Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Paul Mackerras | 15514 | 78.68% | 28 | 25.69% |
Jordan Niethe | 1169 | 5.93% | 6 | 5.50% |
Balamuruhan S | 744 | 3.77% | 4 | 3.67% |
Sandipan Das | 590 | 2.99% | 11 | 10.09% |
Christophe Leroy | 538 | 2.73% | 4 | 3.67% |
Ananth N. Mavinakayanahalli | 345 | 1.75% | 3 | 2.75% |
Matt Brown | 198 | 1.00% | 5 | 4.59% |
Michael Ellerman | 80 | 0.41% | 3 | 2.75% |
PrasannaKumar Muralidharan | 80 | 0.41% | 1 | 0.92% |
Sathvika Vasireddy | 73 | 0.37% | 1 | 0.92% |
Ravi Bangoria | 71 | 0.36% | 4 | 3.67% |
Nicholas Piggin | 69 | 0.35% | 5 | 4.59% |
Tiejun Chen | 58 | 0.29% | 1 | 0.92% |
Naveen N. Rao | 56 | 0.28% | 2 | 1.83% |
Tom Musta | 32 | 0.16% | 2 | 1.83% |
Anton Blanchard | 12 | 0.06% | 4 | 3.67% |
Sean MacLennan | 12 | 0.06% | 1 | 0.92% |
Lennart Sorensen | 12 | 0.06% | 1 | 0.92% |
Arnd Bergmann | 12 | 0.06% | 1 | 0.92% |
Linus Torvalds (pre-git) | 11 | 0.06% | 7 | 6.42% |
Anders Roxell | 8 | 0.04% | 3 | 2.75% |
Finn Thain | 6 | 0.03% | 1 | 0.92% |
Li Yang | 4 | 0.02% | 1 | 0.92% |
Stephen Rothwell | 4 | 0.02% | 2 | 1.83% |
SF Markus Elfring | 4 | 0.02% | 1 | 0.92% |
Christoph Hellwig | 3 | 0.02% | 1 | 0.92% |
Mathieu Malaterre | 3 | 0.02% | 1 | 0.92% |
Gui,Jian | 3 | 0.02% | 1 | 0.92% |
Andi Kleen | 3 | 0.02% | 1 | 0.92% |
Thomas Gleixner | 2 | 0.01% | 1 | 0.92% |
Cédric Le Goater | 1 | 0.01% | 1 | 0.92% |
Linus Torvalds | 1 | 0.01% | 1 | 0.92% |
Total | 19718 | 109 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Single-step support. * * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM */ #include <linux/kernel.h> #include <linux/kprobes.h> #include <linux/ptrace.h> #include <linux/prefetch.h> #include <asm/sstep.h> #include <asm/processor.h> #include <linux/uaccess.h> #include <asm/cpu_has_feature.h> #include <asm/cputable.h> #include <asm/disassemble.h> #ifdef CONFIG_PPC64 /* Bits in SRR1 that are copied from MSR */ #define MSR_MASK 0xffffffff87c0ffffUL #else #define MSR_MASK 0x87c0ffff #endif /* Bits in XER */ #define XER_SO 0x80000000U #define XER_OV 0x40000000U #define XER_CA 0x20000000U #define XER_OV32 0x00080000U #define XER_CA32 0x00040000U #ifdef CONFIG_VSX #define VSX_REGISTER_XTP(rd) ((((rd) & 1) << 5) | ((rd) & 0xfe)) #endif #ifdef CONFIG_PPC_FPU /* * Functions in ldstfp.S */ extern void get_fpr(int rn, double *p); extern void put_fpr(int rn, const double *p); extern void get_vr(int rn, __vector128 *p); extern void put_vr(int rn, __vector128 *p); extern void load_vsrn(int vsr, const void *p); extern void store_vsrn(int vsr, void *p); extern void conv_sp_to_dp(const float *sp, double *dp); extern void conv_dp_to_sp(const double *dp, float *sp); #endif #ifdef __powerpc64__ /* * Functions in quad.S */ extern int do_lq(unsigned long ea, unsigned long *regs); extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1); extern int do_lqarx(unsigned long ea, unsigned long *regs); extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1, unsigned int *crp); #endif #ifdef __LITTLE_ENDIAN__ #define IS_LE 1 #define IS_BE 0 #else #define IS_LE 0 #define IS_BE 1 #endif /* * Emulate the truncation of 64 bit values in 32-bit mode. */ static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr, unsigned long val) { if ((msr & MSR_64BIT) == 0) val &= 0xffffffffUL; return val; } /* * Determine whether a conditional branch instruction would branch. */ static nokprobe_inline int branch_taken(unsigned int instr, const struct pt_regs *regs, struct instruction_op *op) { unsigned int bo = (instr >> 21) & 0x1f; unsigned int bi; if ((bo & 4) == 0) { /* decrement counter */ op->type |= DECCTR; if (((bo >> 1) & 1) ^ (regs->ctr == 1)) return 0; } if ((bo & 0x10) == 0) { /* check bit from CR */ bi = (instr >> 16) & 0x1f; if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1)) return 0; } return 1; } static nokprobe_inline long address_ok(struct pt_regs *regs, unsigned long ea, int nb) { if (!user_mode(regs)) return 1; if (access_ok((void __user *)ea, nb)) return 1; if (access_ok((void __user *)ea, 1)) /* Access overlaps the end of the user region */ regs->dar = TASK_SIZE_MAX - 1; else regs->dar = ea; return 0; } /* * Calculate effective address for a D-form instruction */ static nokprobe_inline unsigned long dform_ea(unsigned int instr, const struct pt_regs *regs) { int ra; unsigned long ea; ra = (instr >> 16) & 0x1f; ea = (signed short) instr; /* sign-extend */ if (ra) ea += regs->gpr[ra]; return ea; } #ifdef __powerpc64__ /* * Calculate effective address for a DS-form instruction */ static nokprobe_inline unsigned long dsform_ea(unsigned int instr, const struct pt_regs *regs) { int ra; unsigned long ea; ra = (instr >> 16) & 0x1f; ea = (signed short) (instr & ~3); /* sign-extend */ if (ra) ea += regs->gpr[ra]; return ea; } /* * Calculate effective address for a DQ-form instruction */ static nokprobe_inline unsigned long dqform_ea(unsigned int instr, const struct pt_regs *regs) { int ra; unsigned long ea; ra = (instr >> 16) & 0x1f; ea = (signed short) (instr & ~0xf); /* sign-extend */ if (ra) ea += regs->gpr[ra]; return ea; } #endif /* __powerpc64 */ /* * Calculate effective address for an X-form instruction */ static nokprobe_inline unsigned long xform_ea(unsigned int instr, const struct pt_regs *regs) { int ra, rb; unsigned long ea; ra = (instr >> 16) & 0x1f; rb = (instr >> 11) & 0x1f; ea = regs->gpr[rb]; if (ra) ea += regs->gpr[ra]; return ea; } /* * Calculate effective address for a MLS:D-form / 8LS:D-form * prefixed instruction */ static nokprobe_inline unsigned long mlsd_8lsd_ea(unsigned int instr, unsigned int suffix, const struct pt_regs *regs) { int ra, prefix_r; unsigned int dd; unsigned long ea, d0, d1, d; prefix_r = GET_PREFIX_R(instr); ra = GET_PREFIX_RA(suffix); d0 = instr & 0x3ffff; d1 = suffix & 0xffff; d = (d0 << 16) | d1; /* * sign extend a 34 bit number */ dd = (unsigned int)(d >> 2); ea = (signed int)dd; ea = (ea << 2) | (d & 0x3); if (!prefix_r && ra) ea += regs->gpr[ra]; else if (!prefix_r && !ra) ; /* Leave ea as is */ else if (prefix_r) ea += regs->nip; /* * (prefix_r && ra) is an invalid form. Should already be * checked for by caller! */ return ea; } /* * Return the largest power of 2, not greater than sizeof(unsigned long), * such that x is a multiple of it. */ static nokprobe_inline unsigned long max_align(unsigned long x) { x |= sizeof(unsigned long); return x & -x; /* isolates rightmost bit */ } static nokprobe_inline unsigned long byterev_2(unsigned long x) { return ((x >> 8) & 0xff) | ((x & 0xff) << 8); } static nokprobe_inline unsigned long byterev_4(unsigned long x) { return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) | ((x & 0xff00) << 8) | ((x & 0xff) << 24); } #ifdef __powerpc64__ static nokprobe_inline unsigned long byterev_8(unsigned long x) { return (byterev_4(x) << 32) | byterev_4(x >> 32); } #endif static nokprobe_inline void do_byte_reverse(void *ptr, int nb) { switch (nb) { case 2: *(u16 *)ptr = byterev_2(*(u16 *)ptr); break; case 4: *(u32 *)ptr = byterev_4(*(u32 *)ptr); break; #ifdef __powerpc64__ case 8: *(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr); break; case 16: { unsigned long *up = (unsigned long *)ptr; unsigned long tmp; tmp = byterev_8(up[0]); up[0] = byterev_8(up[1]); up[1] = tmp; break; } case 32: { unsigned long *up = (unsigned long *)ptr; unsigned long tmp; tmp = byterev_8(up[0]); up[0] = byterev_8(up[3]); up[3] = tmp; tmp = byterev_8(up[2]); up[2] = byterev_8(up[1]); up[1] = tmp; break; } #endif default: WARN_ON_ONCE(1); } } static __always_inline int __read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs) { unsigned long x = 0; switch (nb) { case 1: unsafe_get_user(x, (unsigned char __user *)ea, Efault); break; case 2: unsafe_get_user(x, (unsigned short __user *)ea, Efault); break; case 4: unsafe_get_user(x, (unsigned int __user *)ea, Efault); break; #ifdef __powerpc64__ case 8: unsafe_get_user(x, (unsigned long __user *)ea, Efault); break; #endif } *dest = x; return 0; Efault: regs->dar = ea; return -EFAULT; } static nokprobe_inline int read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs) { int err; if (is_kernel_addr(ea)) return __read_mem_aligned(dest, ea, nb, regs); if (user_read_access_begin((void __user *)ea, nb)) { err = __read_mem_aligned(dest, ea, nb, regs); user_read_access_end(); } else { err = -EFAULT; regs->dar = ea; } return err; } /* * Copy from userspace to a buffer, using the largest possible * aligned accesses, up to sizeof(long). */ static __always_inline int __copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs) { int c; for (; nb > 0; nb -= c) { c = max_align(ea); if (c > nb) c = max_align(nb); switch (c) { case 1: unsafe_get_user(*dest, (u8 __user *)ea, Efault); break; case 2: unsafe_get_user(*(u16 *)dest, (u16 __user *)ea, Efault); break; case 4: unsafe_get_user(*(u32 *)dest, (u32 __user *)ea, Efault); break; #ifdef __powerpc64__ case 8: unsafe_get_user(*(u64 *)dest, (u64 __user *)ea, Efault); break; #endif } dest += c; ea += c; } return 0; Efault: regs->dar = ea; return -EFAULT; } static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs) { int err; if (is_kernel_addr(ea)) return __copy_mem_in(dest, ea, nb, regs); if (user_read_access_begin((void __user *)ea, nb)) { err = __copy_mem_in(dest, ea, nb, regs); user_read_access_end(); } else { err = -EFAULT; regs->dar = ea; } return err; } static nokprobe_inline int read_mem_unaligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs) { union { unsigned long ul; u8 b[sizeof(unsigned long)]; } u; int i; int err; u.ul = 0; i = IS_BE ? sizeof(unsigned long) - nb : 0; err = copy_mem_in(&u.b[i], ea, nb, regs); if (!err) *dest = u.ul; return err; } /* * Read memory at address ea for nb bytes, return 0 for success * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8. * If nb < sizeof(long), the result is right-justified on BE systems. */ static int read_mem(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs) { if (!address_ok(regs, ea, nb)) return -EFAULT; if ((ea & (nb - 1)) == 0) return read_mem_aligned(dest, ea, nb, regs); return read_mem_unaligned(dest, ea, nb, regs); } NOKPROBE_SYMBOL(read_mem); static __always_inline int __write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs) { switch (nb) { case 1: unsafe_put_user(val, (unsigned char __user *)ea, Efault); break; case 2: unsafe_put_user(val, (unsigned short __user *)ea, Efault); break; case 4: unsafe_put_user(val, (unsigned int __user *)ea, Efault); break; #ifdef __powerpc64__ case 8: unsafe_put_user(val, (unsigned long __user *)ea, Efault); break; #endif } return 0; Efault: regs->dar = ea; return -EFAULT; } static nokprobe_inline int write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs) { int err; if (is_kernel_addr(ea)) return __write_mem_aligned(val, ea, nb, regs); if (user_write_access_begin((void __user *)ea, nb)) { err = __write_mem_aligned(val, ea, nb, regs); user_write_access_end(); } else { err = -EFAULT; regs->dar = ea; } return err; } /* * Copy from a buffer to userspace, using the largest possible * aligned accesses, up to sizeof(long). */ static nokprobe_inline int __copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs) { int c; for (; nb > 0; nb -= c) { c = max_align(ea); if (c > nb) c = max_align(nb); switch (c) { case 1: unsafe_put_user(*dest, (u8 __user *)ea, Efault); break; case 2: unsafe_put_user(*(u16 *)dest, (u16 __user *)ea, Efault); break; case 4: unsafe_put_user(*(u32 *)dest, (u32 __user *)ea, Efault); break; #ifdef __powerpc64__ case 8: unsafe_put_user(*(u64 *)dest, (u64 __user *)ea, Efault); break; #endif } dest += c; ea += c; } return 0; Efault: regs->dar = ea; return -EFAULT; } static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs) { int err; if (is_kernel_addr(ea)) return __copy_mem_out(dest, ea, nb, regs); if (user_write_access_begin((void __user *)ea, nb)) { err = __copy_mem_out(dest, ea, nb, regs); user_write_access_end(); } else { err = -EFAULT; regs->dar = ea; } return err; } static nokprobe_inline int write_mem_unaligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs) { union { unsigned long ul; u8 b[sizeof(unsigned long)]; } u; int i; u.ul = val; i = IS_BE ? sizeof(unsigned long) - nb : 0; return copy_mem_out(&u.b[i], ea, nb, regs); } /* * Write memory at address ea for nb bytes, return 0 for success * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8. */ static int write_mem(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs) { if (!address_ok(regs, ea, nb)) return -EFAULT; if ((ea & (nb - 1)) == 0) return write_mem_aligned(val, ea, nb, regs); return write_mem_unaligned(val, ea, nb, regs); } NOKPROBE_SYMBOL(write_mem); #ifdef CONFIG_PPC_FPU /* * These access either the real FP register or the image in the * thread_struct, depending on regs->msr & MSR_FP. */ static int do_fp_load(struct instruction_op *op, unsigned long ea, struct pt_regs *regs, bool cross_endian) { int err, rn, nb; union { int i; unsigned int u; float f; double d[2]; unsigned long l[2]; u8 b[2 * sizeof(double)]; } u; nb = GETSIZE(op->type); if (!address_ok(regs, ea, nb)) return -EFAULT; rn = op->reg; err = copy_mem_in(u.b, ea, nb, regs); if (err) return err; if (unlikely(cross_endian)) { do_byte_reverse(u.b, min(nb, 8)); if (nb == 16) do_byte_reverse(&u.b[8], 8); } preempt_disable(); if (nb == 4) { if (op->type & FPCONV) conv_sp_to_dp(&u.f, &u.d[0]); else if (op->type & SIGNEXT) u.l[0] = u.i; else u.l[0] = u.u; } if (regs->msr & MSR_FP) put_fpr(rn, &u.d[0]); else current->thread.TS_FPR(rn) = u.l[0]; if (nb == 16) { /* lfdp */ rn |= 1; if (regs->msr & MSR_FP) put_fpr(rn, &u.d[1]); else current->thread.TS_FPR(rn) = u.l[1]; } preempt_enable(); return 0; } NOKPROBE_SYMBOL(do_fp_load); static int do_fp_store(struct instruction_op *op, unsigned long ea, struct pt_regs *regs, bool cross_endian) { int rn, nb; union { unsigned int u; float f; double d[2]; unsigned long l[2]; u8 b[2 * sizeof(double)]; } u; nb = GETSIZE(op->type); if (!address_ok(regs, ea, nb)) return -EFAULT; rn = op->reg; preempt_disable(); if (regs->msr & MSR_FP) get_fpr(rn, &u.d[0]); else u.l[0] = current->thread.TS_FPR(rn); if (nb == 4) { if (op->type & FPCONV) conv_dp_to_sp(&u.d[0], &u.f); else u.u = u.l[0]; } if (nb == 16) { rn |= 1; if (regs->msr & MSR_FP) get_fpr(rn, &u.d[1]); else u.l[1] = current->thread.TS_FPR(rn); } preempt_enable(); if (unlikely(cross_endian)) { do_byte_reverse(u.b, min(nb, 8)); if (nb == 16) do_byte_reverse(&u.b[8], 8); } return copy_mem_out(u.b, ea, nb, regs); } NOKPROBE_SYMBOL(do_fp_store); #endif #ifdef CONFIG_ALTIVEC /* For Altivec/VMX, no need to worry about alignment */ static nokprobe_inline int do_vec_load(int rn, unsigned long ea, int size, struct pt_regs *regs, bool cross_endian) { int err; union { __vector128 v; u8 b[sizeof(__vector128)]; } u = {}; if (!address_ok(regs, ea & ~0xfUL, 16)) return -EFAULT; /* align to multiple of size */ ea &= ~(size - 1); err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs); if (err) return err; if (unlikely(cross_endian)) do_byte_reverse(&u.b[ea & 0xf], size); preempt_disable(); if (regs->msr & MSR_VEC) put_vr(rn, &u.v); else current->thread.vr_state.vr[rn] = u.v; preempt_enable(); return 0; } static nokprobe_inline int do_vec_store(int rn, unsigned long ea, int size, struct pt_regs *regs, bool cross_endian) { union { __vector128 v; u8 b[sizeof(__vector128)]; } u; if (!address_ok(regs, ea & ~0xfUL, 16)) return -EFAULT; /* align to multiple of size */ ea &= ~(size - 1); preempt_disable(); if (regs->msr & MSR_VEC) get_vr(rn, &u.v); else u.v = current->thread.vr_state.vr[rn]; preempt_enable(); if (unlikely(cross_endian)) do_byte_reverse(&u.b[ea & 0xf], size); return copy_mem_out(&u.b[ea & 0xf], ea, size, regs); } #endif /* CONFIG_ALTIVEC */ #ifdef __powerpc64__ static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea, int reg, bool cross_endian) { int err; if (!address_ok(regs, ea, 16)) return -EFAULT; /* if aligned, should be atomic */ if ((ea & 0xf) == 0) { err = do_lq(ea, ®s->gpr[reg]); } else { err = read_mem(®s->gpr[reg + IS_LE], ea, 8, regs); if (!err) err = read_mem(®s->gpr[reg + IS_BE], ea + 8, 8, regs); } if (!err && unlikely(cross_endian)) do_byte_reverse(®s->gpr[reg], 16); return err; } static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea, int reg, bool cross_endian) { int err; unsigned long vals[2]; if (!address_ok(regs, ea, 16)) return -EFAULT; vals[0] = regs->gpr[reg]; vals[1] = regs->gpr[reg + 1]; if (unlikely(cross_endian)) do_byte_reverse(vals, 16); /* if aligned, should be atomic */ if ((ea & 0xf) == 0) return do_stq(ea, vals[0], vals[1]); err = write_mem(vals[IS_LE], ea, 8, regs); if (!err) err = write_mem(vals[IS_BE], ea + 8, 8, regs); return err; } #endif /* __powerpc64 */ #ifdef CONFIG_VSX void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg, const void *mem, bool rev) { int size, read_size; int i, j; const unsigned int *wp; const unsigned short *hp; const unsigned char *bp; size = GETSIZE(op->type); reg->d[0] = reg->d[1] = 0; switch (op->element_size) { case 32: /* [p]lxvp[x] */ case 16: /* whole vector; lxv[x] or lxvl[l] */ if (size == 0) break; memcpy(reg, mem, size); if (IS_LE && (op->vsx_flags & VSX_LDLEFT)) rev = !rev; if (rev) do_byte_reverse(reg, size); break; case 8: /* scalar loads, lxvd2x, lxvdsx */ read_size = (size >= 8) ? 8 : size; i = IS_LE ? 8 : 8 - read_size; memcpy(®->b[i], mem, read_size); if (rev) do_byte_reverse(®->b[i], 8); if (size < 8) { if (op->type & SIGNEXT) { /* size == 4 is the only case here */ reg->d[IS_LE] = (signed int) reg->d[IS_LE]; } else if (op->vsx_flags & VSX_FPCONV) { preempt_disable(); conv_sp_to_dp(®->fp[1 + IS_LE], ®->dp[IS_LE]); preempt_enable(); } } else { if (size == 16) { unsigned long v = *(unsigned long *)(mem + 8); reg->d[IS_BE] = !rev ? v : byterev_8(v); } else if (op->vsx_flags & VSX_SPLAT) reg->d[IS_BE] = reg->d[IS_LE]; } break; case 4: /* lxvw4x, lxvwsx */ wp = mem; for (j = 0; j < size / 4; ++j) { i = IS_LE ? 3 - j : j; reg->w[i] = !rev ? *wp++ : byterev_4(*wp++); } if (op->vsx_flags & VSX_SPLAT) { u32 val = reg->w[IS_LE ? 3 : 0]; for (; j < 4; ++j) { i = IS_LE ? 3 - j : j; reg->w[i] = val; } } break; case 2: /* lxvh8x */ hp = mem; for (j = 0; j < size / 2; ++j) { i = IS_LE ? 7 - j : j; reg->h[i] = !rev ? *hp++ : byterev_2(*hp++); } break; case 1: /* lxvb16x */ bp = mem; for (j = 0; j < size; ++j) { i = IS_LE ? 15 - j : j; reg->b[i] = *bp++; } break; } } EXPORT_SYMBOL_GPL(emulate_vsx_load); NOKPROBE_SYMBOL(emulate_vsx_load); void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg, void *mem, bool rev) { int size, write_size; int i, j; union vsx_reg buf; unsigned int *wp; unsigned short *hp; unsigned char *bp; size = GETSIZE(op->type); switch (op->element_size) { case 32: /* [p]stxvp[x] */ if (size == 0) break; if (rev) { /* reverse 32 bytes */ union vsx_reg buf32[2]; buf32[0].d[0] = byterev_8(reg[1].d[1]); buf32[0].d[1] = byterev_8(reg[1].d[0]); buf32[1].d[0] = byterev_8(reg[0].d[1]); buf32[1].d[1] = byterev_8(reg[0].d[0]); memcpy(mem, buf32, size); } else { memcpy(mem, reg, size); } break; case 16: /* stxv, stxvx, stxvl, stxvll */ if (size == 0) break; if (IS_LE && (op->vsx_flags & VSX_LDLEFT)) rev = !rev; if (rev) { /* reverse 16 bytes */ buf.d[0] = byterev_8(reg->d[1]); buf.d[1] = byterev_8(reg->d[0]); reg = &buf; } memcpy(mem, reg, size); break; case 8: /* scalar stores, stxvd2x */ write_size = (size >= 8) ? 8 : size; i = IS_LE ? 8 : 8 - write_size; if (size < 8 && op->vsx_flags & VSX_FPCONV) { buf.d[0] = buf.d[1] = 0; preempt_disable(); conv_dp_to_sp(®->dp[IS_LE], &buf.fp[1 + IS_LE]); preempt_enable(); reg = &buf; } memcpy(mem, ®->b[i], write_size); if (size == 16) memcpy(mem + 8, ®->d[IS_BE], 8); if (unlikely(rev)) { do_byte_reverse(mem, write_size); if (size == 16) do_byte_reverse(mem + 8, 8); } break; case 4: /* stxvw4x */ wp = mem; for (j = 0; j < size / 4; ++j) { i = IS_LE ? 3 - j : j; *wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]); } break; case 2: /* stxvh8x */ hp = mem; for (j = 0; j < size / 2; ++j) { i = IS_LE ? 7 - j : j; *hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]); } break; case 1: /* stvxb16x */ bp = mem; for (j = 0; j < size; ++j) { i = IS_LE ? 15 - j : j; *bp++ = reg->b[i]; } break; } } EXPORT_SYMBOL_GPL(emulate_vsx_store); NOKPROBE_SYMBOL(emulate_vsx_store); static nokprobe_inline int do_vsx_load(struct instruction_op *op, unsigned long ea, struct pt_regs *regs, bool cross_endian) { int reg = op->reg; int i, j, nr_vsx_regs; u8 mem[32]; union vsx_reg buf[2]; int size = GETSIZE(op->type); if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs)) return -EFAULT; nr_vsx_regs = max(1ul, size / sizeof(__vector128)); emulate_vsx_load(op, buf, mem, cross_endian); preempt_disable(); if (reg < 32) { /* FP regs + extensions */ if (regs->msr & MSR_FP) { for (i = 0; i < nr_vsx_regs; i++) { j = IS_LE ? nr_vsx_regs - i - 1 : i; load_vsrn(reg + i, &buf[j].v); } } else { for (i = 0; i < nr_vsx_regs; i++) { j = IS_LE ? nr_vsx_regs - i - 1 : i; current->thread.fp_state.fpr[reg + i][0] = buf[j].d[0]; current->thread.fp_state.fpr[reg + i][1] = buf[j].d[1]; } } } else { if (regs->msr & MSR_VEC) { for (i = 0; i < nr_vsx_regs; i++) { j = IS_LE ? nr_vsx_regs - i - 1 : i; load_vsrn(reg + i, &buf[j].v); } } else { for (i = 0; i < nr_vsx_regs; i++) { j = IS_LE ? nr_vsx_regs - i - 1 : i; current->thread.vr_state.vr[reg - 32 + i] = buf[j].v; } } } preempt_enable(); return 0; } static nokprobe_inline int do_vsx_store(struct instruction_op *op, unsigned long ea, struct pt_regs *regs, bool cross_endian) { int reg = op->reg; int i, j, nr_vsx_regs; u8 mem[32]; union vsx_reg buf[2]; int size = GETSIZE(op->type); if (!address_ok(regs, ea, size)) return -EFAULT; nr_vsx_regs = max(1ul, size / sizeof(__vector128)); preempt_disable(); if (reg < 32) { /* FP regs + extensions */ if (regs->msr & MSR_FP) { for (i = 0; i < nr_vsx_regs; i++) { j = IS_LE ? nr_vsx_regs - i - 1 : i; store_vsrn(reg + i, &buf[j].v); } } else { for (i = 0; i < nr_vsx_regs; i++) { j = IS_LE ? nr_vsx_regs - i - 1 : i; buf[j].d[0] = current->thread.fp_state.fpr[reg + i][0]; buf[j].d[1] = current->thread.fp_state.fpr[reg + i][1]; } } } else { if (regs->msr & MSR_VEC) { for (i = 0; i < nr_vsx_regs; i++) { j = IS_LE ? nr_vsx_regs - i - 1 : i; store_vsrn(reg + i, &buf[j].v); } } else { for (i = 0; i < nr_vsx_regs; i++) { j = IS_LE ? nr_vsx_regs - i - 1 : i; buf[j].v = current->thread.vr_state.vr[reg - 32 + i]; } } } preempt_enable(); emulate_vsx_store(op, buf, mem, cross_endian); return copy_mem_out(mem, ea, size, regs); } #endif /* CONFIG_VSX */ static int __emulate_dcbz(unsigned long ea) { unsigned long i; unsigned long size = l1_dcache_bytes(); for (i = 0; i < size; i += sizeof(long)) unsafe_put_user(0, (unsigned long __user *)(ea + i), Efault); return 0; Efault: return -EFAULT; } int emulate_dcbz(unsigned long ea, struct pt_regs *regs) { int err; unsigned long size = l1_dcache_bytes(); ea = truncate_if_32bit(regs->msr, ea); ea &= ~(size - 1); if (!address_ok(regs, ea, size)) return -EFAULT; if (is_kernel_addr(ea)) { err = __emulate_dcbz(ea); } else if (user_write_access_begin((void __user *)ea, size)) { err = __emulate_dcbz(ea); user_write_access_end(); } else { err = -EFAULT; } if (err) regs->dar = ea; return err; } NOKPROBE_SYMBOL(emulate_dcbz); #define __put_user_asmx(x, addr, err, op, cr) \ __asm__ __volatile__( \ ".machine push\n" \ ".machine power8\n" \ "1: " op " %2,0,%3\n" \ ".machine pop\n" \ " mfcr %1\n" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3: li %0,%4\n" \ " b 2b\n" \ ".previous\n" \ EX_TABLE(1b, 3b) \ : "=r" (err), "=r" (cr) \ : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err)) #define __get_user_asmx(x, addr, err, op) \ __asm__ __volatile__( \ ".machine push\n" \ ".machine power8\n" \ "1: "op" %1,0,%2\n" \ ".machine pop\n" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3: li %0,%3\n" \ " b 2b\n" \ ".previous\n" \ EX_TABLE(1b, 3b) \ : "=r" (err), "=r" (x) \ : "r" (addr), "i" (-EFAULT), "0" (err)) #define __cacheop_user_asmx(addr, err, op) \ __asm__ __volatile__( \ "1: "op" 0,%1\n" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3: li %0,%3\n" \ " b 2b\n" \ ".previous\n" \ EX_TABLE(1b, 3b) \ : "=r" (err) \ : "r" (addr), "i" (-EFAULT), "0" (err)) static nokprobe_inline void set_cr0(const struct pt_regs *regs, struct instruction_op *op) { long val = op->val; op->type |= SETCC; op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000); if (!(regs->msr & MSR_64BIT)) val = (int) val; if (val < 0) op->ccval |= 0x80000000; else if (val > 0) op->ccval |= 0x40000000; else op->ccval |= 0x20000000; } static nokprobe_inline void set_ca32(struct instruction_op *op, bool val) { if (cpu_has_feature(CPU_FTR_ARCH_300)) { if (val) op->xerval |= XER_CA32; else op->xerval &= ~XER_CA32; } } static nokprobe_inline void add_with_carry(const struct pt_regs *regs, struct instruction_op *op, int rd, unsigned long val1, unsigned long val2, unsigned long carry_in) { unsigned long val = val1 + val2; if (carry_in) ++val; op->type = COMPUTE | SETREG | SETXER; op->reg = rd; op->val = val; val = truncate_if_32bit(regs->msr, val); val1 = truncate_if_32bit(regs->msr, val1); op->xerval = regs->xer; if (val < val1 || (carry_in && val == val1)) op->xerval |= XER_CA; else op->xerval &= ~XER_CA; set_ca32(op, (unsigned int)val < (unsigned int)val1 || (carry_in && (unsigned int)val == (unsigned int)val1)); } static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs, struct instruction_op *op, long v1, long v2, int crfld) { unsigned int crval, shift; op->type = COMPUTE | SETCC; crval = (regs->xer >> 31) & 1; /* get SO bit */ if (v1 < v2) crval |= 8; else if (v1 > v2) crval |= 4; else crval |= 2; shift = (7 - crfld) * 4; op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift); } static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs, struct instruction_op *op, unsigned long v1, unsigned long v2, int crfld) { unsigned int crval, shift; op->type = COMPUTE | SETCC; crval = (regs->xer >> 31) & 1; /* get SO bit */ if (v1 < v2) crval |= 8; else if (v1 > v2) crval |= 4; else crval |= 2; shift = (7 - crfld) * 4; op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift); } static nokprobe_inline void do_cmpb(const struct pt_regs *regs, struct instruction_op *op, unsigned long v1, unsigned long v2) { unsigned long long out_val, mask; int i; out_val = 0; for (i = 0; i < 8; i++) { mask = 0xffUL << (i * 8); if ((v1 & mask) == (v2 & mask)) out_val |= mask; } op->val = out_val; } /* * The size parameter is used to adjust the equivalent popcnt instruction. * popcntb = 8, popcntw = 32, popcntd = 64 */ static nokprobe_inline void do_popcnt(const struct pt_regs *regs, struct instruction_op *op, unsigned long v1, int size) { unsigned long long out = v1; out -= (out >> 1) & 0x5555555555555555ULL; out = (0x3333333333333333ULL & out) + (0x3333333333333333ULL & (out >> 2)); out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL; if (size == 8) { /* popcntb */ op->val = out; return; } out += out >> 8; out += out >> 16; if (size == 32) { /* popcntw */ op->val = out & 0x0000003f0000003fULL; return; } out = (out + (out >> 32)) & 0x7f; op->val = out; /* popcntd */ } #ifdef CONFIG_PPC64 static nokprobe_inline void do_bpermd(const struct pt_regs *regs, struct instruction_op *op, unsigned long v1, unsigned long v2) { unsigned char perm, idx; unsigned int i; perm = 0; for (i = 0; i < 8; i++) { idx = (v1 >> (i * 8)) & 0xff; if (idx < 64) if (v2 & PPC_BIT(idx)) perm |= 1 << i; } op->val = perm; } #endif /* CONFIG_PPC64 */ /* * The size parameter adjusts the equivalent prty instruction. * prtyw = 32, prtyd = 64 */ static nokprobe_inline void do_prty(const struct pt_regs *regs, struct instruction_op *op, unsigned long v, int size) { unsigned long long res = v ^ (v >> 8); res ^= res >> 16; if (size == 32) { /* prtyw */ op->val = res & 0x0000000100000001ULL; return; } res ^= res >> 32; op->val = res & 1; /*prtyd */ } static nokprobe_inline int trap_compare(long v1, long v2) { int ret = 0; if (v1 < v2) ret |= 0x10; else if (v1 > v2) ret |= 0x08; else ret |= 0x04; if ((unsigned long)v1 < (unsigned long)v2) ret |= 0x02; else if ((unsigned long)v1 > (unsigned long)v2) ret |= 0x01; return ret; } /* * Elements of 32-bit rotate and mask instructions. */ #define MASK32(mb, me) ((0xffffffffUL >> (mb)) + \ ((signed long)-0x80000000L >> (me)) + ((me) >= (mb))) #ifdef __powerpc64__ #define MASK64_L(mb) (~0UL >> (mb)) #define MASK64_R(me) ((signed long)-0x8000000000000000L >> (me)) #define MASK64(mb, me) (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb))) #define DATA32(x) (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32)) #else #define DATA32(x) (x) #endif #define ROTATE(x, n) ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x)) /* * Decode an instruction, and return information about it in *op * without changing *regs. * Integer arithmetic and logical instructions, branches, and barrier * instructions can be emulated just using the information in *op. * * Return value is 1 if the instruction can be emulated just by * updating *regs with the information in *op, -1 if we need the * GPRs but *regs doesn't contain the full register set, or 0 * otherwise. */ int analyse_instr(struct instruction_op *op, const struct pt_regs *regs, ppc_inst_t instr) { #ifdef CONFIG_PPC64 unsigned int suffixopcode, prefixtype, prefix_r; #endif unsigned int opcode, ra, rb, rc, rd, spr, u; unsigned long int imm; unsigned long int val, val2; unsigned int mb, me, sh; unsigned int word, suffix; long ival; word = ppc_inst_val(instr); suffix = ppc_inst_suffix(instr); op->type = COMPUTE; opcode = ppc_inst_primary_opcode(instr); switch (opcode) { case 16: /* bc */ op->type = BRANCH; imm = (signed short)(word & 0xfffc); if ((word & 2) == 0) imm += regs->nip; op->val = truncate_if_32bit(regs->msr, imm); if (word & 1) op->type |= SETLK; if (branch_taken(word, regs, op)) op->type |= BRTAKEN; return 1; case 17: /* sc */ if ((word & 0xfe2) == 2) op->type = SYSCALL; else if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && (word & 0xfe3) == 1) { /* scv */ op->type = SYSCALL_VECTORED_0; if (!cpu_has_feature(CPU_FTR_ARCH_300)) goto unknown_opcode; } else op->type = UNKNOWN; return 0; case 18: /* b */ op->type = BRANCH | BRTAKEN; imm = word & 0x03fffffc; if (imm & 0x02000000) imm -= 0x04000000; if ((word & 2) == 0) imm += regs->nip; op->val = truncate_if_32bit(regs->msr, imm); if (word & 1) op->type |= SETLK; return 1; case 19: switch ((word >> 1) & 0x3ff) { case 0: /* mcrf */ op->type = COMPUTE + SETCC; rd = 7 - ((word >> 23) & 0x7); ra = 7 - ((word >> 18) & 0x7); rd *= 4; ra *= 4; val = (regs->ccr >> ra) & 0xf; op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd); return 1; case 16: /* bclr */ case 528: /* bcctr */ op->type = BRANCH; imm = (word & 0x400)? regs->ctr: regs->link; op->val = truncate_if_32bit(regs->msr, imm); if (word & 1) op->type |= SETLK; if (branch_taken(word, regs, op)) op->type |= BRTAKEN; return 1; case 18: /* rfid, scary */ if (regs->msr & MSR_PR) goto priv; op->type = RFI; return 0; case 150: /* isync */ op->type = BARRIER | BARRIER_ISYNC; return 1; case 33: /* crnor */ case 129: /* crandc */ case 193: /* crxor */ case 225: /* crnand */ case 257: /* crand */ case 289: /* creqv */ case 417: /* crorc */ case 449: /* cror */ op->type = COMPUTE + SETCC; ra = (word >> 16) & 0x1f; rb = (word >> 11) & 0x1f; rd = (word >> 21) & 0x1f; ra = (regs->ccr >> (31 - ra)) & 1; rb = (regs->ccr >> (31 - rb)) & 1; val = (word >> (6 + ra * 2 + rb)) & 1; op->ccval = (regs->ccr & ~(1UL << (31 - rd))) | (val << (31 - rd)); return 1; } break; case 31: switch ((word >> 1) & 0x3ff) { case 598: /* sync */ op->type = BARRIER + BARRIER_SYNC; #ifdef __powerpc64__ switch ((word >> 21) & 3) { case 1: /* lwsync */ op->type = BARRIER + BARRIER_LWSYNC; break; case 2: /* ptesync */ op->type = BARRIER + BARRIER_PTESYNC; break; } #endif return 1; case 854: /* eieio */ op->type = BARRIER + BARRIER_EIEIO; return 1; } break; } rd = (word >> 21) & 0x1f; ra = (word >> 16) & 0x1f; rb = (word >> 11) & 0x1f; rc = (word >> 6) & 0x1f; switch (opcode) { #ifdef __powerpc64__ case 1: if (!cpu_has_feature(CPU_FTR_ARCH_31)) goto unknown_opcode; prefix_r = GET_PREFIX_R(word); ra = GET_PREFIX_RA(suffix); rd = (suffix >> 21) & 0x1f; op->reg = rd; op->val = regs->gpr[rd]; suffixopcode = get_op(suffix); prefixtype = (word >> 24) & 0x3; switch (prefixtype) { case 2: if (prefix_r && ra) return 0; switch (suffixopcode) { case 14: /* paddi */ op->type = COMPUTE | PREFIXED; op->val = mlsd_8lsd_ea(word, suffix, regs); goto compute_done; } } break; case 2: /* tdi */ if (rd & trap_compare(regs->gpr[ra], (short) word)) goto trap; return 1; #endif case 3: /* twi */ if (rd & trap_compare((int)regs->gpr[ra], (short) word)) goto trap; return 1; #ifdef __powerpc64__ case 4: /* * There are very many instructions with this primary opcode * introduced in the ISA as early as v2.03. However, the ones * we currently emulate were all introduced with ISA 3.0 */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) goto unknown_opcode; switch (word & 0x3f) { case 48: /* maddhd */ asm volatile(PPC_MADDHD(%0, %1, %2, %3) : "=r" (op->val) : "r" (regs->gpr[ra]), "r" (regs->gpr[rb]), "r" (regs->gpr[rc])); goto compute_done; case 49: /* maddhdu */ asm volatile(PPC_MADDHDU(%0, %1, %2, %3) : "=r" (op->val) : "r" (regs->gpr[ra]), "r" (regs->gpr[rb]), "r" (regs->gpr[rc])); goto compute_done; case 51: /* maddld */ asm volatile(PPC_MADDLD(%0, %1, %2, %3) : "=r" (op->val) : "r" (regs->gpr[ra]), "r" (regs->gpr[rb]), "r" (regs->gpr[rc])); goto compute_done; } /* * There are other instructions from ISA 3.0 with the same * primary opcode which do not have emulation support yet. */ goto unknown_opcode; #endif case 7: /* mulli */ op->val = regs->gpr[ra] * (short) word; goto compute_done; case 8: /* subfic */ imm = (short) word; add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1); return 1; case 10: /* cmpli */ imm = (unsigned short) word; val = regs->gpr[ra]; #ifdef __powerpc64__ if ((rd & 1) == 0) val = (unsigned int) val; #endif do_cmp_unsigned(regs, op, val, imm, rd >> 2); return 1; case 11: /* cmpi */ imm = (short) word; val = regs->gpr[ra]; #ifdef __powerpc64__ if ((rd & 1) == 0) val = (int) val; #endif do_cmp_signed(regs, op, val, imm, rd >> 2); return 1; case 12: /* addic */ imm = (short) word; add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0); return 1; case 13: /* addic. */ imm = (short) word; add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0); set_cr0(regs, op); return 1; case 14: /* addi */ imm = (short) word; if (ra) imm += regs->gpr[ra]; op->val = imm; goto compute_done; case 15: /* addis */ imm = ((short) word) << 16; if (ra) imm += regs->gpr[ra]; op->val = imm; goto compute_done; case 19: if (((word >> 1) & 0x1f) == 2) { /* addpcis */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) goto unknown_opcode; imm = (short) (word & 0xffc1); /* d0 + d2 fields */ imm |= (word >> 15) & 0x3e; /* d1 field */ op->val = regs->nip + (imm << 16) + 4; goto compute_done; } op->type = UNKNOWN; return 0; case 20: /* rlwimi */ mb = (word >> 6) & 0x1f; me = (word >> 1) & 0x1f; val = DATA32(regs->gpr[rd]); imm = MASK32(mb, me); op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm); goto logical_done; case 21: /* rlwinm */ mb = (word >> 6) & 0x1f; me = (word >> 1) & 0x1f; val = DATA32(regs->gpr[rd]); op->val = ROTATE(val, rb) & MASK32(mb, me); goto logical_done; case 23: /* rlwnm */ mb = (word >> 6) & 0x1f; me = (word >> 1) & 0x1f; rb = regs->gpr[rb] & 0x1f; val = DATA32(regs->gpr[rd]); op->val = ROTATE(val, rb) & MASK32(mb, me); goto logical_done; case 24: /* ori */ op->val = regs->gpr[rd] | (unsigned short) word; goto logical_done_nocc; case 25: /* oris */ imm = (unsigned short) word; op->val = regs->gpr[rd] | (imm << 16); goto logical_done_nocc; case 26: /* xori */ op->val = regs->gpr[rd] ^ (unsigned short) word; goto logical_done_nocc; case 27: /* xoris */ imm = (unsigned short) word; op->val = regs->gpr[rd] ^ (imm << 16); goto logical_done_nocc; case 28: /* andi. */ op->val = regs->gpr[rd] & (unsigned short) word; set_cr0(regs, op); goto logical_done_nocc; case 29: /* andis. */ imm = (unsigned short) word; op->val = regs->gpr[rd] & (imm << 16); set_cr0(regs, op); goto logical_done_nocc; #ifdef __powerpc64__ case 30: /* rld* */ mb = ((word >> 6) & 0x1f) | (word & 0x20); val = regs->gpr[rd]; if ((word & 0x10) == 0) { sh = rb | ((word & 2) << 4); val = ROTATE(val, sh); switch ((word >> 2) & 3) { case 0: /* rldicl */ val &= MASK64_L(mb); break; case 1: /* rldicr */ val &= MASK64_R(mb); break; case 2: /* rldic */ val &= MASK64(mb, 63 - sh); break; case 3: /* rldimi */ imm = MASK64(mb, 63 - sh); val = (regs->gpr[ra] & ~imm) | (val & imm); } op->val = val; goto logical_done; } else { sh = regs->gpr[rb] & 0x3f; val = ROTATE(val, sh); switch ((word >> 1) & 7) { case 0: /* rldcl */ op->val = val & MASK64_L(mb); goto logical_done; case 1: /* rldcr */ op->val = val & MASK64_R(mb); goto logical_done; } } #endif op->type = UNKNOWN; /* illegal instruction */ return 0; case 31: /* isel occupies 32 minor opcodes */ if (((word >> 1) & 0x1f) == 15) { mb = (word >> 6) & 0x1f; /* bc field */ val = (regs->ccr >> (31 - mb)) & 1; val2 = (ra) ? regs->gpr[ra] : 0; op->val = (val) ? val2 : regs->gpr[rb]; goto compute_done; } switch ((word >> 1) & 0x3ff) { case 4: /* tw */ if (rd == 0x1f || (rd & trap_compare((int)regs->gpr[ra], (int)regs->gpr[rb]))) goto trap; return 1; #ifdef __powerpc64__ case 68: /* td */ if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb])) goto trap; return 1; #endif case 83: /* mfmsr */ if (regs->msr & MSR_PR) goto priv; op->type = MFMSR; op->reg = rd; return 0; case 146: /* mtmsr */ if (regs->msr & MSR_PR) goto priv; op->type = MTMSR; op->reg = rd; op->val = 0xffffffff & ~(MSR_ME | MSR_LE); return 0; #ifdef CONFIG_PPC64 case 178: /* mtmsrd */ if (regs->msr & MSR_PR) goto priv; op->type = MTMSR; op->reg = rd; /* only MSR_EE and MSR_RI get changed if bit 15 set */ /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */ imm = (word & 0x10000)? 0x8002: 0xefffffffffffeffeUL; op->val = imm; return 0; #endif case 19: /* mfcr */ imm = 0xffffffffUL; if ((word >> 20) & 1) { imm = 0xf0000000UL; for (sh = 0; sh < 8; ++sh) { if (word & (0x80000 >> sh)) break; imm >>= 4; } } op->val = regs->ccr & imm; goto compute_done; case 128: /* setb */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) goto unknown_opcode; /* * 'ra' encodes the CR field number (bfa) in the top 3 bits. * Since each CR field is 4 bits, * we can simply mask off the bottom two bits (bfa * 4) * to yield the first bit in the CR field. */ ra = ra & ~0x3; /* 'val' stores bits of the CR field (bfa) */ val = regs->ccr >> (CR0_SHIFT - ra); /* checks if the LT bit of CR field (bfa) is set */ if (val & 8) op->val = -1; /* checks if the GT bit of CR field (bfa) is set */ else if (val & 4) op->val = 1; else op->val = 0; goto compute_done; case 144: /* mtcrf */ op->type = COMPUTE + SETCC; imm = 0xf0000000UL; val = regs->gpr[rd]; op->ccval = regs->ccr; for (sh = 0; sh < 8; ++sh) { if (word & (0x80000 >> sh)) op->ccval = (op->ccval & ~imm) | (val & imm); imm >>= 4; } return 1; case 339: /* mfspr */ spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0); op->type = MFSPR; op->reg = rd; op->spr = spr; if (spr == SPRN_XER || spr == SPRN_LR || spr == SPRN_CTR) return 1; return 0; case 467: /* mtspr */ spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0); op->type = MTSPR; op->val = regs->gpr[rd]; op->spr = spr; if (spr == SPRN_XER || spr == SPRN_LR || spr == SPRN_CTR) return 1; return 0; /* * Compare instructions */ case 0: /* cmp */ val = regs->gpr[ra]; val2 = regs->gpr[rb]; #ifdef __powerpc64__ if ((rd & 1) == 0) { /* word (32-bit) compare */ val = (int) val; val2 = (int) val2; } #endif do_cmp_signed(regs, op, val, val2, rd >> 2); return 1; case 32: /* cmpl */ val = regs->gpr[ra]; val2 = regs->gpr[rb]; #ifdef __powerpc64__ if ((rd & 1) == 0) { /* word (32-bit) compare */ val = (unsigned int) val; val2 = (unsigned int) val2; } #endif do_cmp_unsigned(regs, op, val, val2, rd >> 2); return 1; case 508: /* cmpb */ do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]); goto logical_done_nocc; /* * Arithmetic instructions */ case 8: /* subfc */ add_with_carry(regs, op, rd, ~regs->gpr[ra], regs->gpr[rb], 1); goto arith_done; #ifdef __powerpc64__ case 9: /* mulhdu */ asm("mulhdu %0,%1,%2" : "=r" (op->val) : "r" (regs->gpr[ra]), "r" (regs->gpr[rb])); goto arith_done; #endif case 10: /* addc */ add_with_carry(regs, op, rd, regs->gpr[ra], regs->gpr[rb], 0); goto arith_done; case 11: /* mulhwu */ asm("mulhwu %0,%1,%2" : "=r" (op->val) : "r" (regs->gpr[ra]), "r" (regs->gpr[rb])); goto arith_done; case 40: /* subf */ op->val = regs->gpr[rb] - regs->gpr[ra]; goto arith_done; #ifdef __powerpc64__ case 73: /* mulhd */ asm("mulhd %0,%1,%2" : "=r" (op->val) : "r" (regs->gpr[ra]), "r" (regs->gpr[rb])); goto arith_done; #endif case 75: /* mulhw */ asm("mulhw %0,%1,%2" : "=r" (op->val) : "r" (regs->gpr[ra]), "r" (regs->gpr[rb])); goto arith_done; case 104: /* neg */ op->val = -regs->gpr[ra]; goto arith_done; case 136: /* subfe */ add_with_carry(regs, op, rd, ~regs->gpr[ra], regs->gpr[rb], regs->xer & XER_CA); goto arith_done; case 138: /* adde */ add_with_carry(regs, op, rd, regs->gpr[ra], regs->gpr[rb], regs->xer & XER_CA); goto arith_done; case 200: /* subfze */ add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L, regs->xer & XER_CA); goto arith_done; case 202: /* addze */ add_with_carry(regs, op, rd, regs->gpr[ra], 0L, regs->xer & XER_CA); goto arith_done; case 232: /* subfme */ add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L, regs->xer & XER_CA); goto arith_done; #ifdef __powerpc64__ case 233: /* mulld */ op->val = regs->gpr[ra] * regs->gpr[rb]; goto arith_done; #endif case 234: /* addme */ add_with_carry(regs, op, rd, regs->gpr[ra], -1L, regs->xer & XER_CA); goto arith_done; case 235: /* mullw */ op->val = (long)(int) regs->gpr[ra] * (int) regs->gpr[rb]; goto arith_done; #ifdef __powerpc64__ case 265: /* modud */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) goto unknown_opcode; op->val = regs->gpr[ra] % regs->gpr[rb]; goto compute_done; #endif case 266: /* add */ op->val = regs->gpr[ra] + regs->gpr[rb]; goto arith_done; case 267: /* moduw */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) goto unknown_opcode; op->val = (unsigned int) regs->gpr[ra] % (unsigned int) regs->gpr[rb]; goto compute_done; #ifdef __powerpc64__ case 457: /* divdu */ op->val = regs->gpr[ra] / regs->gpr[rb]; goto arith_done; #endif case 459: /* divwu */ op->val = (unsigned int) regs->gpr[ra] / (unsigned int) regs->gpr[rb]; goto arith_done; #ifdef __powerpc64__ case 489: /* divd */ op->val = (long int) regs->gpr[ra] / (long int) regs->gpr[rb]; goto arith_done; #endif case 491: /* divw */ op->val = (int) regs->gpr[ra] / (int) regs->gpr[rb]; goto arith_done; #ifdef __powerpc64__ case 425: /* divde[.] */ asm volatile(PPC_DIVDE(%0, %1, %2) : "=r" (op->val) : "r" (regs->gpr[ra]), "r" (regs->gpr[rb])); goto arith_done; case 393: /* divdeu[.] */ asm volatile(PPC_DIVDEU(%0, %1, %2) : "=r" (op->val) : "r" (regs->gpr[ra]), "r" (regs->gpr[rb])); goto arith_done; #endif case 755: /* darn */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) goto unknown_opcode; switch (ra & 0x3) { case 0: /* 32-bit conditioned */ asm volatile(PPC_DARN(%0, 0) : "=r" (op->val)); goto compute_done; case 1: /* 64-bit conditioned */ asm volatile(PPC_DARN(%0, 1) : "=r" (op->val)); goto compute_done; case 2: /* 64-bit raw */ asm volatile(PPC_DARN(%0, 2) : "=r" (op->val)); goto compute_done; } goto unknown_opcode; #ifdef __powerpc64__ case 777: /* modsd */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) goto unknown_opcode; op->val = (long int) regs->gpr[ra] % (long int) regs->gpr[rb]; goto compute_done; #endif case 779: /* modsw */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) goto unknown_opcode; op->val = (int) regs->gpr[ra] % (int) regs->gpr[rb]; goto compute_done; /* * Logical instructions */ case 26: /* cntlzw */ val = (unsigned int) regs->gpr[rd]; op->val = ( val ? __builtin_clz(val) : 32 ); goto logical_done; #ifdef __powerpc64__ case 58: /* cntlzd */ val = regs->gpr[rd]; op->val = ( val ? __builtin_clzl(val) : 64 ); goto logical_done; #endif case 28: /* and */ op->val = regs->gpr[rd] & regs->gpr[rb]; goto logical_done; case 60: /* andc */ op->val = regs->gpr[rd] & ~regs->gpr[rb]; goto logical_done; case 122: /* popcntb */ do_popcnt(regs, op, regs->gpr[rd], 8); goto logical_done_nocc; case 124: /* nor */ op->val = ~(regs->gpr[rd] | regs->gpr[rb]); goto logical_done; case 154: /* prtyw */ do_prty(regs, op, regs->gpr[rd], 32); goto logical_done_nocc; case 186: /* prtyd */ do_prty(regs, op, regs->gpr[rd], 64); goto logical_done_nocc; #ifdef CONFIG_PPC64 case 252: /* bpermd */ do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]); goto logical_done_nocc; #endif case 284: /* xor */ op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]); goto logical_done; case 316: /* xor */ op->val = regs->gpr[rd] ^ regs->gpr[rb]; goto logical_done; case 378: /* popcntw */ do_popcnt(regs, op, regs->gpr[rd], 32); goto logical_done_nocc; case 412: /* orc */ op->val = regs->gpr[rd] | ~regs->gpr[rb]; goto logical_done; case 444: /* or */ op->val = regs->gpr[rd] | regs->gpr[rb]; goto logical_done; case 476: /* nand */ op->val = ~(regs->gpr[rd] & regs->gpr[rb]); goto logical_done; #ifdef CONFIG_PPC64 case 506: /* popcntd */ do_popcnt(regs, op, regs->gpr[rd], 64); goto logical_done_nocc; #endif case 538: /* cnttzw */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) goto unknown_opcode; val = (unsigned int) regs->gpr[rd]; op->val = (val ? __builtin_ctz(val) : 32); goto logical_done; #ifdef __powerpc64__ case 570: /* cnttzd */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) goto unknown_opcode; val = regs->gpr[rd]; op->val = (val ? __builtin_ctzl(val) : 64); goto logical_done; #endif case 922: /* extsh */ op->val = (signed short) regs->gpr[rd]; goto logical_done; case 954: /* extsb */ op->val = (signed char) regs->gpr[rd]; goto logical_done; #ifdef __powerpc64__ case 986: /* extsw */ op->val = (signed int) regs->gpr[rd]; goto logical_done; #endif /* * Shift instructions */ case 24: /* slw */ sh = regs->gpr[rb] & 0x3f; if (sh < 32) op->val = (regs->gpr[rd] << sh) & 0xffffffffUL; else op->val = 0; goto logical_done; case 536: /* srw */ sh = regs->gpr[rb] & 0x3f; if (sh < 32) op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh; else op->val = 0; goto logical_done; case 792: /* sraw */ op->type = COMPUTE + SETREG + SETXER; sh = regs->gpr[rb] & 0x3f; ival = (signed int) regs->gpr[rd]; op->val = ival >> (sh < 32 ? sh : 31); op->xerval = regs->xer; if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0)) op->xerval |= XER_CA; else op->xerval &= ~XER_CA; set_ca32(op, op->xerval & XER_CA); goto logical_done; case 824: /* srawi */ op->type = COMPUTE + SETREG + SETXER; sh = rb; ival = (signed int) regs->gpr[rd]; op->val = ival >> sh; op->xerval = regs->xer; if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0) op->xerval |= XER_CA; else op->xerval &= ~XER_CA; set_ca32(op, op->xerval & XER_CA); goto logical_done; #ifdef __powerpc64__ case 27: /* sld */ sh = regs->gpr[rb] & 0x7f; if (sh < 64) op->val = regs->gpr[rd] << sh; else op->val = 0; goto logical_done; case 539: /* srd */ sh = regs->gpr[rb] & 0x7f; if (sh < 64) op->val = regs->gpr[rd] >> sh; else op->val = 0; goto logical_done; case 794: /* srad */ op->type = COMPUTE + SETREG + SETXER; sh = regs->gpr[rb] & 0x7f; ival = (signed long int) regs->gpr[rd]; op->val = ival >> (sh < 64 ? sh : 63); op->xerval = regs->xer; if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0)) op->xerval |= XER_CA; else op->xerval &= ~XER_CA; set_ca32(op, op->xerval & XER_CA); goto logical_done; case 826: /* sradi with sh_5 = 0 */ case 827: /* sradi with sh_5 = 1 */ op->type = COMPUTE + SETREG + SETXER; sh = rb | ((word & 2) << 4); ival = (signed long int) regs->gpr[rd]; op->val = ival >> sh; op->xerval = regs->xer; if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0) op->xerval |= XER_CA; else op->xerval &= ~XER_CA; set_ca32(op, op->xerval & XER_CA); goto logical_done; case 890: /* extswsli with sh_5 = 0 */ case 891: /* extswsli with sh_5 = 1 */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) goto unknown_opcode; op->type = COMPUTE + SETREG; sh = rb | ((word & 2) << 4); val = (signed int) regs->gpr[rd]; if (sh) op->val = ROTATE(val, sh) & MASK64(0, 63 - sh); else op->val = val; goto logical_done; #endif /* __powerpc64__ */ /* * Cache instructions */ case 54: /* dcbst */ op->type = MKOP(CACHEOP, DCBST, 0); op->ea = xform_ea(word, regs); return 0; case 86: /* dcbf */ op->type = MKOP(CACHEOP, DCBF, 0); op->ea = xform_ea(word, regs); return 0; case 246: /* dcbtst */ op->type = MKOP(CACHEOP, DCBTST, 0); op->ea = xform_ea(word, regs); op->reg = rd; return 0; case 278: /* dcbt */ op->type = MKOP(CACHEOP, DCBTST, 0); op->ea = xform_ea(word, regs); op->reg = rd; return 0; case 982: /* icbi */ op->type = MKOP(CACHEOP, ICBI, 0); op->ea = xform_ea(word, regs); return 0; case 1014: /* dcbz */ op->type = MKOP(CACHEOP, DCBZ, 0); op->ea = xform_ea(word, regs); return 0; } break; } /* * Loads and stores. */ op->type = UNKNOWN; op->update_reg = ra; op->reg = rd; op->val = regs->gpr[rd]; u = (word >> 20) & UPDATE; op->vsx_flags = 0; switch (opcode) { case 31: u = word & UPDATE; op->ea = xform_ea(word, regs); switch ((word >> 1) & 0x3ff) { case 20: /* lwarx */ op->type = MKOP(LARX, 0, 4); break; case 150: /* stwcx. */ op->type = MKOP(STCX, 0, 4); break; #ifdef CONFIG_PPC_HAS_LBARX_LHARX case 52: /* lbarx */ op->type = MKOP(LARX, 0, 1); break; case 694: /* stbcx. */ op->type = MKOP(STCX, 0, 1); break; case 116: /* lharx */ op->type = MKOP(LARX, 0, 2); break; case 726: /* sthcx. */ op->type = MKOP(STCX, 0, 2); break; #endif #ifdef __powerpc64__ case 84: /* ldarx */ op->type = MKOP(LARX, 0, 8); break; case 214: /* stdcx. */ op->type = MKOP(STCX, 0, 8); break; case 276: /* lqarx */ if (!((rd & 1) || rd == ra || rd == rb)) op->type = MKOP(LARX, 0, 16); break; case 182: /* stqcx. */ if (!(rd & 1)) op->type = MKOP(STCX, 0, 16); break; #endif case 23: /* lwzx */ case 55: /* lwzux */ op->type = MKOP(LOAD, u, 4); break; case 87: /* lbzx */ case 119: /* lbzux */ op->type = MKOP(LOAD, u, 1); break; #ifdef CONFIG_ALTIVEC /* * Note: for the load/store vector element instructions, * bits of the EA say which field of the VMX register to use. */ case 7: /* lvebx */ op->type = MKOP(LOAD_VMX, 0, 1); op->element_size = 1; break; case 39: /* lvehx */ op->type = MKOP(LOAD_VMX, 0, 2); op->element_size = 2; break; case 71: /* lvewx */ op->type = MKOP(LOAD_VMX, 0, 4); op->element_size = 4; break; case 103: /* lvx */ case 359: /* lvxl */ op->type = MKOP(LOAD_VMX, 0, 16); op->element_size = 16; break; case 135: /* stvebx */ op->type = MKOP(STORE_VMX, 0, 1); op->element_size = 1; break; case 167: /* stvehx */ op->type = MKOP(STORE_VMX, 0, 2); op->element_size = 2; break; case 199: /* stvewx */ op->type = MKOP(STORE_VMX, 0, 4); op->element_size = 4; break; case 231: /* stvx */ case 487: /* stvxl */ op->type = MKOP(STORE_VMX, 0, 16); break; #endif /* CONFIG_ALTIVEC */ #ifdef __powerpc64__ case 21: /* ldx */ case 53: /* ldux */ op->type = MKOP(LOAD, u, 8); break; case 149: /* stdx */ case 181: /* stdux */ op->type = MKOP(STORE, u, 8); break; #endif case 151: /* stwx */ case 183: /* stwux */ op->type = MKOP(STORE, u, 4); break; case 215: /* stbx */ case 247: /* stbux */ op->type = MKOP(STORE, u, 1); break; case 279: /* lhzx */ case 311: /* lhzux */ op->type = MKOP(LOAD, u, 2); break; #ifdef __powerpc64__ case 341: /* lwax */ case 373: /* lwaux */ op->type = MKOP(LOAD, SIGNEXT | u, 4); break; #endif case 343: /* lhax */ case 375: /* lhaux */ op->type = MKOP(LOAD, SIGNEXT | u, 2); break; case 407: /* sthx */ case 439: /* sthux */ op->type = MKOP(STORE, u, 2); break; #ifdef __powerpc64__ case 532: /* ldbrx */ op->type = MKOP(LOAD, BYTEREV, 8); break; #endif case 533: /* lswx */ op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f); break; case 534: /* lwbrx */ op->type = MKOP(LOAD, BYTEREV, 4); break; case 597: /* lswi */ if (rb == 0) rb = 32; /* # bytes to load */ op->type = MKOP(LOAD_MULTI, 0, rb); op->ea = ra ? regs->gpr[ra] : 0; break; #ifdef CONFIG_PPC_FPU case 535: /* lfsx */ case 567: /* lfsux */ op->type = MKOP(LOAD_FP, u | FPCONV, 4); break; case 599: /* lfdx */ case 631: /* lfdux */ op->type = MKOP(LOAD_FP, u, 8); break; case 663: /* stfsx */ case 695: /* stfsux */ op->type = MKOP(STORE_FP, u | FPCONV, 4); break; case 727: /* stfdx */ case 759: /* stfdux */ op->type = MKOP(STORE_FP, u, 8); break; #ifdef __powerpc64__ case 791: /* lfdpx */ op->type = MKOP(LOAD_FP, 0, 16); break; case 855: /* lfiwax */ op->type = MKOP(LOAD_FP, SIGNEXT, 4); break; case 887: /* lfiwzx */ op->type = MKOP(LOAD_FP, 0, 4); break; case 919: /* stfdpx */ op->type = MKOP(STORE_FP, 0, 16); break; case 983: /* stfiwx */ op->type = MKOP(STORE_FP, 0, 4); break; #endif /* __powerpc64 */ #endif /* CONFIG_PPC_FPU */ #ifdef __powerpc64__ case 660: /* stdbrx */ op->type = MKOP(STORE, BYTEREV, 8); op->val = byterev_8(regs->gpr[rd]); break; #endif case 661: /* stswx */ op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f); break; case 662: /* stwbrx */ op->type = MKOP(STORE, BYTEREV, 4); op->val = byterev_4(regs->gpr[rd]); break; case 725: /* stswi */ if (rb == 0) rb = 32; /* # bytes to store */ op->type = MKOP(STORE_MULTI, 0, rb); op->ea = ra ? regs->gpr[ra] : 0; break; case 790: /* lhbrx */ op->type = MKOP(LOAD, BYTEREV, 2); break; case 918: /* sthbrx */ op->type = MKOP(STORE, BYTEREV, 2); op->val = byterev_2(regs->gpr[rd]); break; #ifdef CONFIG_VSX case 12: /* lxsiwzx */ op->reg = rd | ((word & 1) << 5); op->type = MKOP(LOAD_VSX, 0, 4); op->element_size = 8; break; case 76: /* lxsiwax */ op->reg = rd | ((word & 1) << 5); op->type = MKOP(LOAD_VSX, SIGNEXT, 4); op->element_size = 8; break; case 140: /* stxsiwx */ op->reg = rd | ((word & 1) << 5); op->type = MKOP(STORE_VSX, 0, 4); op->element_size = 8; break; case 268: /* lxvx */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) goto unknown_opcode; op->reg = rd | ((word & 1) << 5); op->type = MKOP(LOAD_VSX, 0, 16); op->element_size = 16; op->vsx_flags = VSX_CHECK_VEC; break; case 269: /* lxvl */ case 301: { /* lxvll */ int nb; if (!cpu_has_feature(CPU_FTR_ARCH_300)) goto unknown_opcode; op->reg = rd | ((word & 1) << 5); op->ea = ra ? regs->gpr[ra] : 0; nb = regs->gpr[rb] & 0xff; if (nb > 16) nb = 16; op->type = MKOP(LOAD_VSX, 0, nb); op->element_size = 16; op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) | VSX_CHECK_VEC; break; } case 332: /* lxvdsx */ op->reg = rd | ((word & 1) << 5); op->type = MKOP(LOAD_VSX, 0, 8); op->element_size = 8; op->vsx_flags = VSX_SPLAT; break; case 333: /* lxvpx */ if (!cpu_has_feature(CPU_FTR_ARCH_31)) goto unknown_opcode; op->reg = VSX_REGISTER_XTP(rd); op->type = MKOP(LOAD_VSX, 0, 32); op->element_size = 32; break; case 364: /* lxvwsx */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) goto unknown_opcode; op->reg = rd | ((word & 1) << 5); op->type = MKOP(LOAD_VSX, 0, 4); op->element_size = 4; op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC; break; case 396: /* stxvx */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) goto unknown_opcode; op->reg = rd | ((word & 1) << 5); op->type = MKOP(STORE_VSX, 0, 16); op->element_size = 16; op->vsx_flags = VSX_CHECK_VEC; break; case 397: /* stxvl */ case 429: { /* stxvll */ int nb; if (!cpu_has_feature(CPU_FTR_ARCH_300)) goto unknown_opcode; op->reg = rd | ((word & 1) << 5); op->ea = ra ? regs->gpr[ra] : 0; nb = regs->gpr[rb] & 0xff; if (nb > 16) nb = 16; op->type = MKOP(STORE_VSX, 0, nb); op->element_size = 16; op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) | VSX_CHECK_VEC; break; } case 461: /* stxvpx */ if (!cpu_has_feature(CPU_FTR_ARCH_31)) goto unknown_opcode; op->reg = VSX_REGISTER_XTP(rd); op->type = MKOP(STORE_VSX, 0, 32); op->element_size = 32; break; case 524: /* lxsspx */ op->reg = rd | ((word & 1) << 5); op->type = MKOP(LOAD_VSX, 0, 4); op->element_size = 8; op->vsx_flags = VSX_FPCONV; break; case 588: /* lxsdx */ op->reg = rd | ((word & 1) << 5); op->type = MKOP(LOAD_VSX, 0, 8); op->element_size = 8; break; case 652: /* stxsspx */ op->reg = rd | ((word & 1) << 5); op->type = MKOP(STORE_VSX, 0, 4); op->element_size = 8; op->vsx_flags = VSX_FPCONV; break; case 716: /* stxsdx */ op->reg = rd | ((word & 1) << 5); op->type = MKOP(STORE_VSX, 0, 8); op->element_size = 8; break; case 780: /* lxvw4x */ op->reg = rd | ((word & 1) << 5); op->type = MKOP(LOAD_VSX, 0, 16); op->element_size = 4; break; case 781: /* lxsibzx */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) goto unknown_opcode; op->reg = rd | ((word & 1) << 5); op->type = MKOP(LOAD_VSX, 0, 1); op->element_size = 8; op->vsx_flags = VSX_CHECK_VEC; break; case 812: /* lxvh8x */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) goto unknown_opcode; op->reg = rd | ((word & 1) << 5); op->type = MKOP(LOAD_VSX, 0, 16); op->element_size = 2; op->vsx_flags = VSX_CHECK_VEC; break; case 813: /* lxsihzx */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) goto unknown_opcode; op->reg = rd | ((word & 1) << 5); op->type = MKOP(LOAD_VSX, 0, 2); op->element_size = 8; op->vsx_flags = VSX_CHECK_VEC; break; case 844: /* lxvd2x */ op->reg = rd | ((word & 1) << 5); op->type = MKOP(LOAD_VSX, 0, 16); op->element_size = 8; break; case 876: /* lxvb16x */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) goto unknown_opcode; op->reg = rd | ((word & 1) << 5); op->type = MKOP(LOAD_VSX, 0, 16); op->element_size = 1; op->vsx_flags = VSX_CHECK_VEC; break; case 908: /* stxvw4x */ op->reg = rd | ((word & 1) << 5); op->type = MKOP(STORE_VSX, 0, 16); op->element_size = 4; break; case 909: /* stxsibx */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) goto unknown_opcode; op->reg = rd | ((word & 1) << 5); op->type = MKOP(STORE_VSX, 0, 1); op->element_size = 8; op->vsx_flags = VSX_CHECK_VEC; break; case 940: /* stxvh8x */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) goto unknown_opcode; op->reg = rd | ((word & 1) << 5); op->type = MKOP(STORE_VSX, 0, 16); op->element_size = 2; op->vsx_flags = VSX_CHECK_VEC; break; case 941: /* stxsihx */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) goto unknown_opcode; op->reg = rd | ((word & 1) << 5); op->type = MKOP(STORE_VSX, 0, 2); op->element_size = 8; op->vsx_flags = VSX_CHECK_VEC; break; case 972: /* stxvd2x */ op->reg = rd | ((word & 1) << 5); op->type = MKOP(STORE_VSX, 0, 16); op->element_size = 8; break; case 1004: /* stxvb16x */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) goto unknown_opcode; op->reg = rd | ((word & 1) << 5); op->type = MKOP(STORE_VSX, 0, 16); op->element_size = 1; op->vsx_flags = VSX_CHECK_VEC; break; #endif /* CONFIG_VSX */ } break; case 32: /* lwz */ case 33: /* lwzu */ op->type = MKOP(LOAD, u, 4); op->ea = dform_ea(word, regs); break; case 34: /* lbz */ case 35: /* lbzu */ op->type = MKOP(LOAD, u, 1); op->ea = dform_ea(word, regs); break; case 36: /* stw */ case 37: /* stwu */ op->type = MKOP(STORE, u, 4); op->ea = dform_ea(word, regs); break; case 38: /* stb */ case 39: /* stbu */ op->type = MKOP(STORE, u, 1); op->ea = dform_ea(word, regs); break; case 40: /* lhz */ case 41: /* lhzu */ op->type = MKOP(LOAD, u, 2); op->ea = dform_ea(word, regs); break; case 42: /* lha */ case 43: /* lhau */ op->type = MKOP(LOAD, SIGNEXT | u, 2); op->ea = dform_ea(word, regs); break; case 44: /* sth */ case 45: /* sthu */ op->type = MKOP(STORE, u, 2); op->ea = dform_ea(word, regs); break; case 46: /* lmw */ if (ra >= rd) break; /* invalid form, ra in range to load */ op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd)); op->ea = dform_ea(word, regs); break; case 47: /* stmw */ op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd)); op->ea = dform_ea(word, regs); break; #ifdef CONFIG_PPC_FPU case 48: /* lfs */ case 49: /* lfsu */ op->type = MKOP(LOAD_FP, u | FPCONV, 4); op->ea = dform_ea(word, regs); break; case 50: /* lfd */ case 51: /* lfdu */ op->type = MKOP(LOAD_FP, u, 8); op->ea = dform_ea(word, regs); break; case 52: /* stfs */ case 53: /* stfsu */ op->type = MKOP(STORE_FP, u | FPCONV, 4); op->ea = dform_ea(word, regs); break; case 54: /* stfd */ case 55: /* stfdu */ op->type = MKOP(STORE_FP, u, 8); op->ea = dform_ea(word, regs); break; #endif #ifdef __powerpc64__ case 56: /* lq */ if (!((rd & 1) || (rd == ra))) op->type = MKOP(LOAD, 0, 16); op->ea = dqform_ea(word, regs); break; #endif #ifdef CONFIG_VSX case 57: /* lfdp, lxsd, lxssp */ op->ea = dsform_ea(word, regs); switch (word & 3) { case 0: /* lfdp */ if (rd & 1) break; /* reg must be even */ op->type = MKOP(LOAD_FP, 0, 16); break; case 2: /* lxsd */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) goto unknown_opcode; op->reg = rd + 32; op->type = MKOP(LOAD_VSX, 0, 8); op->element_size = 8; op->vsx_flags = VSX_CHECK_VEC; break; case 3: /* lxssp */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) goto unknown_opcode; op->reg = rd + 32; op->type = MKOP(LOAD_VSX, 0, 4); op->element_size = 8; op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC; break; } break; #endif /* CONFIG_VSX */ #ifdef __powerpc64__ case 58: /* ld[u], lwa */ op->ea = dsform_ea(word, regs); switch (word & 3) { case 0: /* ld */ op->type = MKOP(LOAD, 0, 8); break; case 1: /* ldu */ op->type = MKOP(LOAD, UPDATE, 8); break; case 2: /* lwa */ op->type = MKOP(LOAD, SIGNEXT, 4); break; } break; #endif #ifdef CONFIG_VSX case 6: if (!cpu_has_feature(CPU_FTR_ARCH_31)) goto unknown_opcode; op->ea = dqform_ea(word, regs); op->reg = VSX_REGISTER_XTP(rd); op->element_size = 32; switch (word & 0xf) { case 0: /* lxvp */ op->type = MKOP(LOAD_VSX, 0, 32); break; case 1: /* stxvp */ op->type = MKOP(STORE_VSX, 0, 32); break; } break; case 61: /* stfdp, lxv, stxsd, stxssp, stxv */ switch (word & 7) { case 0: /* stfdp with LSB of DS field = 0 */ case 4: /* stfdp with LSB of DS field = 1 */ op->ea = dsform_ea(word, regs); op->type = MKOP(STORE_FP, 0, 16); break; case 1: /* lxv */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) goto unknown_opcode; op->ea = dqform_ea(word, regs); if (word & 8) op->reg = rd + 32; op->type = MKOP(LOAD_VSX, 0, 16); op->element_size = 16; op->vsx_flags = VSX_CHECK_VEC; break; case 2: /* stxsd with LSB of DS field = 0 */ case 6: /* stxsd with LSB of DS field = 1 */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) goto unknown_opcode; op->ea = dsform_ea(word, regs); op->reg = rd + 32; op->type = MKOP(STORE_VSX, 0, 8); op->element_size = 8; op->vsx_flags = VSX_CHECK_VEC; break; case 3: /* stxssp with LSB of DS field = 0 */ case 7: /* stxssp with LSB of DS field = 1 */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) goto unknown_opcode; op->ea = dsform_ea(word, regs); op->reg = rd + 32; op->type = MKOP(STORE_VSX, 0, 4); op->element_size = 8; op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC; break; case 5: /* stxv */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) goto unknown_opcode; op->ea = dqform_ea(word, regs); if (word & 8) op->reg = rd + 32; op->type = MKOP(STORE_VSX, 0, 16); op->element_size = 16; op->vsx_flags = VSX_CHECK_VEC; break; } break; #endif /* CONFIG_VSX */ #ifdef __powerpc64__ case 62: /* std[u] */ op->ea = dsform_ea(word, regs); switch (word & 3) { case 0: /* std */ op->type = MKOP(STORE, 0, 8); break; case 1: /* stdu */ op->type = MKOP(STORE, UPDATE, 8); break; case 2: /* stq */ if (!(rd & 1)) op->type = MKOP(STORE, 0, 16); break; } break; case 1: /* Prefixed instructions */ if (!cpu_has_feature(CPU_FTR_ARCH_31)) goto unknown_opcode; prefix_r = GET_PREFIX_R(word); ra = GET_PREFIX_RA(suffix); op->update_reg = ra; rd = (suffix >> 21) & 0x1f; op->reg = rd; op->val = regs->gpr[rd]; suffixopcode = get_op(suffix); prefixtype = (word >> 24) & 0x3; switch (prefixtype) { case 0: /* Type 00 Eight-Byte Load/Store */ if (prefix_r && ra) break; op->ea = mlsd_8lsd_ea(word, suffix, regs); switch (suffixopcode) { case 41: /* plwa */ op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 4); break; #ifdef CONFIG_VSX case 42: /* plxsd */ op->reg = rd + 32; op->type = MKOP(LOAD_VSX, PREFIXED, 8); op->element_size = 8; op->vsx_flags = VSX_CHECK_VEC; break; case 43: /* plxssp */ op->reg = rd + 32; op->type = MKOP(LOAD_VSX, PREFIXED, 4); op->element_size = 8; op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC; break; case 46: /* pstxsd */ op->reg = rd + 32; op->type = MKOP(STORE_VSX, PREFIXED, 8); op->element_size = 8; op->vsx_flags = VSX_CHECK_VEC; break; case 47: /* pstxssp */ op->reg = rd + 32; op->type = MKOP(STORE_VSX, PREFIXED, 4); op->element_size = 8; op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC; break; case 51: /* plxv1 */ op->reg += 32; fallthrough; case 50: /* plxv0 */ op->type = MKOP(LOAD_VSX, PREFIXED, 16); op->element_size = 16; op->vsx_flags = VSX_CHECK_VEC; break; case 55: /* pstxv1 */ op->reg = rd + 32; fallthrough; case 54: /* pstxv0 */ op->type = MKOP(STORE_VSX, PREFIXED, 16); op->element_size = 16; op->vsx_flags = VSX_CHECK_VEC; break; #endif /* CONFIG_VSX */ case 56: /* plq */ op->type = MKOP(LOAD, PREFIXED, 16); break; case 57: /* pld */ op->type = MKOP(LOAD, PREFIXED, 8); break; #ifdef CONFIG_VSX case 58: /* plxvp */ op->reg = VSX_REGISTER_XTP(rd); op->type = MKOP(LOAD_VSX, PREFIXED, 32); op->element_size = 32; break; #endif /* CONFIG_VSX */ case 60: /* pstq */ op->type = MKOP(STORE, PREFIXED, 16); break; case 61: /* pstd */ op->type = MKOP(STORE, PREFIXED, 8); break; #ifdef CONFIG_VSX case 62: /* pstxvp */ op->reg = VSX_REGISTER_XTP(rd); op->type = MKOP(STORE_VSX, PREFIXED, 32); op->element_size = 32; break; #endif /* CONFIG_VSX */ } break; case 1: /* Type 01 Eight-Byte Register-to-Register */ break; case 2: /* Type 10 Modified Load/Store */ if (prefix_r && ra) break; op->ea = mlsd_8lsd_ea(word, suffix, regs); switch (suffixopcode) { case 32: /* plwz */ op->type = MKOP(LOAD, PREFIXED, 4); break; case 34: /* plbz */ op->type = MKOP(LOAD, PREFIXED, 1); break; case 36: /* pstw */ op->type = MKOP(STORE, PREFIXED, 4); break; case 38: /* pstb */ op->type = MKOP(STORE, PREFIXED, 1); break; case 40: /* plhz */ op->type = MKOP(LOAD, PREFIXED, 2); break; case 42: /* plha */ op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 2); break; case 44: /* psth */ op->type = MKOP(STORE, PREFIXED, 2); break; case 48: /* plfs */ op->type = MKOP(LOAD_FP, PREFIXED | FPCONV, 4); break; case 50: /* plfd */ op->type = MKOP(LOAD_FP, PREFIXED, 8); break; case 52: /* pstfs */ op->type = MKOP(STORE_FP, PREFIXED | FPCONV, 4); break; case 54: /* pstfd */ op->type = MKOP(STORE_FP, PREFIXED, 8); break; } break; case 3: /* Type 11 Modified Register-to-Register */ break; } #endif /* __powerpc64__ */ } if (OP_IS_LOAD_STORE(op->type) && (op->type & UPDATE)) { switch (GETTYPE(op->type)) { case LOAD: if (ra == rd) goto unknown_opcode; fallthrough; case STORE: case LOAD_FP: case STORE_FP: if (ra == 0) goto unknown_opcode; } } #ifdef CONFIG_VSX if ((GETTYPE(op->type) == LOAD_VSX || GETTYPE(op->type) == STORE_VSX) && !cpu_has_feature(CPU_FTR_VSX)) { return -1; } #endif /* CONFIG_VSX */ return 0; unknown_opcode: op->type = UNKNOWN; return 0; logical_done: if (word & 1) set_cr0(regs, op); logical_done_nocc: op->reg = ra; op->type |= SETREG; return 1; arith_done: if (word & 1) set_cr0(regs, op); compute_done: op->reg = rd; op->type |= SETREG; return 1; priv: op->type = INTERRUPT | 0x700; op->val = SRR1_PROGPRIV; return 0; trap: op->type = INTERRUPT | 0x700; op->val = SRR1_PROGTRAP; return 0; } EXPORT_SYMBOL_GPL(analyse_instr); NOKPROBE_SYMBOL(analyse_instr); /* * For PPC32 we always use stwu with r1 to change the stack pointer. * So this emulated store may corrupt the exception frame, now we * have to provide the exception frame trampoline, which is pushed * below the kprobed function stack. So we only update gpr[1] but * don't emulate the real store operation. We will do real store * operation safely in exception return code by checking this flag. */ static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs) { /* * Check if we already set since that means we'll * lose the previous value. */ WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE)); set_thread_flag(TIF_EMULATE_STACK_STORE); return 0; } static nokprobe_inline void do_signext(unsigned long *valp, int size) { switch (size) { case 2: *valp = (signed short) *valp; break; case 4: *valp = (signed int) *valp; break; } } static nokprobe_inline void do_byterev(unsigned long *valp, int size) { switch (size) { case 2: *valp = byterev_2(*valp); break; case 4: *valp = byterev_4(*valp); break; #ifdef __powerpc64__ case 8: *valp = byterev_8(*valp); break; #endif } } /* * Emulate an instruction that can be executed just by updating * fields in *regs. */ void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op) { unsigned long next_pc; next_pc = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op->type)); switch (GETTYPE(op->type)) { case COMPUTE: if (op->type & SETREG) regs->gpr[op->reg] = op->val; if (op->type & SETCC) regs->ccr = op->ccval; if (op->type & SETXER) regs->xer = op->xerval; break; case BRANCH: if (op->type & SETLK) regs->link = next_pc; if (op->type & BRTAKEN) next_pc = op->val; if (op->type & DECCTR) --regs->ctr; break; case BARRIER: switch (op->type & BARRIER_MASK) { case BARRIER_SYNC: mb(); break; case BARRIER_ISYNC: isync(); break; case BARRIER_EIEIO: eieio(); break; #ifdef CONFIG_PPC64 case BARRIER_LWSYNC: asm volatile("lwsync" : : : "memory"); break; case BARRIER_PTESYNC: asm volatile("ptesync" : : : "memory"); break; #endif } break; case MFSPR: switch (op->spr) { case SPRN_XER: regs->gpr[op->reg] = regs->xer & 0xffffffffUL; break; case SPRN_LR: regs->gpr[op->reg] = regs->link; break; case SPRN_CTR: regs->gpr[op->reg] = regs->ctr; break; default: WARN_ON_ONCE(1); } break; case MTSPR: switch (op->spr) { case SPRN_XER: regs->xer = op->val & 0xffffffffUL; break; case SPRN_LR: regs->link = op->val; break; case SPRN_CTR: regs->ctr = op->val; break; default: WARN_ON_ONCE(1); } break; default: WARN_ON_ONCE(1); } regs_set_return_ip(regs, next_pc); } NOKPROBE_SYMBOL(emulate_update_regs); /* * Emulate a previously-analysed load or store instruction. * Return values are: * 0 = instruction emulated successfully * -EFAULT = address out of range or access faulted (regs->dar * contains the faulting address) * -EACCES = misaligned access, instruction requires alignment * -EINVAL = unknown operation in *op */ int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op) { int err, size, type; int i, rd, nb; unsigned int cr; unsigned long val; unsigned long ea; bool cross_endian; err = 0; size = GETSIZE(op->type); type = GETTYPE(op->type); cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE); ea = truncate_if_32bit(regs->msr, op->ea); switch (type) { case LARX: if (ea & (size - 1)) return -EACCES; /* can't handle misaligned */ if (!address_ok(regs, ea, size)) return -EFAULT; err = 0; val = 0; switch (size) { #ifdef CONFIG_PPC_HAS_LBARX_LHARX case 1: __get_user_asmx(val, ea, err, "lbarx"); break; case 2: __get_user_asmx(val, ea, err, "lharx"); break; #endif case 4: __get_user_asmx(val, ea, err, "lwarx"); break; #ifdef __powerpc64__ case 8: __get_user_asmx(val, ea, err, "ldarx"); break; case 16: err = do_lqarx(ea, ®s->gpr[op->reg]); break; #endif default: return -EINVAL; } if (err) { regs->dar = ea; break; } if (size < 16) regs->gpr[op->reg] = val; break; case STCX: if (ea & (size - 1)) return -EACCES; /* can't handle misaligned */ if (!address_ok(regs, ea, size)) return -EFAULT; err = 0; switch (size) { #ifdef __powerpc64__ case 1: __put_user_asmx(op->val, ea, err, "stbcx.", cr); break; case 2: __put_user_asmx(op->val, ea, err, "sthcx.", cr); break; #endif case 4: __put_user_asmx(op->val, ea, err, "stwcx.", cr); break; #ifdef __powerpc64__ case 8: __put_user_asmx(op->val, ea, err, "stdcx.", cr); break; case 16: err = do_stqcx(ea, regs->gpr[op->reg], regs->gpr[op->reg + 1], &cr); break; #endif default: return -EINVAL; } if (!err) regs->ccr = (regs->ccr & 0x0fffffff) | (cr & 0xe0000000) | ((regs->xer >> 3) & 0x10000000); else regs->dar = ea; break; case LOAD: #ifdef __powerpc64__ if (size == 16) { err = emulate_lq(regs, ea, op->reg, cross_endian); break; } #endif err = read_mem(®s->gpr[op->reg], ea, size, regs); if (!err) { if (op->type & SIGNEXT) do_signext(®s->gpr[op->reg], size); if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV)) do_byterev(®s->gpr[op->reg], size); } break; #ifdef CONFIG_PPC_FPU case LOAD_FP: /* * If the instruction is in userspace, we can emulate it even * if the VMX state is not live, because we have the state * stored in the thread_struct. If the instruction is in * the kernel, we must not touch the state in the thread_struct. */ if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP)) return 0; err = do_fp_load(op, ea, regs, cross_endian); break; #endif #ifdef CONFIG_ALTIVEC case LOAD_VMX: if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC)) return 0; err = do_vec_load(op->reg, ea, size, regs, cross_endian); break; #endif #ifdef CONFIG_VSX case LOAD_VSX: { unsigned long msrbit = MSR_VSX; /* * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX * when the target of the instruction is a vector register. */ if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC)) msrbit = MSR_VEC; if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit)) return 0; err = do_vsx_load(op, ea, regs, cross_endian); break; } #endif case LOAD_MULTI: if (!address_ok(regs, ea, size)) return -EFAULT; rd = op->reg; for (i = 0; i < size; i += 4) { unsigned int v32 = 0; nb = size - i; if (nb > 4) nb = 4; err = copy_mem_in((u8 *) &v32, ea, nb, regs); if (err) break; if (unlikely(cross_endian)) v32 = byterev_4(v32); regs->gpr[rd] = v32; ea += 4; /* reg number wraps from 31 to 0 for lsw[ix] */ rd = (rd + 1) & 0x1f; } break; case STORE: #ifdef __powerpc64__ if (size == 16) { err = emulate_stq(regs, ea, op->reg, cross_endian); break; } #endif if ((op->type & UPDATE) && size == sizeof(long) && op->reg == 1 && op->update_reg == 1 && !(regs->msr & MSR_PR) && ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) { err = handle_stack_update(ea, regs); break; } if (unlikely(cross_endian)) do_byterev(&op->val, size); err = write_mem(op->val, ea, size, regs); break; #ifdef CONFIG_PPC_FPU case STORE_FP: if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP)) return 0; err = do_fp_store(op, ea, regs, cross_endian); break; #endif #ifdef CONFIG_ALTIVEC case STORE_VMX: if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC)) return 0; err = do_vec_store(op->reg, ea, size, regs, cross_endian); break; #endif #ifdef CONFIG_VSX case STORE_VSX: { unsigned long msrbit = MSR_VSX; /* * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX * when the target of the instruction is a vector register. */ if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC)) msrbit = MSR_VEC; if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit)) return 0; err = do_vsx_store(op, ea, regs, cross_endian); break; } #endif case STORE_MULTI: if (!address_ok(regs, ea, size)) return -EFAULT; rd = op->reg; for (i = 0; i < size; i += 4) { unsigned int v32 = regs->gpr[rd]; nb = size - i; if (nb > 4) nb = 4; if (unlikely(cross_endian)) v32 = byterev_4(v32); err = copy_mem_out((u8 *) &v32, ea, nb, regs); if (err) break; ea += 4; /* reg number wraps from 31 to 0 for stsw[ix] */ rd = (rd + 1) & 0x1f; } break; default: return -EINVAL; } if (err) return err; if (op->type & UPDATE) regs->gpr[op->update_reg] = op->ea; return 0; } NOKPROBE_SYMBOL(emulate_loadstore); /* * Emulate instructions that cause a transfer of control, * loads and stores, and a few other instructions. * Returns 1 if the step was emulated, 0 if not, * or -1 if the instruction is one that should not be stepped, * such as an rfid, or a mtmsrd that would clear MSR_RI. */ int emulate_step(struct pt_regs *regs, ppc_inst_t instr) { struct instruction_op op; int r, err, type; unsigned long val; unsigned long ea; r = analyse_instr(&op, regs, instr); if (r < 0) return r; if (r > 0) { emulate_update_regs(regs, &op); return 1; } err = 0; type = GETTYPE(op.type); if (OP_IS_LOAD_STORE(type)) { err = emulate_loadstore(regs, &op); if (err) return 0; goto instr_done; } switch (type) { case CACHEOP: ea = truncate_if_32bit(regs->msr, op.ea); if (!address_ok(regs, ea, 8)) return 0; switch (op.type & CACHEOP_MASK) { case DCBST: __cacheop_user_asmx(ea, err, "dcbst"); break; case DCBF: __cacheop_user_asmx(ea, err, "dcbf"); break; case DCBTST: if (op.reg == 0) prefetchw((void *) ea); break; case DCBT: if (op.reg == 0) prefetch((void *) ea); break; case ICBI: __cacheop_user_asmx(ea, err, "icbi"); break; case DCBZ: err = emulate_dcbz(ea, regs); break; } if (err) { regs->dar = ea; return 0; } goto instr_done; case MFMSR: regs->gpr[op.reg] = regs->msr & MSR_MASK; goto instr_done; case MTMSR: val = regs->gpr[op.reg]; if ((val & MSR_RI) == 0) /* can't step mtmsr[d] that would clear MSR_RI */ return -1; /* here op.val is the mask of bits to change */ regs_set_return_msr(regs, (regs->msr & ~op.val) | (val & op.val)); goto instr_done; case SYSCALL: /* sc */ /* * Per ISA v3.1, section 7.5.15 'Trace Interrupt', we can't * single step a system call instruction: * * Successful completion for an instruction means that the * instruction caused no other interrupt. Thus a Trace * interrupt never occurs for a System Call or System Call * Vectored instruction, or for a Trap instruction that * traps. */ return -1; case SYSCALL_VECTORED_0: /* scv 0 */ return -1; case RFI: return -1; } return 0; instr_done: regs_set_return_ip(regs, truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op.type))); return 1; } NOKPROBE_SYMBOL(emulate_step);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1