Contributors: 18
Author Tokens Token Proportion Commits Commit Proportion
Michael Ellerman 200 44.64% 8 24.24%
Anton Blanchard 137 30.58% 3 9.09%
Laurent Dufour 17 3.79% 1 3.03%
Benjamin Herrenschmidt 16 3.57% 1 3.03%
Vivek Goyal 14 3.12% 1 3.03%
Matthew Wilcox 14 3.12% 1 3.03%
Christophe Leroy 9 2.01% 4 12.12%
Stephen Rothwell 7 1.56% 2 6.06%
Paul Mackerras 7 1.56% 2 6.06%
Jordan Niethe 7 1.56% 2 6.06%
M. Mohan Kumar 6 1.34% 1 3.03%
Matthew McClintock 3 0.67% 1 3.03%
David S. Miller 2 0.45% 1 3.03%
Suzuki K. Poulose 2 0.45% 1 3.03%
Linus Torvalds (pre-git) 2 0.45% 1 3.03%
Thomas Gleixner 2 0.45% 1 3.03%
Yinghai Lu 2 0.45% 1 3.03%
Jiang Liu 1 0.22% 1 3.03%
Total 448 33


// SPDX-License-Identifier: GPL-2.0-only
/*
 * Routines for doing kexec-based kdump.
 *
 * Copyright (C) 2005, IBM Corp.
 *
 * Created by: Michael Ellerman
 */

#undef DEBUG

#include <linux/crash_dump.h>
#include <linux/io.h>
#include <linux/memblock.h>
#include <linux/of.h>
#include <asm/code-patching.h>
#include <asm/kdump.h>
#include <asm/firmware.h>
#include <linux/uio.h>
#include <asm/rtas.h>
#include <asm/inst.h>

#ifdef DEBUG
#include <asm/udbg.h>
#define DBG(fmt...) udbg_printf(fmt)
#else
#define DBG(fmt...)
#endif

#ifndef CONFIG_NONSTATIC_KERNEL
void __init reserve_kdump_trampoline(void)
{
	memblock_reserve(0, KDUMP_RESERVE_LIMIT);
}

static void __init create_trampoline(unsigned long addr)
{
	u32 *p = (u32 *)addr;

	/* The maximum range of a single instruction branch, is the current
	 * instruction's address + (32 MB - 4) bytes. For the trampoline we
	 * need to branch to current address + 32 MB. So we insert a nop at
	 * the trampoline address, then the next instruction (+ 4 bytes)
	 * does a branch to (32 MB - 4). The net effect is that when we
	 * branch to "addr" we jump to ("addr" + 32 MB). Although it requires
	 * two instructions it doesn't require any registers.
	 */
	patch_instruction(p, ppc_inst(PPC_RAW_NOP()));
	patch_branch(p + 1, addr + PHYSICAL_START, 0);
}

void __init setup_kdump_trampoline(void)
{
	unsigned long i;

	DBG(" -> setup_kdump_trampoline()\n");

	for (i = KDUMP_TRAMPOLINE_START; i < KDUMP_TRAMPOLINE_END; i += 8) {
		create_trampoline(i);
	}

#ifdef CONFIG_PPC_PSERIES
	create_trampoline(__pa(system_reset_fwnmi) - PHYSICAL_START);
	create_trampoline(__pa(machine_check_fwnmi) - PHYSICAL_START);
#endif /* CONFIG_PPC_PSERIES */

	DBG(" <- setup_kdump_trampoline()\n");
}
#endif /* CONFIG_NONSTATIC_KERNEL */

ssize_t copy_oldmem_page(struct iov_iter *iter, unsigned long pfn,
			size_t csize, unsigned long offset)
{
	void  *vaddr;
	phys_addr_t paddr;

	if (!csize)
		return 0;

	csize = min_t(size_t, csize, PAGE_SIZE);
	paddr = pfn << PAGE_SHIFT;

	if (memblock_is_region_memory(paddr, csize)) {
		vaddr = __va(paddr);
		csize = copy_to_iter(vaddr + offset, csize, iter);
	} else {
		vaddr = ioremap_cache(paddr, PAGE_SIZE);
		csize = copy_to_iter(vaddr + offset, csize, iter);
		iounmap(vaddr);
	}

	return csize;
}

#ifdef CONFIG_PPC_RTAS
/*
 * The crashkernel region will almost always overlap the RTAS region, so
 * we have to be careful when shrinking the crashkernel region.
 */
void crash_free_reserved_phys_range(unsigned long begin, unsigned long end)
{
	unsigned long addr;
	const __be32 *basep, *sizep;
	unsigned int rtas_start = 0, rtas_end = 0;

	basep = of_get_property(rtas.dev, "linux,rtas-base", NULL);
	sizep = of_get_property(rtas.dev, "rtas-size", NULL);

	if (basep && sizep) {
		rtas_start = be32_to_cpup(basep);
		rtas_end = rtas_start + be32_to_cpup(sizep);
	}

	for (addr = begin; addr < end; addr += PAGE_SIZE) {
		/* Does this page overlap with the RTAS region? */
		if (addr <= rtas_end && ((addr + PAGE_SIZE) > rtas_start))
			continue;

		free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
	}
}
#endif