Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Michael Ellerman | 2310 | 46.39% | 18 | 23.68% |
Nicholas Piggin | 697 | 14.00% | 6 | 7.89% |
Christophe Leroy | 525 | 10.54% | 11 | 14.47% |
Jordan Niethe | 466 | 9.36% | 6 | 7.89% |
Kumar Gala | 188 | 3.78% | 2 | 2.63% |
Diana Craciun | 147 | 2.95% | 2 | 2.63% |
Benjamin Herrenschmidt | 145 | 2.91% | 7 | 9.21% |
Mauricio Faria de Oliveira | 140 | 2.81% | 1 | 1.32% |
Michal Suchanek | 100 | 2.01% | 2 | 2.63% |
Anton Blanchard | 70 | 1.41% | 3 | 3.95% |
Paul Mackerras | 68 | 1.37% | 3 | 3.95% |
Daniel Axtens | 38 | 0.76% | 2 | 2.63% |
Russell Currey | 32 | 0.64% | 1 | 1.32% |
Nick Child | 13 | 0.26% | 1 | 1.32% |
Stephen Rothwell | 11 | 0.22% | 1 | 1.32% |
Aneesh Kumar K.V | 7 | 0.14% | 1 | 1.32% |
Kevin Hao | 6 | 0.12% | 2 | 2.63% |
Scott Wood | 4 | 0.08% | 1 | 1.32% |
Linus Torvalds | 3 | 0.06% | 1 | 1.32% |
Ingo Molnar | 3 | 0.06% | 1 | 1.32% |
Breno Leitão | 2 | 0.04% | 1 | 1.32% |
Alexander Graf | 2 | 0.04% | 1 | 1.32% |
Thomas Gleixner | 2 | 0.04% | 1 | 1.32% |
Christoph Hellwig | 1 | 0.02% | 1 | 1.32% |
Total | 4980 | 76 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2001 Ben. Herrenschmidt (benh@kernel.crashing.org) * * Modifications for ppc64: * Copyright (C) 2003 Dave Engebretsen <engebret@us.ibm.com> * * Copyright 2008 Michael Ellerman, IBM Corporation. */ #include <linux/types.h> #include <linux/jump_label.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/init.h> #include <linux/sched/mm.h> #include <linux/stop_machine.h> #include <asm/cputable.h> #include <asm/code-patching.h> #include <asm/interrupt.h> #include <asm/page.h> #include <asm/sections.h> #include <asm/setup.h> #include <asm/security_features.h> #include <asm/firmware.h> #include <asm/inst.h> struct fixup_entry { unsigned long mask; unsigned long value; long start_off; long end_off; long alt_start_off; long alt_end_off; }; static u32 *calc_addr(struct fixup_entry *fcur, long offset) { /* * We store the offset to the code as a negative offset from * the start of the alt_entry, to support the VDSO. This * routine converts that back into an actual address. */ return (u32 *)((unsigned long)fcur + offset); } static int patch_alt_instruction(u32 *src, u32 *dest, u32 *alt_start, u32 *alt_end) { int err; ppc_inst_t instr; instr = ppc_inst_read(src); if (instr_is_relative_branch(ppc_inst_read(src))) { u32 *target = (u32 *)branch_target(src); /* Branch within the section doesn't need translating */ if (target < alt_start || target > alt_end) { err = translate_branch(&instr, dest, src); if (err) return 1; } } raw_patch_instruction(dest, instr); return 0; } static int patch_feature_section(unsigned long value, struct fixup_entry *fcur) { u32 *start, *end, *alt_start, *alt_end, *src, *dest; start = calc_addr(fcur, fcur->start_off); end = calc_addr(fcur, fcur->end_off); alt_start = calc_addr(fcur, fcur->alt_start_off); alt_end = calc_addr(fcur, fcur->alt_end_off); if ((alt_end - alt_start) > (end - start)) return 1; if ((value & fcur->mask) == fcur->value) return 0; src = alt_start; dest = start; for (; src < alt_end; src = ppc_inst_next(src, src), dest = ppc_inst_next(dest, dest)) { if (patch_alt_instruction(src, dest, alt_start, alt_end)) return 1; } for (; dest < end; dest++) raw_patch_instruction(dest, ppc_inst(PPC_RAW_NOP())); return 0; } void do_feature_fixups(unsigned long value, void *fixup_start, void *fixup_end) { struct fixup_entry *fcur, *fend; fcur = fixup_start; fend = fixup_end; for (; fcur < fend; fcur++) { if (patch_feature_section(value, fcur)) { WARN_ON(1); printk("Unable to patch feature section at %p - %p" \ " with %p - %p\n", calc_addr(fcur, fcur->start_off), calc_addr(fcur, fcur->end_off), calc_addr(fcur, fcur->alt_start_off), calc_addr(fcur, fcur->alt_end_off)); } } } #ifdef CONFIG_PPC_BARRIER_NOSPEC static bool is_fixup_addr_valid(void *dest, size_t size) { return system_state < SYSTEM_FREEING_INITMEM || !init_section_contains(dest, size); } static int do_patch_fixups(long *start, long *end, unsigned int *instrs, int num) { int i; for (i = 0; start < end; start++, i++) { int j; unsigned int *dest = (void *)start + *start; if (!is_fixup_addr_valid(dest, sizeof(*instrs) * num)) continue; pr_devel("patching dest %lx\n", (unsigned long)dest); for (j = 0; j < num; j++) patch_instruction(dest + j, ppc_inst(instrs[j])); } return i; } #endif #ifdef CONFIG_PPC_BOOK3S_64 static int do_patch_entry_fixups(long *start, long *end, unsigned int *instrs, bool do_fallback, void *fallback) { int i; for (i = 0; start < end; start++, i++) { unsigned int *dest = (void *)start + *start; if (!is_fixup_addr_valid(dest, sizeof(*instrs) * 3)) continue; pr_devel("patching dest %lx\n", (unsigned long)dest); // See comment in do_entry_flush_fixups() RE order of patching if (do_fallback) { patch_instruction(dest, ppc_inst(instrs[0])); patch_instruction(dest + 2, ppc_inst(instrs[2])); patch_branch(dest + 1, (unsigned long)fallback, BRANCH_SET_LINK); } else { patch_instruction(dest + 1, ppc_inst(instrs[1])); patch_instruction(dest + 2, ppc_inst(instrs[2])); patch_instruction(dest, ppc_inst(instrs[0])); } } return i; } static void do_stf_entry_barrier_fixups(enum stf_barrier_type types) { unsigned int instrs[3]; long *start, *end; int i; start = PTRRELOC(&__start___stf_entry_barrier_fixup); end = PTRRELOC(&__stop___stf_entry_barrier_fixup); instrs[0] = PPC_RAW_NOP(); instrs[1] = PPC_RAW_NOP(); instrs[2] = PPC_RAW_NOP(); i = 0; if (types & STF_BARRIER_FALLBACK) { instrs[i++] = PPC_RAW_MFLR(_R10); instrs[i++] = PPC_RAW_NOP(); /* branch patched below */ instrs[i++] = PPC_RAW_MTLR(_R10); } else if (types & STF_BARRIER_EIEIO) { instrs[i++] = PPC_RAW_EIEIO() | 0x02000000; /* eieio + bit 6 hint */ } else if (types & STF_BARRIER_SYNC_ORI) { instrs[i++] = PPC_RAW_SYNC(); instrs[i++] = PPC_RAW_LD(_R10, _R13, 0); instrs[i++] = PPC_RAW_ORI(_R31, _R31, 0); /* speculation barrier */ } i = do_patch_entry_fixups(start, end, instrs, types & STF_BARRIER_FALLBACK, &stf_barrier_fallback); printk(KERN_DEBUG "stf-barrier: patched %d entry locations (%s barrier)\n", i, (types == STF_BARRIER_NONE) ? "no" : (types == STF_BARRIER_FALLBACK) ? "fallback" : (types == STF_BARRIER_EIEIO) ? "eieio" : (types == (STF_BARRIER_SYNC_ORI)) ? "hwsync" : "unknown"); } static void do_stf_exit_barrier_fixups(enum stf_barrier_type types) { unsigned int instrs[6]; long *start, *end; int i; start = PTRRELOC(&__start___stf_exit_barrier_fixup); end = PTRRELOC(&__stop___stf_exit_barrier_fixup); instrs[0] = PPC_RAW_NOP(); instrs[1] = PPC_RAW_NOP(); instrs[2] = PPC_RAW_NOP(); instrs[3] = PPC_RAW_NOP(); instrs[4] = PPC_RAW_NOP(); instrs[5] = PPC_RAW_NOP(); i = 0; if (types & STF_BARRIER_FALLBACK || types & STF_BARRIER_SYNC_ORI) { if (cpu_has_feature(CPU_FTR_HVMODE)) { instrs[i++] = PPC_RAW_MTSPR(SPRN_HSPRG1, _R13); instrs[i++] = PPC_RAW_MFSPR(_R13, SPRN_HSPRG0); } else { instrs[i++] = PPC_RAW_MTSPR(SPRN_SPRG2, _R13); instrs[i++] = PPC_RAW_MFSPR(_R13, SPRN_SPRG1); } instrs[i++] = PPC_RAW_SYNC(); instrs[i++] = PPC_RAW_LD(_R13, _R13, 0); instrs[i++] = PPC_RAW_ORI(_R31, _R31, 0); /* speculation barrier */ if (cpu_has_feature(CPU_FTR_HVMODE)) instrs[i++] = PPC_RAW_MFSPR(_R13, SPRN_HSPRG1); else instrs[i++] = PPC_RAW_MFSPR(_R13, SPRN_SPRG2); } else if (types & STF_BARRIER_EIEIO) { instrs[i++] = PPC_RAW_EIEIO() | 0x02000000; /* eieio + bit 6 hint */ } i = do_patch_fixups(start, end, instrs, ARRAY_SIZE(instrs)); printk(KERN_DEBUG "stf-barrier: patched %d exit locations (%s barrier)\n", i, (types == STF_BARRIER_NONE) ? "no" : (types == STF_BARRIER_FALLBACK) ? "fallback" : (types == STF_BARRIER_EIEIO) ? "eieio" : (types == (STF_BARRIER_SYNC_ORI)) ? "hwsync" : "unknown"); } static bool stf_exit_reentrant = false; static bool rfi_exit_reentrant = false; static DEFINE_MUTEX(exit_flush_lock); static int __do_stf_barrier_fixups(void *data) { enum stf_barrier_type *types = data; do_stf_entry_barrier_fixups(*types); do_stf_exit_barrier_fixups(*types); return 0; } void do_stf_barrier_fixups(enum stf_barrier_type types) { /* * The call to the fallback entry flush, and the fallback/sync-ori exit * flush can not be safely patched in/out while other CPUs are * executing them. So call __do_stf_barrier_fixups() on one CPU while * all other CPUs spin in the stop machine core with interrupts hard * disabled. * * The branch to mark interrupt exits non-reentrant is enabled first, * then stop_machine runs which will ensure all CPUs are out of the * low level interrupt exit code before patching. After the patching, * if allowed, then flip the branch to allow fast exits. */ // Prevent static key update races with do_rfi_flush_fixups() mutex_lock(&exit_flush_lock); static_branch_enable(&interrupt_exit_not_reentrant); stop_machine(__do_stf_barrier_fixups, &types, NULL); if ((types & STF_BARRIER_FALLBACK) || (types & STF_BARRIER_SYNC_ORI)) stf_exit_reentrant = false; else stf_exit_reentrant = true; if (stf_exit_reentrant && rfi_exit_reentrant) static_branch_disable(&interrupt_exit_not_reentrant); mutex_unlock(&exit_flush_lock); } void do_uaccess_flush_fixups(enum l1d_flush_type types) { unsigned int instrs[4]; long *start, *end; int i; start = PTRRELOC(&__start___uaccess_flush_fixup); end = PTRRELOC(&__stop___uaccess_flush_fixup); instrs[0] = PPC_RAW_NOP(); instrs[1] = PPC_RAW_NOP(); instrs[2] = PPC_RAW_NOP(); instrs[3] = PPC_RAW_BLR(); i = 0; if (types == L1D_FLUSH_FALLBACK) { instrs[3] = PPC_RAW_NOP(); /* fallthrough to fallback flush */ } if (types & L1D_FLUSH_ORI) { instrs[i++] = PPC_RAW_ORI(_R31, _R31, 0); /* speculation barrier */ instrs[i++] = PPC_RAW_ORI(_R30, _R30, 0); /* L1d flush */ } if (types & L1D_FLUSH_MTTRIG) instrs[i++] = PPC_RAW_MTSPR(SPRN_TRIG2, _R0); i = do_patch_fixups(start, end, instrs, ARRAY_SIZE(instrs)); printk(KERN_DEBUG "uaccess-flush: patched %d locations (%s flush)\n", i, (types == L1D_FLUSH_NONE) ? "no" : (types == L1D_FLUSH_FALLBACK) ? "fallback displacement" : (types & L1D_FLUSH_ORI) ? (types & L1D_FLUSH_MTTRIG) ? "ori+mttrig type" : "ori type" : (types & L1D_FLUSH_MTTRIG) ? "mttrig type" : "unknown"); } static int __do_entry_flush_fixups(void *data) { enum l1d_flush_type types = *(enum l1d_flush_type *)data; unsigned int instrs[3]; long *start, *end; int i; instrs[0] = PPC_RAW_NOP(); instrs[1] = PPC_RAW_NOP(); instrs[2] = PPC_RAW_NOP(); i = 0; if (types == L1D_FLUSH_FALLBACK) { instrs[i++] = PPC_RAW_MFLR(_R10); instrs[i++] = PPC_RAW_NOP(); /* branch patched below */ instrs[i++] = PPC_RAW_MTLR(_R10); } if (types & L1D_FLUSH_ORI) { instrs[i++] = PPC_RAW_ORI(_R31, _R31, 0); /* speculation barrier */ instrs[i++] = PPC_RAW_ORI(_R30, _R30, 0); /* L1d flush */ } if (types & L1D_FLUSH_MTTRIG) instrs[i++] = PPC_RAW_MTSPR(SPRN_TRIG2, _R0); /* * If we're patching in or out the fallback flush we need to be careful about the * order in which we patch instructions. That's because it's possible we could * take a page fault after patching one instruction, so the sequence of * instructions must be safe even in a half patched state. * * To make that work, when patching in the fallback flush we patch in this order: * - the mflr (dest) * - the mtlr (dest + 2) * - the branch (dest + 1) * * That ensures the sequence is safe to execute at any point. In contrast if we * patch the mtlr last, it's possible we could return from the branch and not * restore LR, leading to a crash later. * * When patching out the fallback flush (either with nops or another flush type), * we patch in this order: * - the branch (dest + 1) * - the mtlr (dest + 2) * - the mflr (dest) * * Note we are protected by stop_machine() from other CPUs executing the code in a * semi-patched state. */ start = PTRRELOC(&__start___entry_flush_fixup); end = PTRRELOC(&__stop___entry_flush_fixup); i = do_patch_entry_fixups(start, end, instrs, types == L1D_FLUSH_FALLBACK, &entry_flush_fallback); start = PTRRELOC(&__start___scv_entry_flush_fixup); end = PTRRELOC(&__stop___scv_entry_flush_fixup); i += do_patch_entry_fixups(start, end, instrs, types == L1D_FLUSH_FALLBACK, &scv_entry_flush_fallback); printk(KERN_DEBUG "entry-flush: patched %d locations (%s flush)\n", i, (types == L1D_FLUSH_NONE) ? "no" : (types == L1D_FLUSH_FALLBACK) ? "fallback displacement" : (types & L1D_FLUSH_ORI) ? (types & L1D_FLUSH_MTTRIG) ? "ori+mttrig type" : "ori type" : (types & L1D_FLUSH_MTTRIG) ? "mttrig type" : "unknown"); return 0; } void do_entry_flush_fixups(enum l1d_flush_type types) { /* * The call to the fallback flush can not be safely patched in/out while * other CPUs are executing it. So call __do_entry_flush_fixups() on one * CPU while all other CPUs spin in the stop machine core with interrupts * hard disabled. */ stop_machine(__do_entry_flush_fixups, &types, NULL); } static int __do_rfi_flush_fixups(void *data) { enum l1d_flush_type types = *(enum l1d_flush_type *)data; unsigned int instrs[3]; long *start, *end; int i; start = PTRRELOC(&__start___rfi_flush_fixup); end = PTRRELOC(&__stop___rfi_flush_fixup); instrs[0] = PPC_RAW_NOP(); instrs[1] = PPC_RAW_NOP(); instrs[2] = PPC_RAW_NOP(); if (types & L1D_FLUSH_FALLBACK) /* b .+16 to fallback flush */ instrs[0] = PPC_RAW_BRANCH(16); i = 0; if (types & L1D_FLUSH_ORI) { instrs[i++] = PPC_RAW_ORI(_R31, _R31, 0); /* speculation barrier */ instrs[i++] = PPC_RAW_ORI(_R30, _R30, 0); /* L1d flush */ } if (types & L1D_FLUSH_MTTRIG) instrs[i++] = PPC_RAW_MTSPR(SPRN_TRIG2, _R0); i = do_patch_fixups(start, end, instrs, ARRAY_SIZE(instrs)); printk(KERN_DEBUG "rfi-flush: patched %d locations (%s flush)\n", i, (types == L1D_FLUSH_NONE) ? "no" : (types == L1D_FLUSH_FALLBACK) ? "fallback displacement" : (types & L1D_FLUSH_ORI) ? (types & L1D_FLUSH_MTTRIG) ? "ori+mttrig type" : "ori type" : (types & L1D_FLUSH_MTTRIG) ? "mttrig type" : "unknown"); return 0; } void do_rfi_flush_fixups(enum l1d_flush_type types) { /* * stop_machine gets all CPUs out of the interrupt exit handler same * as do_stf_barrier_fixups. do_rfi_flush_fixups patching can run * without stop_machine, so this could be achieved with a broadcast * IPI instead, but this matches the stf sequence. */ // Prevent static key update races with do_stf_barrier_fixups() mutex_lock(&exit_flush_lock); static_branch_enable(&interrupt_exit_not_reentrant); stop_machine(__do_rfi_flush_fixups, &types, NULL); if (types & L1D_FLUSH_FALLBACK) rfi_exit_reentrant = false; else rfi_exit_reentrant = true; if (stf_exit_reentrant && rfi_exit_reentrant) static_branch_disable(&interrupt_exit_not_reentrant); mutex_unlock(&exit_flush_lock); } void do_barrier_nospec_fixups_range(bool enable, void *fixup_start, void *fixup_end) { unsigned int instr; long *start, *end; int i; start = fixup_start; end = fixup_end; instr = PPC_RAW_NOP(); if (enable) { pr_info("barrier-nospec: using ORI speculation barrier\n"); instr = PPC_RAW_ORI(_R31, _R31, 0); /* speculation barrier */ } i = do_patch_fixups(start, end, &instr, 1); printk(KERN_DEBUG "barrier-nospec: patched %d locations\n", i); } #endif /* CONFIG_PPC_BOOK3S_64 */ #ifdef CONFIG_PPC_BARRIER_NOSPEC void do_barrier_nospec_fixups(bool enable) { void *start, *end; start = PTRRELOC(&__start___barrier_nospec_fixup); end = PTRRELOC(&__stop___barrier_nospec_fixup); do_barrier_nospec_fixups_range(enable, start, end); } #endif /* CONFIG_PPC_BARRIER_NOSPEC */ #ifdef CONFIG_PPC_E500 void do_barrier_nospec_fixups_range(bool enable, void *fixup_start, void *fixup_end) { unsigned int instr[2]; long *start, *end; int i; start = fixup_start; end = fixup_end; instr[0] = PPC_RAW_NOP(); instr[1] = PPC_RAW_NOP(); if (enable) { pr_info("barrier-nospec: using isync; sync as speculation barrier\n"); instr[0] = PPC_RAW_ISYNC(); instr[1] = PPC_RAW_SYNC(); } i = do_patch_fixups(start, end, instr, ARRAY_SIZE(instr)); printk(KERN_DEBUG "barrier-nospec: patched %d locations\n", i); } static void __init patch_btb_flush_section(long *curr) { unsigned int *start, *end; start = (void *)curr + *curr; end = (void *)curr + *(curr + 1); for (; start < end; start++) { pr_devel("patching dest %lx\n", (unsigned long)start); patch_instruction(start, ppc_inst(PPC_RAW_NOP())); } } void __init do_btb_flush_fixups(void) { long *start, *end; start = PTRRELOC(&__start__btb_flush_fixup); end = PTRRELOC(&__stop__btb_flush_fixup); for (; start < end; start += 2) patch_btb_flush_section(start); } #endif /* CONFIG_PPC_E500 */ void do_lwsync_fixups(unsigned long value, void *fixup_start, void *fixup_end) { long *start, *end; u32 *dest; if (!(value & CPU_FTR_LWSYNC)) return ; start = fixup_start; end = fixup_end; for (; start < end; start++) { dest = (void *)start + *start; raw_patch_instruction(dest, ppc_inst(PPC_INST_LWSYNC)); } } static void __init do_final_fixups(void) { #if defined(CONFIG_PPC64) && defined(CONFIG_RELOCATABLE) ppc_inst_t inst; u32 *src, *dest, *end; if (PHYSICAL_START == 0) return; src = (u32 *)(KERNELBASE + PHYSICAL_START); dest = (u32 *)KERNELBASE; end = (void *)src + (__end_interrupts - _stext); while (src < end) { inst = ppc_inst_read(src); raw_patch_instruction(dest, inst); src = ppc_inst_next(src, src); dest = ppc_inst_next(dest, dest); } #endif } static unsigned long __initdata saved_cpu_features; static unsigned int __initdata saved_mmu_features; #ifdef CONFIG_PPC64 static unsigned long __initdata saved_firmware_features; #endif void __init apply_feature_fixups(void) { struct cpu_spec *spec = PTRRELOC(*PTRRELOC(&cur_cpu_spec)); *PTRRELOC(&saved_cpu_features) = spec->cpu_features; *PTRRELOC(&saved_mmu_features) = spec->mmu_features; /* * Apply the CPU-specific and firmware specific fixups to kernel text * (nop out sections not relevant to this CPU or this firmware). */ do_feature_fixups(spec->cpu_features, PTRRELOC(&__start___ftr_fixup), PTRRELOC(&__stop___ftr_fixup)); do_feature_fixups(spec->mmu_features, PTRRELOC(&__start___mmu_ftr_fixup), PTRRELOC(&__stop___mmu_ftr_fixup)); do_lwsync_fixups(spec->cpu_features, PTRRELOC(&__start___lwsync_fixup), PTRRELOC(&__stop___lwsync_fixup)); #ifdef CONFIG_PPC64 saved_firmware_features = powerpc_firmware_features; do_feature_fixups(powerpc_firmware_features, &__start___fw_ftr_fixup, &__stop___fw_ftr_fixup); #endif do_final_fixups(); } void __init setup_feature_keys(void) { /* * Initialise jump label. This causes all the cpu/mmu_has_feature() * checks to take on their correct polarity based on the current set of * CPU/MMU features. */ jump_label_init(); cpu_feature_keys_init(); mmu_feature_keys_init(); } static int __init check_features(void) { WARN(saved_cpu_features != cur_cpu_spec->cpu_features, "CPU features changed after feature patching!\n"); WARN(saved_mmu_features != cur_cpu_spec->mmu_features, "MMU features changed after feature patching!\n"); #ifdef CONFIG_PPC64 WARN(saved_firmware_features != powerpc_firmware_features, "Firmware features changed after feature patching!\n"); #endif return 0; } late_initcall(check_features); #ifdef CONFIG_FTR_FIXUP_SELFTEST #define check(x) \ if (!(x)) printk("feature-fixups: test failed at line %d\n", __LINE__); /* This must be after the text it fixes up, vmlinux.lds.S enforces that atm */ static struct fixup_entry fixup; static long __init calc_offset(struct fixup_entry *entry, unsigned int *p) { return (unsigned long)p - (unsigned long)entry; } static void __init test_basic_patching(void) { extern unsigned int ftr_fixup_test1[]; extern unsigned int end_ftr_fixup_test1[]; extern unsigned int ftr_fixup_test1_orig[]; extern unsigned int ftr_fixup_test1_expected[]; int size = 4 * (end_ftr_fixup_test1 - ftr_fixup_test1); fixup.value = fixup.mask = 8; fixup.start_off = calc_offset(&fixup, ftr_fixup_test1 + 1); fixup.end_off = calc_offset(&fixup, ftr_fixup_test1 + 2); fixup.alt_start_off = fixup.alt_end_off = 0; /* Sanity check */ check(memcmp(ftr_fixup_test1, ftr_fixup_test1_orig, size) == 0); /* Check we don't patch if the value matches */ patch_feature_section(8, &fixup); check(memcmp(ftr_fixup_test1, ftr_fixup_test1_orig, size) == 0); /* Check we do patch if the value doesn't match */ patch_feature_section(0, &fixup); check(memcmp(ftr_fixup_test1, ftr_fixup_test1_expected, size) == 0); /* Check we do patch if the mask doesn't match */ memcpy(ftr_fixup_test1, ftr_fixup_test1_orig, size); check(memcmp(ftr_fixup_test1, ftr_fixup_test1_orig, size) == 0); patch_feature_section(~8, &fixup); check(memcmp(ftr_fixup_test1, ftr_fixup_test1_expected, size) == 0); } static void __init test_alternative_patching(void) { extern unsigned int ftr_fixup_test2[]; extern unsigned int end_ftr_fixup_test2[]; extern unsigned int ftr_fixup_test2_orig[]; extern unsigned int ftr_fixup_test2_alt[]; extern unsigned int ftr_fixup_test2_expected[]; int size = 4 * (end_ftr_fixup_test2 - ftr_fixup_test2); fixup.value = fixup.mask = 0xF; fixup.start_off = calc_offset(&fixup, ftr_fixup_test2 + 1); fixup.end_off = calc_offset(&fixup, ftr_fixup_test2 + 2); fixup.alt_start_off = calc_offset(&fixup, ftr_fixup_test2_alt); fixup.alt_end_off = calc_offset(&fixup, ftr_fixup_test2_alt + 1); /* Sanity check */ check(memcmp(ftr_fixup_test2, ftr_fixup_test2_orig, size) == 0); /* Check we don't patch if the value matches */ patch_feature_section(0xF, &fixup); check(memcmp(ftr_fixup_test2, ftr_fixup_test2_orig, size) == 0); /* Check we do patch if the value doesn't match */ patch_feature_section(0, &fixup); check(memcmp(ftr_fixup_test2, ftr_fixup_test2_expected, size) == 0); /* Check we do patch if the mask doesn't match */ memcpy(ftr_fixup_test2, ftr_fixup_test2_orig, size); check(memcmp(ftr_fixup_test2, ftr_fixup_test2_orig, size) == 0); patch_feature_section(~0xF, &fixup); check(memcmp(ftr_fixup_test2, ftr_fixup_test2_expected, size) == 0); } static void __init test_alternative_case_too_big(void) { extern unsigned int ftr_fixup_test3[]; extern unsigned int end_ftr_fixup_test3[]; extern unsigned int ftr_fixup_test3_orig[]; extern unsigned int ftr_fixup_test3_alt[]; int size = 4 * (end_ftr_fixup_test3 - ftr_fixup_test3); fixup.value = fixup.mask = 0xC; fixup.start_off = calc_offset(&fixup, ftr_fixup_test3 + 1); fixup.end_off = calc_offset(&fixup, ftr_fixup_test3 + 2); fixup.alt_start_off = calc_offset(&fixup, ftr_fixup_test3_alt); fixup.alt_end_off = calc_offset(&fixup, ftr_fixup_test3_alt + 2); /* Sanity check */ check(memcmp(ftr_fixup_test3, ftr_fixup_test3_orig, size) == 0); /* Expect nothing to be patched, and the error returned to us */ check(patch_feature_section(0xF, &fixup) == 1); check(memcmp(ftr_fixup_test3, ftr_fixup_test3_orig, size) == 0); check(patch_feature_section(0, &fixup) == 1); check(memcmp(ftr_fixup_test3, ftr_fixup_test3_orig, size) == 0); check(patch_feature_section(~0xF, &fixup) == 1); check(memcmp(ftr_fixup_test3, ftr_fixup_test3_orig, size) == 0); } static void __init test_alternative_case_too_small(void) { extern unsigned int ftr_fixup_test4[]; extern unsigned int end_ftr_fixup_test4[]; extern unsigned int ftr_fixup_test4_orig[]; extern unsigned int ftr_fixup_test4_alt[]; extern unsigned int ftr_fixup_test4_expected[]; int size = 4 * (end_ftr_fixup_test4 - ftr_fixup_test4); unsigned long flag; /* Check a high-bit flag */ flag = 1UL << ((sizeof(unsigned long) - 1) * 8); fixup.value = fixup.mask = flag; fixup.start_off = calc_offset(&fixup, ftr_fixup_test4 + 1); fixup.end_off = calc_offset(&fixup, ftr_fixup_test4 + 5); fixup.alt_start_off = calc_offset(&fixup, ftr_fixup_test4_alt); fixup.alt_end_off = calc_offset(&fixup, ftr_fixup_test4_alt + 2); /* Sanity check */ check(memcmp(ftr_fixup_test4, ftr_fixup_test4_orig, size) == 0); /* Check we don't patch if the value matches */ patch_feature_section(flag, &fixup); check(memcmp(ftr_fixup_test4, ftr_fixup_test4_orig, size) == 0); /* Check we do patch if the value doesn't match */ patch_feature_section(0, &fixup); check(memcmp(ftr_fixup_test4, ftr_fixup_test4_expected, size) == 0); /* Check we do patch if the mask doesn't match */ memcpy(ftr_fixup_test4, ftr_fixup_test4_orig, size); check(memcmp(ftr_fixup_test4, ftr_fixup_test4_orig, size) == 0); patch_feature_section(~flag, &fixup); check(memcmp(ftr_fixup_test4, ftr_fixup_test4_expected, size) == 0); } static void test_alternative_case_with_branch(void) { extern unsigned int ftr_fixup_test5[]; extern unsigned int end_ftr_fixup_test5[]; extern unsigned int ftr_fixup_test5_expected[]; int size = 4 * (end_ftr_fixup_test5 - ftr_fixup_test5); check(memcmp(ftr_fixup_test5, ftr_fixup_test5_expected, size) == 0); } static void __init test_alternative_case_with_external_branch(void) { extern unsigned int ftr_fixup_test6[]; extern unsigned int end_ftr_fixup_test6[]; extern unsigned int ftr_fixup_test6_expected[]; int size = 4 * (end_ftr_fixup_test6 - ftr_fixup_test6); check(memcmp(ftr_fixup_test6, ftr_fixup_test6_expected, size) == 0); } static void __init test_alternative_case_with_branch_to_end(void) { extern unsigned int ftr_fixup_test7[]; extern unsigned int end_ftr_fixup_test7[]; extern unsigned int ftr_fixup_test7_expected[]; int size = 4 * (end_ftr_fixup_test7 - ftr_fixup_test7); check(memcmp(ftr_fixup_test7, ftr_fixup_test7_expected, size) == 0); } static void __init test_cpu_macros(void) { extern u8 ftr_fixup_test_FTR_macros[]; extern u8 ftr_fixup_test_FTR_macros_expected[]; unsigned long size = ftr_fixup_test_FTR_macros_expected - ftr_fixup_test_FTR_macros; /* The fixups have already been done for us during boot */ check(memcmp(ftr_fixup_test_FTR_macros, ftr_fixup_test_FTR_macros_expected, size) == 0); } static void __init test_fw_macros(void) { #ifdef CONFIG_PPC64 extern u8 ftr_fixup_test_FW_FTR_macros[]; extern u8 ftr_fixup_test_FW_FTR_macros_expected[]; unsigned long size = ftr_fixup_test_FW_FTR_macros_expected - ftr_fixup_test_FW_FTR_macros; /* The fixups have already been done for us during boot */ check(memcmp(ftr_fixup_test_FW_FTR_macros, ftr_fixup_test_FW_FTR_macros_expected, size) == 0); #endif } static void __init test_lwsync_macros(void) { extern u8 lwsync_fixup_test[]; extern u8 end_lwsync_fixup_test[]; extern u8 lwsync_fixup_test_expected_LWSYNC[]; extern u8 lwsync_fixup_test_expected_SYNC[]; unsigned long size = end_lwsync_fixup_test - lwsync_fixup_test; /* The fixups have already been done for us during boot */ if (cur_cpu_spec->cpu_features & CPU_FTR_LWSYNC) { check(memcmp(lwsync_fixup_test, lwsync_fixup_test_expected_LWSYNC, size) == 0); } else { check(memcmp(lwsync_fixup_test, lwsync_fixup_test_expected_SYNC, size) == 0); } } #ifdef CONFIG_PPC64 static void __init test_prefix_patching(void) { extern unsigned int ftr_fixup_prefix1[]; extern unsigned int end_ftr_fixup_prefix1[]; extern unsigned int ftr_fixup_prefix1_orig[]; extern unsigned int ftr_fixup_prefix1_expected[]; int size = sizeof(unsigned int) * (end_ftr_fixup_prefix1 - ftr_fixup_prefix1); fixup.value = fixup.mask = 8; fixup.start_off = calc_offset(&fixup, ftr_fixup_prefix1 + 1); fixup.end_off = calc_offset(&fixup, ftr_fixup_prefix1 + 3); fixup.alt_start_off = fixup.alt_end_off = 0; /* Sanity check */ check(memcmp(ftr_fixup_prefix1, ftr_fixup_prefix1_orig, size) == 0); patch_feature_section(0, &fixup); check(memcmp(ftr_fixup_prefix1, ftr_fixup_prefix1_expected, size) == 0); check(memcmp(ftr_fixup_prefix1, ftr_fixup_prefix1_orig, size) != 0); } static void __init test_prefix_alt_patching(void) { extern unsigned int ftr_fixup_prefix2[]; extern unsigned int end_ftr_fixup_prefix2[]; extern unsigned int ftr_fixup_prefix2_orig[]; extern unsigned int ftr_fixup_prefix2_expected[]; extern unsigned int ftr_fixup_prefix2_alt[]; int size = sizeof(unsigned int) * (end_ftr_fixup_prefix2 - ftr_fixup_prefix2); fixup.value = fixup.mask = 8; fixup.start_off = calc_offset(&fixup, ftr_fixup_prefix2 + 1); fixup.end_off = calc_offset(&fixup, ftr_fixup_prefix2 + 3); fixup.alt_start_off = calc_offset(&fixup, ftr_fixup_prefix2_alt); fixup.alt_end_off = calc_offset(&fixup, ftr_fixup_prefix2_alt + 2); /* Sanity check */ check(memcmp(ftr_fixup_prefix2, ftr_fixup_prefix2_orig, size) == 0); patch_feature_section(0, &fixup); check(memcmp(ftr_fixup_prefix2, ftr_fixup_prefix2_expected, size) == 0); check(memcmp(ftr_fixup_prefix2, ftr_fixup_prefix2_orig, size) != 0); } static void __init test_prefix_word_alt_patching(void) { extern unsigned int ftr_fixup_prefix3[]; extern unsigned int end_ftr_fixup_prefix3[]; extern unsigned int ftr_fixup_prefix3_orig[]; extern unsigned int ftr_fixup_prefix3_expected[]; extern unsigned int ftr_fixup_prefix3_alt[]; int size = sizeof(unsigned int) * (end_ftr_fixup_prefix3 - ftr_fixup_prefix3); fixup.value = fixup.mask = 8; fixup.start_off = calc_offset(&fixup, ftr_fixup_prefix3 + 1); fixup.end_off = calc_offset(&fixup, ftr_fixup_prefix3 + 4); fixup.alt_start_off = calc_offset(&fixup, ftr_fixup_prefix3_alt); fixup.alt_end_off = calc_offset(&fixup, ftr_fixup_prefix3_alt + 3); /* Sanity check */ check(memcmp(ftr_fixup_prefix3, ftr_fixup_prefix3_orig, size) == 0); patch_feature_section(0, &fixup); check(memcmp(ftr_fixup_prefix3, ftr_fixup_prefix3_expected, size) == 0); patch_feature_section(0, &fixup); check(memcmp(ftr_fixup_prefix3, ftr_fixup_prefix3_orig, size) != 0); } #else static inline void test_prefix_patching(void) {} static inline void test_prefix_alt_patching(void) {} static inline void test_prefix_word_alt_patching(void) {} #endif /* CONFIG_PPC64 */ static int __init test_feature_fixups(void) { printk(KERN_DEBUG "Running feature fixup self-tests ...\n"); test_basic_patching(); test_alternative_patching(); test_alternative_case_too_big(); test_alternative_case_too_small(); test_alternative_case_with_branch(); test_alternative_case_with_external_branch(); test_alternative_case_with_branch_to_end(); test_cpu_macros(); test_fw_macros(); test_lwsync_macros(); test_prefix_patching(); test_prefix_alt_patching(); test_prefix_word_alt_patching(); return 0; } late_initcall(test_feature_fixups); #endif /* CONFIG_FTR_FIXUP_SELFTEST */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1