Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alexander Graf | 2312 | 72.66% | 18 | 47.37% |
Scott Wood | 755 | 23.73% | 3 | 7.89% |
Liu Yu | 37 | 1.16% | 2 | 5.26% |
Michael Ellerman | 34 | 1.07% | 2 | 5.26% |
Mathieu Malaterre | 10 | 0.31% | 1 | 2.63% |
Hollis Blanchard | 8 | 0.25% | 2 | 5.26% |
Bharat Bhushan | 5 | 0.16% | 1 | 2.63% |
Christophe Leroy | 4 | 0.13% | 1 | 2.63% |
Stuart Yoder | 3 | 0.09% | 1 | 2.63% |
Paul Gortmaker | 3 | 0.09% | 1 | 2.63% |
Catalin Marinas | 3 | 0.09% | 1 | 2.63% |
Andreas Gruenbacher | 2 | 0.06% | 1 | 2.63% |
Linus Torvalds (pre-git) | 2 | 0.06% | 1 | 2.63% |
Thomas Gleixner | 2 | 0.06% | 1 | 2.63% |
Michael Neuling | 1 | 0.03% | 1 | 2.63% |
Linus Torvalds | 1 | 0.03% | 1 | 2.63% |
Total | 3182 | 38 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2010 SUSE Linux Products GmbH. All rights reserved. * Copyright 2010-2011 Freescale Semiconductor, Inc. * * Authors: * Alexander Graf <agraf@suse.de> */ #include <linux/kvm_host.h> #include <linux/init.h> #include <linux/export.h> #include <linux/kmemleak.h> #include <linux/kvm_para.h> #include <linux/slab.h> #include <linux/of.h> #include <linux/pagemap.h> #include <asm/reg.h> #include <asm/sections.h> #include <asm/cacheflush.h> #include <asm/disassemble.h> #include <asm/ppc-opcode.h> #include <asm/epapr_hcalls.h> #define KVM_MAGIC_PAGE (-4096L) #define magic_var(x) KVM_MAGIC_PAGE + offsetof(struct kvm_vcpu_arch_shared, x) #define KVM_INST_LWZ 0x80000000 #define KVM_INST_STW 0x90000000 #define KVM_INST_LD 0xe8000000 #define KVM_INST_STD 0xf8000000 #define KVM_INST_NOP 0x60000000 #define KVM_INST_B 0x48000000 #define KVM_INST_B_MASK 0x03ffffff #define KVM_INST_B_MAX 0x01ffffff #define KVM_INST_LI 0x38000000 #define KVM_MASK_RT 0x03e00000 #define KVM_RT_30 0x03c00000 #define KVM_MASK_RB 0x0000f800 #define KVM_INST_MFMSR 0x7c0000a6 #define SPR_FROM 0 #define SPR_TO 0x100 #define KVM_INST_SPR(sprn, moveto) (0x7c0002a6 | \ (((sprn) & 0x1f) << 16) | \ (((sprn) & 0x3e0) << 6) | \ (moveto)) #define KVM_INST_MFSPR(sprn) KVM_INST_SPR(sprn, SPR_FROM) #define KVM_INST_MTSPR(sprn) KVM_INST_SPR(sprn, SPR_TO) #define KVM_INST_TLBSYNC 0x7c00046c #define KVM_INST_MTMSRD_L0 0x7c000164 #define KVM_INST_MTMSRD_L1 0x7c010164 #define KVM_INST_MTMSR 0x7c000124 #define KVM_INST_WRTEE 0x7c000106 #define KVM_INST_WRTEEI_0 0x7c000146 #define KVM_INST_WRTEEI_1 0x7c008146 #define KVM_INST_MTSRIN 0x7c0001e4 static bool kvm_patching_worked = true; extern char kvm_tmp[]; extern char kvm_tmp_end[]; static int kvm_tmp_index; static void __init kvm_patch_ins(u32 *inst, u32 new_inst) { *inst = new_inst; flush_icache_range((ulong)inst, (ulong)inst + 4); } static void __init kvm_patch_ins_ll(u32 *inst, long addr, u32 rt) { #ifdef CONFIG_64BIT kvm_patch_ins(inst, KVM_INST_LD | rt | (addr & 0x0000fffc)); #else kvm_patch_ins(inst, KVM_INST_LWZ | rt | (addr & 0x0000fffc)); #endif } static void __init kvm_patch_ins_ld(u32 *inst, long addr, u32 rt) { #ifdef CONFIG_64BIT kvm_patch_ins(inst, KVM_INST_LD | rt | (addr & 0x0000fffc)); #else kvm_patch_ins(inst, KVM_INST_LWZ | rt | ((addr + 4) & 0x0000fffc)); #endif } static void __init kvm_patch_ins_lwz(u32 *inst, long addr, u32 rt) { kvm_patch_ins(inst, KVM_INST_LWZ | rt | (addr & 0x0000ffff)); } static void __init kvm_patch_ins_std(u32 *inst, long addr, u32 rt) { #ifdef CONFIG_64BIT kvm_patch_ins(inst, KVM_INST_STD | rt | (addr & 0x0000fffc)); #else kvm_patch_ins(inst, KVM_INST_STW | rt | ((addr + 4) & 0x0000fffc)); #endif } static void __init kvm_patch_ins_stw(u32 *inst, long addr, u32 rt) { kvm_patch_ins(inst, KVM_INST_STW | rt | (addr & 0x0000fffc)); } static void __init kvm_patch_ins_nop(u32 *inst) { kvm_patch_ins(inst, KVM_INST_NOP); } static void __init kvm_patch_ins_b(u32 *inst, int addr) { #if defined(CONFIG_RELOCATABLE) && defined(CONFIG_PPC_BOOK3S) /* On relocatable kernels interrupts handlers and our code can be in different regions, so we don't patch them */ if ((ulong)inst < (ulong)&__end_interrupts) return; #endif kvm_patch_ins(inst, KVM_INST_B | (addr & KVM_INST_B_MASK)); } static u32 * __init kvm_alloc(int len) { u32 *p; if ((kvm_tmp_index + len) > (kvm_tmp_end - kvm_tmp)) { printk(KERN_ERR "KVM: No more space (%d + %d)\n", kvm_tmp_index, len); kvm_patching_worked = false; return NULL; } p = (void*)&kvm_tmp[kvm_tmp_index]; kvm_tmp_index += len; return p; } extern u32 kvm_emulate_mtmsrd_branch_offs; extern u32 kvm_emulate_mtmsrd_reg_offs; extern u32 kvm_emulate_mtmsrd_orig_ins_offs; extern u32 kvm_emulate_mtmsrd_len; extern u32 kvm_emulate_mtmsrd[]; static void __init kvm_patch_ins_mtmsrd(u32 *inst, u32 rt) { u32 *p; int distance_start; int distance_end; ulong next_inst; p = kvm_alloc(kvm_emulate_mtmsrd_len * 4); if (!p) return; /* Find out where we are and put everything there */ distance_start = (ulong)p - (ulong)inst; next_inst = ((ulong)inst + 4); distance_end = next_inst - (ulong)&p[kvm_emulate_mtmsrd_branch_offs]; /* Make sure we only write valid b instructions */ if (distance_start > KVM_INST_B_MAX) { kvm_patching_worked = false; return; } /* Modify the chunk to fit the invocation */ memcpy(p, kvm_emulate_mtmsrd, kvm_emulate_mtmsrd_len * 4); p[kvm_emulate_mtmsrd_branch_offs] |= distance_end & KVM_INST_B_MASK; switch (get_rt(rt)) { case 30: kvm_patch_ins_ll(&p[kvm_emulate_mtmsrd_reg_offs], magic_var(scratch2), KVM_RT_30); break; case 31: kvm_patch_ins_ll(&p[kvm_emulate_mtmsrd_reg_offs], magic_var(scratch1), KVM_RT_30); break; default: p[kvm_emulate_mtmsrd_reg_offs] |= rt; break; } p[kvm_emulate_mtmsrd_orig_ins_offs] = *inst; flush_icache_range((ulong)p, (ulong)p + kvm_emulate_mtmsrd_len * 4); /* Patch the invocation */ kvm_patch_ins_b(inst, distance_start); } extern u32 kvm_emulate_mtmsr_branch_offs; extern u32 kvm_emulate_mtmsr_reg1_offs; extern u32 kvm_emulate_mtmsr_reg2_offs; extern u32 kvm_emulate_mtmsr_orig_ins_offs; extern u32 kvm_emulate_mtmsr_len; extern u32 kvm_emulate_mtmsr[]; static void __init kvm_patch_ins_mtmsr(u32 *inst, u32 rt) { u32 *p; int distance_start; int distance_end; ulong next_inst; p = kvm_alloc(kvm_emulate_mtmsr_len * 4); if (!p) return; /* Find out where we are and put everything there */ distance_start = (ulong)p - (ulong)inst; next_inst = ((ulong)inst + 4); distance_end = next_inst - (ulong)&p[kvm_emulate_mtmsr_branch_offs]; /* Make sure we only write valid b instructions */ if (distance_start > KVM_INST_B_MAX) { kvm_patching_worked = false; return; } /* Modify the chunk to fit the invocation */ memcpy(p, kvm_emulate_mtmsr, kvm_emulate_mtmsr_len * 4); p[kvm_emulate_mtmsr_branch_offs] |= distance_end & KVM_INST_B_MASK; /* Make clobbered registers work too */ switch (get_rt(rt)) { case 30: kvm_patch_ins_ll(&p[kvm_emulate_mtmsr_reg1_offs], magic_var(scratch2), KVM_RT_30); kvm_patch_ins_ll(&p[kvm_emulate_mtmsr_reg2_offs], magic_var(scratch2), KVM_RT_30); break; case 31: kvm_patch_ins_ll(&p[kvm_emulate_mtmsr_reg1_offs], magic_var(scratch1), KVM_RT_30); kvm_patch_ins_ll(&p[kvm_emulate_mtmsr_reg2_offs], magic_var(scratch1), KVM_RT_30); break; default: p[kvm_emulate_mtmsr_reg1_offs] |= rt; p[kvm_emulate_mtmsr_reg2_offs] |= rt; break; } p[kvm_emulate_mtmsr_orig_ins_offs] = *inst; flush_icache_range((ulong)p, (ulong)p + kvm_emulate_mtmsr_len * 4); /* Patch the invocation */ kvm_patch_ins_b(inst, distance_start); } #ifdef CONFIG_BOOKE extern u32 kvm_emulate_wrtee_branch_offs; extern u32 kvm_emulate_wrtee_reg_offs; extern u32 kvm_emulate_wrtee_orig_ins_offs; extern u32 kvm_emulate_wrtee_len; extern u32 kvm_emulate_wrtee[]; static void __init kvm_patch_ins_wrtee(u32 *inst, u32 rt, int imm_one) { u32 *p; int distance_start; int distance_end; ulong next_inst; p = kvm_alloc(kvm_emulate_wrtee_len * 4); if (!p) return; /* Find out where we are and put everything there */ distance_start = (ulong)p - (ulong)inst; next_inst = ((ulong)inst + 4); distance_end = next_inst - (ulong)&p[kvm_emulate_wrtee_branch_offs]; /* Make sure we only write valid b instructions */ if (distance_start > KVM_INST_B_MAX) { kvm_patching_worked = false; return; } /* Modify the chunk to fit the invocation */ memcpy(p, kvm_emulate_wrtee, kvm_emulate_wrtee_len * 4); p[kvm_emulate_wrtee_branch_offs] |= distance_end & KVM_INST_B_MASK; if (imm_one) { p[kvm_emulate_wrtee_reg_offs] = KVM_INST_LI | __PPC_RT(R30) | MSR_EE; } else { /* Make clobbered registers work too */ switch (get_rt(rt)) { case 30: kvm_patch_ins_ll(&p[kvm_emulate_wrtee_reg_offs], magic_var(scratch2), KVM_RT_30); break; case 31: kvm_patch_ins_ll(&p[kvm_emulate_wrtee_reg_offs], magic_var(scratch1), KVM_RT_30); break; default: p[kvm_emulate_wrtee_reg_offs] |= rt; break; } } p[kvm_emulate_wrtee_orig_ins_offs] = *inst; flush_icache_range((ulong)p, (ulong)p + kvm_emulate_wrtee_len * 4); /* Patch the invocation */ kvm_patch_ins_b(inst, distance_start); } extern u32 kvm_emulate_wrteei_0_branch_offs; extern u32 kvm_emulate_wrteei_0_len; extern u32 kvm_emulate_wrteei_0[]; static void __init kvm_patch_ins_wrteei_0(u32 *inst) { u32 *p; int distance_start; int distance_end; ulong next_inst; p = kvm_alloc(kvm_emulate_wrteei_0_len * 4); if (!p) return; /* Find out where we are and put everything there */ distance_start = (ulong)p - (ulong)inst; next_inst = ((ulong)inst + 4); distance_end = next_inst - (ulong)&p[kvm_emulate_wrteei_0_branch_offs]; /* Make sure we only write valid b instructions */ if (distance_start > KVM_INST_B_MAX) { kvm_patching_worked = false; return; } memcpy(p, kvm_emulate_wrteei_0, kvm_emulate_wrteei_0_len * 4); p[kvm_emulate_wrteei_0_branch_offs] |= distance_end & KVM_INST_B_MASK; flush_icache_range((ulong)p, (ulong)p + kvm_emulate_wrteei_0_len * 4); /* Patch the invocation */ kvm_patch_ins_b(inst, distance_start); } #endif #ifdef CONFIG_PPC_BOOK3S_32 extern u32 kvm_emulate_mtsrin_branch_offs; extern u32 kvm_emulate_mtsrin_reg1_offs; extern u32 kvm_emulate_mtsrin_reg2_offs; extern u32 kvm_emulate_mtsrin_orig_ins_offs; extern u32 kvm_emulate_mtsrin_len; extern u32 kvm_emulate_mtsrin[]; static void __init kvm_patch_ins_mtsrin(u32 *inst, u32 rt, u32 rb) { u32 *p; int distance_start; int distance_end; ulong next_inst; p = kvm_alloc(kvm_emulate_mtsrin_len * 4); if (!p) return; /* Find out where we are and put everything there */ distance_start = (ulong)p - (ulong)inst; next_inst = ((ulong)inst + 4); distance_end = next_inst - (ulong)&p[kvm_emulate_mtsrin_branch_offs]; /* Make sure we only write valid b instructions */ if (distance_start > KVM_INST_B_MAX) { kvm_patching_worked = false; return; } /* Modify the chunk to fit the invocation */ memcpy(p, kvm_emulate_mtsrin, kvm_emulate_mtsrin_len * 4); p[kvm_emulate_mtsrin_branch_offs] |= distance_end & KVM_INST_B_MASK; p[kvm_emulate_mtsrin_reg1_offs] |= (rb << 10); p[kvm_emulate_mtsrin_reg2_offs] |= rt; p[kvm_emulate_mtsrin_orig_ins_offs] = *inst; flush_icache_range((ulong)p, (ulong)p + kvm_emulate_mtsrin_len * 4); /* Patch the invocation */ kvm_patch_ins_b(inst, distance_start); } #endif static void __init kvm_map_magic_page(void *data) { u32 *features = data; ulong in[8] = {0}; ulong out[8]; in[0] = KVM_MAGIC_PAGE; in[1] = KVM_MAGIC_PAGE | MAGIC_PAGE_FLAG_NOT_MAPPED_NX; epapr_hypercall(in, out, KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE)); *features = out[0]; } static void __init kvm_check_ins(u32 *inst, u32 features) { u32 _inst = *inst; u32 inst_no_rt = _inst & ~KVM_MASK_RT; u32 inst_rt = _inst & KVM_MASK_RT; switch (inst_no_rt) { /* Loads */ case KVM_INST_MFMSR: kvm_patch_ins_ld(inst, magic_var(msr), inst_rt); break; case KVM_INST_MFSPR(SPRN_SPRG0): kvm_patch_ins_ld(inst, magic_var(sprg0), inst_rt); break; case KVM_INST_MFSPR(SPRN_SPRG1): kvm_patch_ins_ld(inst, magic_var(sprg1), inst_rt); break; case KVM_INST_MFSPR(SPRN_SPRG2): kvm_patch_ins_ld(inst, magic_var(sprg2), inst_rt); break; case KVM_INST_MFSPR(SPRN_SPRG3): kvm_patch_ins_ld(inst, magic_var(sprg3), inst_rt); break; case KVM_INST_MFSPR(SPRN_SRR0): kvm_patch_ins_ld(inst, magic_var(srr0), inst_rt); break; case KVM_INST_MFSPR(SPRN_SRR1): kvm_patch_ins_ld(inst, magic_var(srr1), inst_rt); break; #ifdef CONFIG_BOOKE case KVM_INST_MFSPR(SPRN_DEAR): #else case KVM_INST_MFSPR(SPRN_DAR): #endif kvm_patch_ins_ld(inst, magic_var(dar), inst_rt); break; case KVM_INST_MFSPR(SPRN_DSISR): kvm_patch_ins_lwz(inst, magic_var(dsisr), inst_rt); break; #ifdef CONFIG_PPC_E500 case KVM_INST_MFSPR(SPRN_MAS0): if (features & KVM_MAGIC_FEAT_MAS0_TO_SPRG7) kvm_patch_ins_lwz(inst, magic_var(mas0), inst_rt); break; case KVM_INST_MFSPR(SPRN_MAS1): if (features & KVM_MAGIC_FEAT_MAS0_TO_SPRG7) kvm_patch_ins_lwz(inst, magic_var(mas1), inst_rt); break; case KVM_INST_MFSPR(SPRN_MAS2): if (features & KVM_MAGIC_FEAT_MAS0_TO_SPRG7) kvm_patch_ins_ld(inst, magic_var(mas2), inst_rt); break; case KVM_INST_MFSPR(SPRN_MAS3): if (features & KVM_MAGIC_FEAT_MAS0_TO_SPRG7) kvm_patch_ins_lwz(inst, magic_var(mas7_3) + 4, inst_rt); break; case KVM_INST_MFSPR(SPRN_MAS4): if (features & KVM_MAGIC_FEAT_MAS0_TO_SPRG7) kvm_patch_ins_lwz(inst, magic_var(mas4), inst_rt); break; case KVM_INST_MFSPR(SPRN_MAS6): if (features & KVM_MAGIC_FEAT_MAS0_TO_SPRG7) kvm_patch_ins_lwz(inst, magic_var(mas6), inst_rt); break; case KVM_INST_MFSPR(SPRN_MAS7): if (features & KVM_MAGIC_FEAT_MAS0_TO_SPRG7) kvm_patch_ins_lwz(inst, magic_var(mas7_3), inst_rt); break; #endif /* CONFIG_PPC_E500 */ case KVM_INST_MFSPR(SPRN_SPRG4): #ifdef CONFIG_BOOKE case KVM_INST_MFSPR(SPRN_SPRG4R): #endif if (features & KVM_MAGIC_FEAT_MAS0_TO_SPRG7) kvm_patch_ins_ld(inst, magic_var(sprg4), inst_rt); break; case KVM_INST_MFSPR(SPRN_SPRG5): #ifdef CONFIG_BOOKE case KVM_INST_MFSPR(SPRN_SPRG5R): #endif if (features & KVM_MAGIC_FEAT_MAS0_TO_SPRG7) kvm_patch_ins_ld(inst, magic_var(sprg5), inst_rt); break; case KVM_INST_MFSPR(SPRN_SPRG6): #ifdef CONFIG_BOOKE case KVM_INST_MFSPR(SPRN_SPRG6R): #endif if (features & KVM_MAGIC_FEAT_MAS0_TO_SPRG7) kvm_patch_ins_ld(inst, magic_var(sprg6), inst_rt); break; case KVM_INST_MFSPR(SPRN_SPRG7): #ifdef CONFIG_BOOKE case KVM_INST_MFSPR(SPRN_SPRG7R): #endif if (features & KVM_MAGIC_FEAT_MAS0_TO_SPRG7) kvm_patch_ins_ld(inst, magic_var(sprg7), inst_rt); break; #ifdef CONFIG_BOOKE case KVM_INST_MFSPR(SPRN_ESR): if (features & KVM_MAGIC_FEAT_MAS0_TO_SPRG7) kvm_patch_ins_lwz(inst, magic_var(esr), inst_rt); break; #endif case KVM_INST_MFSPR(SPRN_PIR): if (features & KVM_MAGIC_FEAT_MAS0_TO_SPRG7) kvm_patch_ins_lwz(inst, magic_var(pir), inst_rt); break; /* Stores */ case KVM_INST_MTSPR(SPRN_SPRG0): kvm_patch_ins_std(inst, magic_var(sprg0), inst_rt); break; case KVM_INST_MTSPR(SPRN_SPRG1): kvm_patch_ins_std(inst, magic_var(sprg1), inst_rt); break; case KVM_INST_MTSPR(SPRN_SPRG2): kvm_patch_ins_std(inst, magic_var(sprg2), inst_rt); break; case KVM_INST_MTSPR(SPRN_SPRG3): kvm_patch_ins_std(inst, magic_var(sprg3), inst_rt); break; case KVM_INST_MTSPR(SPRN_SRR0): kvm_patch_ins_std(inst, magic_var(srr0), inst_rt); break; case KVM_INST_MTSPR(SPRN_SRR1): kvm_patch_ins_std(inst, magic_var(srr1), inst_rt); break; #ifdef CONFIG_BOOKE case KVM_INST_MTSPR(SPRN_DEAR): #else case KVM_INST_MTSPR(SPRN_DAR): #endif kvm_patch_ins_std(inst, magic_var(dar), inst_rt); break; case KVM_INST_MTSPR(SPRN_DSISR): kvm_patch_ins_stw(inst, magic_var(dsisr), inst_rt); break; #ifdef CONFIG_PPC_E500 case KVM_INST_MTSPR(SPRN_MAS0): if (features & KVM_MAGIC_FEAT_MAS0_TO_SPRG7) kvm_patch_ins_stw(inst, magic_var(mas0), inst_rt); break; case KVM_INST_MTSPR(SPRN_MAS1): if (features & KVM_MAGIC_FEAT_MAS0_TO_SPRG7) kvm_patch_ins_stw(inst, magic_var(mas1), inst_rt); break; case KVM_INST_MTSPR(SPRN_MAS2): if (features & KVM_MAGIC_FEAT_MAS0_TO_SPRG7) kvm_patch_ins_std(inst, magic_var(mas2), inst_rt); break; case KVM_INST_MTSPR(SPRN_MAS3): if (features & KVM_MAGIC_FEAT_MAS0_TO_SPRG7) kvm_patch_ins_stw(inst, magic_var(mas7_3) + 4, inst_rt); break; case KVM_INST_MTSPR(SPRN_MAS4): if (features & KVM_MAGIC_FEAT_MAS0_TO_SPRG7) kvm_patch_ins_stw(inst, magic_var(mas4), inst_rt); break; case KVM_INST_MTSPR(SPRN_MAS6): if (features & KVM_MAGIC_FEAT_MAS0_TO_SPRG7) kvm_patch_ins_stw(inst, magic_var(mas6), inst_rt); break; case KVM_INST_MTSPR(SPRN_MAS7): if (features & KVM_MAGIC_FEAT_MAS0_TO_SPRG7) kvm_patch_ins_stw(inst, magic_var(mas7_3), inst_rt); break; #endif /* CONFIG_PPC_E500 */ case KVM_INST_MTSPR(SPRN_SPRG4): if (features & KVM_MAGIC_FEAT_MAS0_TO_SPRG7) kvm_patch_ins_std(inst, magic_var(sprg4), inst_rt); break; case KVM_INST_MTSPR(SPRN_SPRG5): if (features & KVM_MAGIC_FEAT_MAS0_TO_SPRG7) kvm_patch_ins_std(inst, magic_var(sprg5), inst_rt); break; case KVM_INST_MTSPR(SPRN_SPRG6): if (features & KVM_MAGIC_FEAT_MAS0_TO_SPRG7) kvm_patch_ins_std(inst, magic_var(sprg6), inst_rt); break; case KVM_INST_MTSPR(SPRN_SPRG7): if (features & KVM_MAGIC_FEAT_MAS0_TO_SPRG7) kvm_patch_ins_std(inst, magic_var(sprg7), inst_rt); break; #ifdef CONFIG_BOOKE case KVM_INST_MTSPR(SPRN_ESR): if (features & KVM_MAGIC_FEAT_MAS0_TO_SPRG7) kvm_patch_ins_stw(inst, magic_var(esr), inst_rt); break; #endif /* Nops */ case KVM_INST_TLBSYNC: kvm_patch_ins_nop(inst); break; /* Rewrites */ case KVM_INST_MTMSRD_L1: kvm_patch_ins_mtmsrd(inst, inst_rt); break; case KVM_INST_MTMSR: case KVM_INST_MTMSRD_L0: kvm_patch_ins_mtmsr(inst, inst_rt); break; #ifdef CONFIG_BOOKE case KVM_INST_WRTEE: kvm_patch_ins_wrtee(inst, inst_rt, 0); break; #endif } switch (inst_no_rt & ~KVM_MASK_RB) { #ifdef CONFIG_PPC_BOOK3S_32 case KVM_INST_MTSRIN: if (features & KVM_MAGIC_FEAT_SR) { u32 inst_rb = _inst & KVM_MASK_RB; kvm_patch_ins_mtsrin(inst, inst_rt, inst_rb); } break; #endif } switch (_inst) { #ifdef CONFIG_BOOKE case KVM_INST_WRTEEI_0: kvm_patch_ins_wrteei_0(inst); break; case KVM_INST_WRTEEI_1: kvm_patch_ins_wrtee(inst, 0, 1); break; #endif } } extern u32 kvm_template_start[]; extern u32 kvm_template_end[]; static void __init kvm_use_magic_page(void) { u32 *p; u32 *start, *end; u32 features; /* Tell the host to map the magic page to -4096 on all CPUs */ on_each_cpu(kvm_map_magic_page, &features, 1); /* Quick self-test to see if the mapping works */ if (fault_in_readable((const char __user *)KVM_MAGIC_PAGE, sizeof(u32))) { kvm_patching_worked = false; return; } /* Now loop through all code and find instructions */ start = (void*)_stext; end = (void*)_etext; /* * Being interrupted in the middle of patching would * be bad for SPRG4-7, which KVM can't keep in sync * with emulated accesses because reads don't trap. */ local_irq_disable(); for (p = start; p < end; p++) { /* Avoid patching the template code */ if (p >= kvm_template_start && p < kvm_template_end) { p = kvm_template_end - 1; continue; } kvm_check_ins(p, features); } local_irq_enable(); printk(KERN_INFO "KVM: Live patching for a fast VM %s\n", kvm_patching_worked ? "worked" : "failed"); } static int __init kvm_guest_init(void) { if (!kvm_para_available()) return 0; if (!epapr_paravirt_enabled) return 0; if (kvm_para_has_feature(KVM_FEATURE_MAGIC_PAGE)) kvm_use_magic_page(); #ifdef CONFIG_PPC_BOOK3S_64 /* Enable napping */ powersave_nap = 1; #endif return 0; } postcore_initcall(kvm_guest_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1