Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Andrew Morton | 746 | 21.64% | 5 | 6.33% |
Nathan Fontenot | 704 | 20.42% | 5 | 6.33% |
Paul Mackerras | 512 | 14.85% | 6 | 7.59% |
Laurent Dufour | 343 | 9.95% | 2 | 2.53% |
Robert Jennings | 179 | 5.19% | 2 | 2.53% |
Scott Cheloha | 169 | 4.90% | 1 | 1.27% |
Anton Blanchard | 165 | 4.79% | 6 | 7.59% |
Brian King | 163 | 4.73% | 3 | 3.80% |
Stephen Rothwell | 141 | 4.09% | 6 | 7.59% |
Nicholas Piggin | 48 | 1.39% | 3 | 3.80% |
Vaidyanathan Srinivasan | 47 | 1.36% | 1 | 1.27% |
Aravinda Prasad | 46 | 1.33% | 1 | 1.27% |
Benjamin Herrenschmidt | 25 | 0.73% | 3 | 3.80% |
Will Schmidt | 23 | 0.67% | 3 | 3.80% |
Haren Myneni | 17 | 0.49% | 2 | 2.53% |
Jeff Scheel | 14 | 0.41% | 1 | 1.27% |
Tyrel Datwyler | 10 | 0.29% | 1 | 1.27% |
Chen Gang S | 9 | 0.26% | 1 | 1.27% |
Alexey Dobriyan | 8 | 0.23% | 1 | 1.27% |
Segher Boessenkool | 7 | 0.20% | 1 | 1.27% |
Harvey Harrison | 7 | 0.20% | 2 | 2.53% |
Olof Johansson | 6 | 0.17% | 1 | 1.27% |
Frans Pop | 5 | 0.15% | 1 | 1.27% |
Jeremy Kerr | 5 | 0.15% | 1 | 1.27% |
Michael Bringmann | 5 | 0.15% | 1 | 1.27% |
Ingo Molnar | 5 | 0.15% | 1 | 1.27% |
Suraj Jitindar Singh | 5 | 0.15% | 1 | 1.27% |
Michael Ellerman | 5 | 0.15% | 2 | 2.53% |
Aneesh Kumar K.V | 4 | 0.12% | 1 | 1.27% |
Arnd Bergmann | 4 | 0.12% | 1 | 1.27% |
Al Viro | 4 | 0.12% | 2 | 2.53% |
Denis V. Lunev | 3 | 0.09% | 1 | 1.27% |
Dmitry Torokhov | 2 | 0.06% | 1 | 1.27% |
Linus Torvalds | 2 | 0.06% | 2 | 2.53% |
Thomas Gleixner | 2 | 0.06% | 1 | 1.27% |
Russell Currey | 2 | 0.06% | 1 | 1.27% |
Linus Torvalds (pre-git) | 2 | 0.06% | 1 | 1.27% |
Arjan van de Ven | 1 | 0.03% | 1 | 1.27% |
Lucas De Marchi | 1 | 0.03% | 1 | 1.27% |
Yoann Padioleau | 1 | 0.03% | 1 | 1.27% |
David Gibson | 1 | 0.03% | 1 | 1.27% |
Total | 3448 | 79 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * PowerPC64 LPAR Configuration Information Driver * * Dave Engebretsen engebret@us.ibm.com * Copyright (c) 2003 Dave Engebretsen * Will Schmidt willschm@us.ibm.com * SPLPAR updates, Copyright (c) 2003 Will Schmidt IBM Corporation. * seq_file updates, Copyright (c) 2004 Will Schmidt IBM Corporation. * Nathan Lynch nathanl@austin.ibm.com * Added lparcfg_write, Copyright (C) 2004 Nathan Lynch IBM Corporation. * * This driver creates a proc file at /proc/ppc64/lparcfg which contains * keyword - value pairs that specify the configuration of the partition. */ #include <linux/module.h> #include <linux/types.h> #include <linux/errno.h> #include <linux/proc_fs.h> #include <linux/init.h> #include <linux/seq_file.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/hugetlb.h> #include <asm/lppaca.h> #include <asm/hvcall.h> #include <asm/firmware.h> #include <asm/rtas.h> #include <asm/time.h> #include <asm/vdso_datapage.h> #include <asm/vio.h> #include <asm/mmu.h> #include <asm/machdep.h> #include <asm/drmem.h> #include "pseries.h" #include "vas.h" /* pseries_vas_dlpar_cpu() */ /* * This isn't a module but we expose that to userspace * via /proc so leave the definitions here */ #define MODULE_VERS "1.9" #define MODULE_NAME "lparcfg" /* #define LPARCFG_DEBUG */ /* * Track sum of all purrs across all processors. This is used to further * calculate usage values by different applications */ static void cpu_get_purr(void *arg) { atomic64_t *sum = arg; atomic64_add(mfspr(SPRN_PURR), sum); } static unsigned long get_purr(void) { atomic64_t purr = ATOMIC64_INIT(0); on_each_cpu(cpu_get_purr, &purr, 1); return atomic64_read(&purr); } /* * Methods used to fetch LPAR data when running on a pSeries platform. */ struct hvcall_ppp_data { u64 entitlement; u64 unallocated_entitlement; u16 group_num; u16 pool_num; u8 capped; u8 weight; u8 unallocated_weight; u16 active_procs_in_pool; u16 active_system_procs; u16 phys_platform_procs; u32 max_proc_cap_avail; u32 entitled_proc_cap_avail; }; /* * H_GET_PPP hcall returns info in 4 parms. * entitled_capacity,unallocated_capacity, * aggregation, resource_capability). * * R4 = Entitled Processor Capacity Percentage. * R5 = Unallocated Processor Capacity Percentage. * R6 (AABBCCDDEEFFGGHH). * XXXX - reserved (0) * XXXX - reserved (0) * XXXX - Group Number * XXXX - Pool Number. * R7 (IIJJKKLLMMNNOOPP). * XX - reserved. (0) * XX - bit 0-6 reserved (0). bit 7 is Capped indicator. * XX - variable processor Capacity Weight * XX - Unallocated Variable Processor Capacity Weight. * XXXX - Active processors in Physical Processor Pool. * XXXX - Processors active on platform. * R8 (QQQQRRRRRRSSSSSS). if ibm,partition-performance-parameters-level >= 1 * XXXX - Physical platform procs allocated to virtualization. * XXXXXX - Max procs capacity % available to the partitions pool. * XXXXXX - Entitled procs capacity % available to the * partitions pool. */ static unsigned int h_get_ppp(struct hvcall_ppp_data *ppp_data) { unsigned long rc; unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; rc = plpar_hcall9(H_GET_PPP, retbuf); ppp_data->entitlement = retbuf[0]; ppp_data->unallocated_entitlement = retbuf[1]; ppp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff; ppp_data->pool_num = retbuf[2] & 0xffff; ppp_data->capped = (retbuf[3] >> 6 * 8) & 0x01; ppp_data->weight = (retbuf[3] >> 5 * 8) & 0xff; ppp_data->unallocated_weight = (retbuf[3] >> 4 * 8) & 0xff; ppp_data->active_procs_in_pool = (retbuf[3] >> 2 * 8) & 0xffff; ppp_data->active_system_procs = retbuf[3] & 0xffff; ppp_data->phys_platform_procs = retbuf[4] >> 6 * 8; ppp_data->max_proc_cap_avail = (retbuf[4] >> 3 * 8) & 0xffffff; ppp_data->entitled_proc_cap_avail = retbuf[4] & 0xffffff; return rc; } static void show_gpci_data(struct seq_file *m) { struct hv_gpci_request_buffer *buf; unsigned int affinity_score; long ret; buf = kmalloc(sizeof(*buf), GFP_KERNEL); if (buf == NULL) return; /* * Show the local LPAR's affinity score. * * 0xB1 selects the Affinity_Domain_Info_By_Partition subcall. * The score is at byte 0xB in the output buffer. */ memset(&buf->params, 0, sizeof(buf->params)); buf->params.counter_request = cpu_to_be32(0xB1); buf->params.starting_index = cpu_to_be32(-1); /* local LPAR */ buf->params.counter_info_version_in = 0x5; /* v5+ for score */ ret = plpar_hcall_norets(H_GET_PERF_COUNTER_INFO, virt_to_phys(buf), sizeof(*buf)); if (ret != H_SUCCESS) { pr_debug("hcall failed: H_GET_PERF_COUNTER_INFO: %ld, %x\n", ret, be32_to_cpu(buf->params.detail_rc)); goto out; } affinity_score = buf->bytes[0xB]; seq_printf(m, "partition_affinity_score=%u\n", affinity_score); out: kfree(buf); } static unsigned h_pic(unsigned long *pool_idle_time, unsigned long *num_procs) { unsigned long rc; unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; rc = plpar_hcall(H_PIC, retbuf); *pool_idle_time = retbuf[0]; *num_procs = retbuf[1]; return rc; } /* * parse_ppp_data * Parse out the data returned from h_get_ppp and h_pic */ static void parse_ppp_data(struct seq_file *m) { struct hvcall_ppp_data ppp_data; struct device_node *root; const __be32 *perf_level; int rc; rc = h_get_ppp(&ppp_data); if (rc) return; seq_printf(m, "partition_entitled_capacity=%lld\n", ppp_data.entitlement); seq_printf(m, "group=%d\n", ppp_data.group_num); seq_printf(m, "system_active_processors=%d\n", ppp_data.active_system_procs); /* pool related entries are appropriate for shared configs */ if (lppaca_shared_proc(get_lppaca())) { unsigned long pool_idle_time, pool_procs; seq_printf(m, "pool=%d\n", ppp_data.pool_num); /* report pool_capacity in percentage */ seq_printf(m, "pool_capacity=%d\n", ppp_data.active_procs_in_pool * 100); h_pic(&pool_idle_time, &pool_procs); seq_printf(m, "pool_idle_time=%ld\n", pool_idle_time); seq_printf(m, "pool_num_procs=%ld\n", pool_procs); } seq_printf(m, "unallocated_capacity_weight=%d\n", ppp_data.unallocated_weight); seq_printf(m, "capacity_weight=%d\n", ppp_data.weight); seq_printf(m, "capped=%d\n", ppp_data.capped); seq_printf(m, "unallocated_capacity=%lld\n", ppp_data.unallocated_entitlement); /* The last bits of information returned from h_get_ppp are only * valid if the ibm,partition-performance-parameters-level * property is >= 1. */ root = of_find_node_by_path("/"); if (root) { perf_level = of_get_property(root, "ibm,partition-performance-parameters-level", NULL); if (perf_level && (be32_to_cpup(perf_level) >= 1)) { seq_printf(m, "physical_procs_allocated_to_virtualization=%d\n", ppp_data.phys_platform_procs); seq_printf(m, "max_proc_capacity_available=%d\n", ppp_data.max_proc_cap_avail); seq_printf(m, "entitled_proc_capacity_available=%d\n", ppp_data.entitled_proc_cap_avail); } of_node_put(root); } } /** * parse_mpp_data * Parse out data returned from h_get_mpp */ static void parse_mpp_data(struct seq_file *m) { struct hvcall_mpp_data mpp_data; int rc; rc = h_get_mpp(&mpp_data); if (rc) return; seq_printf(m, "entitled_memory=%ld\n", mpp_data.entitled_mem); if (mpp_data.mapped_mem != -1) seq_printf(m, "mapped_entitled_memory=%ld\n", mpp_data.mapped_mem); seq_printf(m, "entitled_memory_group_number=%d\n", mpp_data.group_num); seq_printf(m, "entitled_memory_pool_number=%d\n", mpp_data.pool_num); seq_printf(m, "entitled_memory_weight=%d\n", mpp_data.mem_weight); seq_printf(m, "unallocated_entitled_memory_weight=%d\n", mpp_data.unallocated_mem_weight); seq_printf(m, "unallocated_io_mapping_entitlement=%ld\n", mpp_data.unallocated_entitlement); if (mpp_data.pool_size != -1) seq_printf(m, "entitled_memory_pool_size=%ld bytes\n", mpp_data.pool_size); seq_printf(m, "entitled_memory_loan_request=%ld\n", mpp_data.loan_request); seq_printf(m, "backing_memory=%ld bytes\n", mpp_data.backing_mem); } /** * parse_mpp_x_data * Parse out data returned from h_get_mpp_x */ static void parse_mpp_x_data(struct seq_file *m) { struct hvcall_mpp_x_data mpp_x_data; if (!firmware_has_feature(FW_FEATURE_XCMO)) return; if (h_get_mpp_x(&mpp_x_data)) return; seq_printf(m, "coalesced_bytes=%ld\n", mpp_x_data.coalesced_bytes); if (mpp_x_data.pool_coalesced_bytes) seq_printf(m, "pool_coalesced_bytes=%ld\n", mpp_x_data.pool_coalesced_bytes); if (mpp_x_data.pool_purr_cycles) seq_printf(m, "coalesce_pool_purr=%ld\n", mpp_x_data.pool_purr_cycles); if (mpp_x_data.pool_spurr_cycles) seq_printf(m, "coalesce_pool_spurr=%ld\n", mpp_x_data.pool_spurr_cycles); } /* * PAPR defines, in section "7.3.16 System Parameters Option", the token 55 to * read the LPAR name, and the largest output data to 4000 + 2 bytes length. */ #define SPLPAR_LPAR_NAME_TOKEN 55 #define GET_SYS_PARM_BUF_SIZE 4002 #if GET_SYS_PARM_BUF_SIZE > RTAS_DATA_BUF_SIZE #error "GET_SYS_PARM_BUF_SIZE is larger than RTAS_DATA_BUF_SIZE" #endif /* * Read the lpar name using the RTAS ibm,get-system-parameter call. * * The name read through this call is updated if changes are made by the end * user on the hypervisor side. * * Some hypervisor (like Qemu) may not provide this value. In that case, a non * null value is returned. */ static int read_rtas_lpar_name(struct seq_file *m) { int rc, len, token; union { char raw_buffer[GET_SYS_PARM_BUF_SIZE]; struct { __be16 len; char name[GET_SYS_PARM_BUF_SIZE-2]; }; } *local_buffer; token = rtas_token("ibm,get-system-parameter"); if (token == RTAS_UNKNOWN_SERVICE) return -EINVAL; local_buffer = kmalloc(sizeof(*local_buffer), GFP_KERNEL); if (!local_buffer) return -ENOMEM; do { spin_lock(&rtas_data_buf_lock); memset(rtas_data_buf, 0, sizeof(*local_buffer)); rc = rtas_call(token, 3, 1, NULL, SPLPAR_LPAR_NAME_TOKEN, __pa(rtas_data_buf), sizeof(*local_buffer)); if (!rc) memcpy(local_buffer->raw_buffer, rtas_data_buf, sizeof(local_buffer->raw_buffer)); spin_unlock(&rtas_data_buf_lock); } while (rtas_busy_delay(rc)); if (!rc) { /* Force end of string */ len = min((int) be16_to_cpu(local_buffer->len), (int) sizeof(local_buffer->name)-1); local_buffer->name[len] = '\0'; seq_printf(m, "partition_name=%s\n", local_buffer->name); } else rc = -ENODATA; kfree(local_buffer); return rc; } /* * Read the LPAR name from the Device Tree. * * The value read in the DT is not updated if the end-user is touching the LPAR * name on the hypervisor side. */ static int read_dt_lpar_name(struct seq_file *m) { const char *name; if (of_property_read_string(of_root, "ibm,partition-name", &name)) return -ENOENT; seq_printf(m, "partition_name=%s\n", name); return 0; } static void read_lpar_name(struct seq_file *m) { if (read_rtas_lpar_name(m) && read_dt_lpar_name(m)) pr_err_once("Error can't get the LPAR name"); } #define SPLPAR_CHARACTERISTICS_TOKEN 20 #define SPLPAR_MAXLENGTH 1026*(sizeof(char)) /* * parse_system_parameter_string() * Retrieve the potential_processors, max_entitled_capacity and friends * through the get-system-parameter rtas call. Replace keyword strings as * necessary. */ static void parse_system_parameter_string(struct seq_file *m) { int call_status; unsigned char *local_buffer = kmalloc(SPLPAR_MAXLENGTH, GFP_KERNEL); if (!local_buffer) { printk(KERN_ERR "%s %s kmalloc failure at line %d\n", __FILE__, __func__, __LINE__); return; } spin_lock(&rtas_data_buf_lock); memset(rtas_data_buf, 0, SPLPAR_MAXLENGTH); call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1, NULL, SPLPAR_CHARACTERISTICS_TOKEN, __pa(rtas_data_buf), RTAS_DATA_BUF_SIZE); memcpy(local_buffer, rtas_data_buf, SPLPAR_MAXLENGTH); local_buffer[SPLPAR_MAXLENGTH - 1] = '\0'; spin_unlock(&rtas_data_buf_lock); if (call_status != 0) { printk(KERN_INFO "%s %s Error calling get-system-parameter (0x%x)\n", __FILE__, __func__, call_status); } else { int splpar_strlen; int idx, w_idx; char *workbuffer = kzalloc(SPLPAR_MAXLENGTH, GFP_KERNEL); if (!workbuffer) { printk(KERN_ERR "%s %s kmalloc failure at line %d\n", __FILE__, __func__, __LINE__); kfree(local_buffer); return; } #ifdef LPARCFG_DEBUG printk(KERN_INFO "success calling get-system-parameter\n"); #endif splpar_strlen = local_buffer[0] * 256 + local_buffer[1]; local_buffer += 2; /* step over strlen value */ w_idx = 0; idx = 0; while ((*local_buffer) && (idx < splpar_strlen)) { workbuffer[w_idx++] = local_buffer[idx++]; if ((local_buffer[idx] == ',') || (local_buffer[idx] == '\0')) { workbuffer[w_idx] = '\0'; if (w_idx) { /* avoid the empty string */ seq_printf(m, "%s\n", workbuffer); } memset(workbuffer, 0, SPLPAR_MAXLENGTH); idx++; /* skip the comma */ w_idx = 0; } else if (local_buffer[idx] == '=') { /* code here to replace workbuffer contents with different keyword strings */ if (0 == strcmp(workbuffer, "MaxEntCap")) { strcpy(workbuffer, "partition_max_entitled_capacity"); w_idx = strlen(workbuffer); } if (0 == strcmp(workbuffer, "MaxPlatProcs")) { strcpy(workbuffer, "system_potential_processors"); w_idx = strlen(workbuffer); } } } kfree(workbuffer); local_buffer -= 2; /* back up over strlen value */ } kfree(local_buffer); } /* Return the number of processors in the system. * This function reads through the device tree and counts * the virtual processors, this does not include threads. */ static int lparcfg_count_active_processors(void) { struct device_node *cpus_dn; int count = 0; for_each_node_by_type(cpus_dn, "cpu") { #ifdef LPARCFG_DEBUG printk(KERN_ERR "cpus_dn %p\n", cpus_dn); #endif count++; } return count; } static void pseries_cmo_data(struct seq_file *m) { int cpu; unsigned long cmo_faults = 0; unsigned long cmo_fault_time = 0; seq_printf(m, "cmo_enabled=%d\n", firmware_has_feature(FW_FEATURE_CMO)); if (!firmware_has_feature(FW_FEATURE_CMO)) return; for_each_possible_cpu(cpu) { cmo_faults += be64_to_cpu(lppaca_of(cpu).cmo_faults); cmo_fault_time += be64_to_cpu(lppaca_of(cpu).cmo_fault_time); } seq_printf(m, "cmo_faults=%lu\n", cmo_faults); seq_printf(m, "cmo_fault_time_usec=%lu\n", cmo_fault_time / tb_ticks_per_usec); seq_printf(m, "cmo_primary_psp=%d\n", cmo_get_primary_psp()); seq_printf(m, "cmo_secondary_psp=%d\n", cmo_get_secondary_psp()); seq_printf(m, "cmo_page_size=%lu\n", cmo_get_page_size()); } static void splpar_dispatch_data(struct seq_file *m) { int cpu; unsigned long dispatches = 0; unsigned long dispatch_dispersions = 0; for_each_possible_cpu(cpu) { dispatches += be32_to_cpu(lppaca_of(cpu).yield_count); dispatch_dispersions += be32_to_cpu(lppaca_of(cpu).dispersion_count); } seq_printf(m, "dispatches=%lu\n", dispatches); seq_printf(m, "dispatch_dispersions=%lu\n", dispatch_dispersions); } static void parse_em_data(struct seq_file *m) { unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; if (firmware_has_feature(FW_FEATURE_LPAR) && plpar_hcall(H_GET_EM_PARMS, retbuf) == H_SUCCESS) seq_printf(m, "power_mode_data=%016lx\n", retbuf[0]); } static void maxmem_data(struct seq_file *m) { unsigned long maxmem = 0; maxmem += (unsigned long)drmem_info->n_lmbs * drmem_info->lmb_size; maxmem += hugetlb_total_pages() * PAGE_SIZE; seq_printf(m, "MaxMem=%lu\n", maxmem); } static int pseries_lparcfg_data(struct seq_file *m, void *v) { int partition_potential_processors; int partition_active_processors; struct device_node *rtas_node; const __be32 *lrdrp = NULL; rtas_node = of_find_node_by_path("/rtas"); if (rtas_node) lrdrp = of_get_property(rtas_node, "ibm,lrdr-capacity", NULL); if (lrdrp == NULL) { partition_potential_processors = vdso_data->processorCount; } else { partition_potential_processors = be32_to_cpup(lrdrp + 4); } of_node_put(rtas_node); partition_active_processors = lparcfg_count_active_processors(); if (firmware_has_feature(FW_FEATURE_SPLPAR)) { /* this call handles the ibm,get-system-parameter contents */ read_lpar_name(m); parse_system_parameter_string(m); parse_ppp_data(m); parse_mpp_data(m); parse_mpp_x_data(m); pseries_cmo_data(m); splpar_dispatch_data(m); seq_printf(m, "purr=%ld\n", get_purr()); seq_printf(m, "tbr=%ld\n", mftb()); } else { /* non SPLPAR case */ seq_printf(m, "system_active_processors=%d\n", partition_potential_processors); seq_printf(m, "system_potential_processors=%d\n", partition_potential_processors); seq_printf(m, "partition_max_entitled_capacity=%d\n", partition_potential_processors * 100); seq_printf(m, "partition_entitled_capacity=%d\n", partition_active_processors * 100); } show_gpci_data(m); seq_printf(m, "partition_active_processors=%d\n", partition_active_processors); seq_printf(m, "partition_potential_processors=%d\n", partition_potential_processors); seq_printf(m, "shared_processor_mode=%d\n", lppaca_shared_proc(get_lppaca())); #ifdef CONFIG_PPC_64S_HASH_MMU if (!radix_enabled()) seq_printf(m, "slb_size=%d\n", mmu_slb_size); #endif parse_em_data(m); maxmem_data(m); seq_printf(m, "security_flavor=%u\n", pseries_security_flavor); return 0; } static ssize_t update_ppp(u64 *entitlement, u8 *weight) { struct hvcall_ppp_data ppp_data; u8 new_weight; u64 new_entitled; ssize_t retval; /* Get our current parameters */ retval = h_get_ppp(&ppp_data); if (retval) return retval; if (entitlement) { new_weight = ppp_data.weight; new_entitled = *entitlement; } else if (weight) { new_weight = *weight; new_entitled = ppp_data.entitlement; } else return -EINVAL; pr_debug("%s: current_entitled = %llu, current_weight = %u\n", __func__, ppp_data.entitlement, ppp_data.weight); pr_debug("%s: new_entitled = %llu, new_weight = %u\n", __func__, new_entitled, new_weight); retval = plpar_hcall_norets(H_SET_PPP, new_entitled, new_weight); return retval; } /** * update_mpp * * Update the memory entitlement and weight for the partition. Caller must * specify either a new entitlement or weight, not both, to be updated * since the h_set_mpp call takes both entitlement and weight as parameters. */ static ssize_t update_mpp(u64 *entitlement, u8 *weight) { struct hvcall_mpp_data mpp_data; u64 new_entitled; u8 new_weight; ssize_t rc; if (entitlement) { /* Check with vio to ensure the new memory entitlement * can be handled. */ rc = vio_cmo_entitlement_update(*entitlement); if (rc) return rc; } rc = h_get_mpp(&mpp_data); if (rc) return rc; if (entitlement) { new_weight = mpp_data.mem_weight; new_entitled = *entitlement; } else if (weight) { new_weight = *weight; new_entitled = mpp_data.entitled_mem; } else return -EINVAL; pr_debug("%s: current_entitled = %lu, current_weight = %u\n", __func__, mpp_data.entitled_mem, mpp_data.mem_weight); pr_debug("%s: new_entitled = %llu, new_weight = %u\n", __func__, new_entitled, new_weight); rc = plpar_hcall_norets(H_SET_MPP, new_entitled, new_weight); return rc; } /* * Interface for changing system parameters (variable capacity weight * and entitled capacity). Format of input is "param_name=value"; * anything after value is ignored. Valid parameters at this time are * "partition_entitled_capacity" and "capacity_weight". We use * H_SET_PPP to alter parameters. * * This function should be invoked only on systems with * FW_FEATURE_SPLPAR. */ static ssize_t lparcfg_write(struct file *file, const char __user * buf, size_t count, loff_t * off) { char kbuf[64]; char *tmp; u64 new_entitled, *new_entitled_ptr = &new_entitled; u8 new_weight, *new_weight_ptr = &new_weight; ssize_t retval; if (!firmware_has_feature(FW_FEATURE_SPLPAR)) return -EINVAL; if (count > sizeof(kbuf)) return -EINVAL; if (copy_from_user(kbuf, buf, count)) return -EFAULT; kbuf[count - 1] = '\0'; tmp = strchr(kbuf, '='); if (!tmp) return -EINVAL; *tmp++ = '\0'; if (!strcmp(kbuf, "partition_entitled_capacity")) { char *endp; *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10); if (endp == tmp) return -EINVAL; retval = update_ppp(new_entitled_ptr, NULL); if (retval == H_SUCCESS || retval == H_CONSTRAINED) { /* * The hypervisor assigns VAS resources based * on entitled capacity for shared mode. * Reconfig VAS windows based on DLPAR CPU events. */ if (pseries_vas_dlpar_cpu() != 0) retval = H_HARDWARE; } } else if (!strcmp(kbuf, "capacity_weight")) { char *endp; *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10); if (endp == tmp) return -EINVAL; retval = update_ppp(NULL, new_weight_ptr); } else if (!strcmp(kbuf, "entitled_memory")) { char *endp; *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10); if (endp == tmp) return -EINVAL; retval = update_mpp(new_entitled_ptr, NULL); } else if (!strcmp(kbuf, "entitled_memory_weight")) { char *endp; *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10); if (endp == tmp) return -EINVAL; retval = update_mpp(NULL, new_weight_ptr); } else return -EINVAL; if (retval == H_SUCCESS || retval == H_CONSTRAINED) { retval = count; } else if (retval == H_BUSY) { retval = -EBUSY; } else if (retval == H_HARDWARE) { retval = -EIO; } else if (retval == H_PARAMETER) { retval = -EINVAL; } return retval; } static int lparcfg_data(struct seq_file *m, void *v) { struct device_node *rootdn; const char *model = ""; const char *system_id = ""; const char *tmp; const __be32 *lp_index_ptr; unsigned int lp_index = 0; seq_printf(m, "%s %s\n", MODULE_NAME, MODULE_VERS); rootdn = of_find_node_by_path("/"); if (rootdn) { tmp = of_get_property(rootdn, "model", NULL); if (tmp) model = tmp; tmp = of_get_property(rootdn, "system-id", NULL); if (tmp) system_id = tmp; lp_index_ptr = of_get_property(rootdn, "ibm,partition-no", NULL); if (lp_index_ptr) lp_index = be32_to_cpup(lp_index_ptr); of_node_put(rootdn); } seq_printf(m, "serial_number=%s\n", system_id); seq_printf(m, "system_type=%s\n", model); seq_printf(m, "partition_id=%d\n", (int)lp_index); return pseries_lparcfg_data(m, v); } static int lparcfg_open(struct inode *inode, struct file *file) { return single_open(file, lparcfg_data, NULL); } static const struct proc_ops lparcfg_proc_ops = { .proc_read = seq_read, .proc_write = lparcfg_write, .proc_open = lparcfg_open, .proc_release = single_release, .proc_lseek = seq_lseek, }; static int __init lparcfg_init(void) { umode_t mode = 0444; /* Allow writing if we have FW_FEATURE_SPLPAR */ if (firmware_has_feature(FW_FEATURE_SPLPAR)) mode |= 0200; if (!proc_create("powerpc/lparcfg", mode, NULL, &lparcfg_proc_ops)) { printk(KERN_ERR "Failed to create powerpc/lparcfg\n"); return -EIO; } return 0; } machine_device_initcall(pseries, lparcfg_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1