aes", .cra_driver_name = "aes-ppc-spe", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_CIPHER, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct ppc_aes_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_u = { .cipher = { .cia_min_keysize = AES_MIN_KEY_SIZE, .cia_max_keysize = AES_MAX_KEY_SIZE, .cia_setkey = ppc_aes_setkey, .cia_encrypt = ppc_aes_encrypt, .cia_decrypt = ppc_aes_decrypt } } }; static struct skcipher_alg aes_skcipher_algs[] = { { .base.cra_name = "ecb(aes)", .base.cra_driver_name = "ecb-ppc-spe", .base.cra_priority = 300, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct ppc_aes_ctx), .base.cra_module = THIS_MODULE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = ppc_aes_setkey_skcipher, .encrypt = ppc_ecb_encrypt, .decrypt = ppc_ecb_decrypt, }, { .base.cra_name = "cbc(aes)", .base.cra_driver_name = "cbc-ppc-spe", .base.cra_priority = 300, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct ppc_aes_ctx), .base.cra_module = THIS_MODULE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = ppc_aes_setkey_skcipher, .encrypt = ppc_cbc_encrypt, .decrypt = ppc_cbc_decrypt, }, { .base.cra_name = "ctr(aes)", .base.cra_driver_name = "ctr-ppc-spe", .base.cra_priority = 300, .base.cra_blocksize = 1, .base.cra_ctxsize = sizeof(struct ppc_aes_ctx), .base.cra_module = THIS_MODULE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = ppc_aes_setkey_skcipher, .encrypt = ppc_ctr_crypt, .decrypt = ppc_ctr_crypt, .chunksize = AES_BLOCK_SIZE, }, { .base.cra_name = "xts(aes)", .base.cra_driver_name = "xts-ppc-spe", .base.cra_priority = 300, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct ppc_xts_ctx), .base.cra_module = THIS_MODULE, .min_keysize = AES_MIN_KEY_SIZE * 2, .max_keysize = AES_MAX_KEY_SIZE * 2, .ivsize = AES_BLOCK_SIZE, .setkey = ppc_xts_setkey, .encrypt = ppc_xts_encrypt, .decrypt = ppc_xts_decrypt, } }; static int __init ppc_aes_mod_init(void) { int err; err = crypto_register_alg(&aes_cipher_alg); if (err) return err; err = crypto_register_skciphers(aes_skcipher_algs, ARRAY_SIZE(aes_skcipher_algs)); if (err) crypto_unregister_alg(&aes_cipher_alg); return err; } static void __exit ppc_aes_mod_fini(void) { crypto_unregister_alg(&aes_cipher_alg); crypto_unregister_skciphers(aes_skcipher_algs, ARRAY_SIZE(aes_skcipher_algs)); } module_init(ppc_aes_mod_init); module_exit(ppc_aes_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS, SPE optimized"); MODULE_ALIAS_CRYPTO("aes"); MODULE_ALIAS_CRYPTO("ecb(aes)"); MODULE_ALIAS_CRYPTO("cbc(aes)"); MODULE_ALIAS_CRYPTO("ctr(aes)"); MODULE_ALIAS_CRYPTO("xts(aes)"); MODULE_ALIAS_CRYPTO("aes-ppc-spe");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1