Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Vincent Chen | 2253 | 97.70% | 5 | 50.00% |
Palmer Dabbelt | 43 | 1.86% | 1 | 10.00% |
Christoph Hellwig | 9 | 0.39% | 3 | 30.00% |
Thomas Gleixner | 1 | 0.04% | 1 | 10.00% |
Total | 2306 | 10 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2020 SiFive */ #include <linux/ptrace.h> #include <linux/kdebug.h> #include <linux/bug.h> #include <linux/kgdb.h> #include <linux/irqflags.h> #include <linux/string.h> #include <asm/cacheflush.h> #include <asm/gdb_xml.h> #include <asm/parse_asm.h> enum { NOT_KGDB_BREAK = 0, KGDB_SW_BREAK, KGDB_COMPILED_BREAK, KGDB_SW_SINGLE_STEP }; static unsigned long stepped_address; static unsigned int stepped_opcode; #if __riscv_xlen == 32 /* C.JAL is an RV32C-only instruction */ DECLARE_INSN(c_jal, MATCH_C_JAL, MASK_C_JAL) #else #define is_c_jal_insn(opcode) 0 #endif DECLARE_INSN(jalr, MATCH_JALR, MASK_JALR) DECLARE_INSN(jal, MATCH_JAL, MASK_JAL) DECLARE_INSN(c_jr, MATCH_C_JR, MASK_C_JR) DECLARE_INSN(c_jalr, MATCH_C_JALR, MASK_C_JALR) DECLARE_INSN(c_j, MATCH_C_J, MASK_C_J) DECLARE_INSN(beq, MATCH_BEQ, MASK_BEQ) DECLARE_INSN(bne, MATCH_BNE, MASK_BNE) DECLARE_INSN(blt, MATCH_BLT, MASK_BLT) DECLARE_INSN(bge, MATCH_BGE, MASK_BGE) DECLARE_INSN(bltu, MATCH_BLTU, MASK_BLTU) DECLARE_INSN(bgeu, MATCH_BGEU, MASK_BGEU) DECLARE_INSN(c_beqz, MATCH_C_BEQZ, MASK_C_BEQZ) DECLARE_INSN(c_bnez, MATCH_C_BNEZ, MASK_C_BNEZ) DECLARE_INSN(sret, MATCH_SRET, MASK_SRET) static int decode_register_index(unsigned long opcode, int offset) { return (opcode >> offset) & 0x1F; } static int decode_register_index_short(unsigned long opcode, int offset) { return ((opcode >> offset) & 0x7) + 8; } /* Calculate the new address for after a step */ static int get_step_address(struct pt_regs *regs, unsigned long *next_addr) { unsigned long pc = regs->epc; unsigned long *regs_ptr = (unsigned long *)regs; unsigned int rs1_num, rs2_num; int op_code; if (get_kernel_nofault(op_code, (void *)pc)) return -EINVAL; if ((op_code & __INSN_LENGTH_MASK) != __INSN_LENGTH_GE_32) { if (is_c_jalr_insn(op_code) || is_c_jr_insn(op_code)) { rs1_num = decode_register_index(op_code, RVC_C2_RS1_OPOFF); *next_addr = regs_ptr[rs1_num]; } else if (is_c_j_insn(op_code) || is_c_jal_insn(op_code)) { *next_addr = EXTRACT_RVC_J_IMM(op_code) + pc; } else if (is_c_beqz_insn(op_code)) { rs1_num = decode_register_index_short(op_code, RVC_C1_RS1_OPOFF); if (!rs1_num || regs_ptr[rs1_num] == 0) *next_addr = EXTRACT_RVC_B_IMM(op_code) + pc; else *next_addr = pc + 2; } else if (is_c_bnez_insn(op_code)) { rs1_num = decode_register_index_short(op_code, RVC_C1_RS1_OPOFF); if (rs1_num && regs_ptr[rs1_num] != 0) *next_addr = EXTRACT_RVC_B_IMM(op_code) + pc; else *next_addr = pc + 2; } else { *next_addr = pc + 2; } } else { if ((op_code & __INSN_OPCODE_MASK) == __INSN_BRANCH_OPCODE) { bool result = false; long imm = EXTRACT_BTYPE_IMM(op_code); unsigned long rs1_val = 0, rs2_val = 0; rs1_num = decode_register_index(op_code, RVG_RS1_OPOFF); rs2_num = decode_register_index(op_code, RVG_RS2_OPOFF); if (rs1_num) rs1_val = regs_ptr[rs1_num]; if (rs2_num) rs2_val = regs_ptr[rs2_num]; if (is_beq_insn(op_code)) result = (rs1_val == rs2_val) ? true : false; else if (is_bne_insn(op_code)) result = (rs1_val != rs2_val) ? true : false; else if (is_blt_insn(op_code)) result = ((long)rs1_val < (long)rs2_val) ? true : false; else if (is_bge_insn(op_code)) result = ((long)rs1_val >= (long)rs2_val) ? true : false; else if (is_bltu_insn(op_code)) result = (rs1_val < rs2_val) ? true : false; else if (is_bgeu_insn(op_code)) result = (rs1_val >= rs2_val) ? true : false; if (result) *next_addr = imm + pc; else *next_addr = pc + 4; } else if (is_jal_insn(op_code)) { *next_addr = EXTRACT_JTYPE_IMM(op_code) + pc; } else if (is_jalr_insn(op_code)) { rs1_num = decode_register_index(op_code, RVG_RS1_OPOFF); if (rs1_num) *next_addr = ((unsigned long *)regs)[rs1_num]; *next_addr += EXTRACT_ITYPE_IMM(op_code); } else if (is_sret_insn(op_code)) { *next_addr = pc; } else { *next_addr = pc + 4; } } return 0; } static int do_single_step(struct pt_regs *regs) { /* Determine where the target instruction will send us to */ unsigned long addr = 0; int error = get_step_address(regs, &addr); if (error) return error; /* Store the op code in the stepped address */ error = get_kernel_nofault(stepped_opcode, (void *)addr); if (error) return error; stepped_address = addr; /* Replace the op code with the break instruction */ error = copy_to_kernel_nofault((void *)stepped_address, arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE); /* Flush and return */ if (!error) { flush_icache_range(addr, addr + BREAK_INSTR_SIZE); kgdb_single_step = 1; atomic_set(&kgdb_cpu_doing_single_step, raw_smp_processor_id()); } else { stepped_address = 0; stepped_opcode = 0; } return error; } /* Undo a single step */ static void undo_single_step(struct pt_regs *regs) { if (stepped_opcode != 0) { copy_to_kernel_nofault((void *)stepped_address, (void *)&stepped_opcode, BREAK_INSTR_SIZE); flush_icache_range(stepped_address, stepped_address + BREAK_INSTR_SIZE); } stepped_address = 0; stepped_opcode = 0; kgdb_single_step = 0; atomic_set(&kgdb_cpu_doing_single_step, -1); } struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] = { {DBG_REG_ZERO, GDB_SIZEOF_REG, -1}, {DBG_REG_RA, GDB_SIZEOF_REG, offsetof(struct pt_regs, ra)}, {DBG_REG_SP, GDB_SIZEOF_REG, offsetof(struct pt_regs, sp)}, {DBG_REG_GP, GDB_SIZEOF_REG, offsetof(struct pt_regs, gp)}, {DBG_REG_TP, GDB_SIZEOF_REG, offsetof(struct pt_regs, tp)}, {DBG_REG_T0, GDB_SIZEOF_REG, offsetof(struct pt_regs, t0)}, {DBG_REG_T1, GDB_SIZEOF_REG, offsetof(struct pt_regs, t1)}, {DBG_REG_T2, GDB_SIZEOF_REG, offsetof(struct pt_regs, t2)}, {DBG_REG_FP, GDB_SIZEOF_REG, offsetof(struct pt_regs, s0)}, {DBG_REG_S1, GDB_SIZEOF_REG, offsetof(struct pt_regs, a1)}, {DBG_REG_A0, GDB_SIZEOF_REG, offsetof(struct pt_regs, a0)}, {DBG_REG_A1, GDB_SIZEOF_REG, offsetof(struct pt_regs, a1)}, {DBG_REG_A2, GDB_SIZEOF_REG, offsetof(struct pt_regs, a2)}, {DBG_REG_A3, GDB_SIZEOF_REG, offsetof(struct pt_regs, a3)}, {DBG_REG_A4, GDB_SIZEOF_REG, offsetof(struct pt_regs, a4)}, {DBG_REG_A5, GDB_SIZEOF_REG, offsetof(struct pt_regs, a5)}, {DBG_REG_A6, GDB_SIZEOF_REG, offsetof(struct pt_regs, a6)}, {DBG_REG_A7, GDB_SIZEOF_REG, offsetof(struct pt_regs, a7)}, {DBG_REG_S2, GDB_SIZEOF_REG, offsetof(struct pt_regs, s2)}, {DBG_REG_S3, GDB_SIZEOF_REG, offsetof(struct pt_regs, s3)}, {DBG_REG_S4, GDB_SIZEOF_REG, offsetof(struct pt_regs, s4)}, {DBG_REG_S5, GDB_SIZEOF_REG, offsetof(struct pt_regs, s5)}, {DBG_REG_S6, GDB_SIZEOF_REG, offsetof(struct pt_regs, s6)}, {DBG_REG_S7, GDB_SIZEOF_REG, offsetof(struct pt_regs, s7)}, {DBG_REG_S8, GDB_SIZEOF_REG, offsetof(struct pt_regs, s8)}, {DBG_REG_S9, GDB_SIZEOF_REG, offsetof(struct pt_regs, s9)}, {DBG_REG_S10, GDB_SIZEOF_REG, offsetof(struct pt_regs, s10)}, {DBG_REG_S11, GDB_SIZEOF_REG, offsetof(struct pt_regs, s11)}, {DBG_REG_T3, GDB_SIZEOF_REG, offsetof(struct pt_regs, t3)}, {DBG_REG_T4, GDB_SIZEOF_REG, offsetof(struct pt_regs, t4)}, {DBG_REG_T5, GDB_SIZEOF_REG, offsetof(struct pt_regs, t5)}, {DBG_REG_T6, GDB_SIZEOF_REG, offsetof(struct pt_regs, t6)}, {DBG_REG_EPC, GDB_SIZEOF_REG, offsetof(struct pt_regs, epc)}, {DBG_REG_STATUS, GDB_SIZEOF_REG, offsetof(struct pt_regs, status)}, {DBG_REG_BADADDR, GDB_SIZEOF_REG, offsetof(struct pt_regs, badaddr)}, {DBG_REG_CAUSE, GDB_SIZEOF_REG, offsetof(struct pt_regs, cause)}, }; char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs) { if (regno >= DBG_MAX_REG_NUM || regno < 0) return NULL; if (dbg_reg_def[regno].offset != -1) memcpy(mem, (void *)regs + dbg_reg_def[regno].offset, dbg_reg_def[regno].size); else memset(mem, 0, dbg_reg_def[regno].size); return dbg_reg_def[regno].name; } int dbg_set_reg(int regno, void *mem, struct pt_regs *regs) { if (regno >= DBG_MAX_REG_NUM || regno < 0) return -EINVAL; if (dbg_reg_def[regno].offset != -1) memcpy((void *)regs + dbg_reg_def[regno].offset, mem, dbg_reg_def[regno].size); return 0; } void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *task) { /* Initialize to zero */ memset((char *)gdb_regs, 0, NUMREGBYTES); gdb_regs[DBG_REG_SP_OFF] = task->thread.sp; gdb_regs[DBG_REG_FP_OFF] = task->thread.s[0]; gdb_regs[DBG_REG_S1_OFF] = task->thread.s[1]; gdb_regs[DBG_REG_S2_OFF] = task->thread.s[2]; gdb_regs[DBG_REG_S3_OFF] = task->thread.s[3]; gdb_regs[DBG_REG_S4_OFF] = task->thread.s[4]; gdb_regs[DBG_REG_S5_OFF] = task->thread.s[5]; gdb_regs[DBG_REG_S6_OFF] = task->thread.s[6]; gdb_regs[DBG_REG_S7_OFF] = task->thread.s[7]; gdb_regs[DBG_REG_S8_OFF] = task->thread.s[8]; gdb_regs[DBG_REG_S9_OFF] = task->thread.s[10]; gdb_regs[DBG_REG_S10_OFF] = task->thread.s[11]; gdb_regs[DBG_REG_EPC_OFF] = task->thread.ra; } void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long pc) { regs->epc = pc; } void kgdb_arch_handle_qxfer_pkt(char *remcom_in_buffer, char *remcom_out_buffer) { if (!strncmp(remcom_in_buffer, gdb_xfer_read_target, sizeof(gdb_xfer_read_target))) strcpy(remcom_out_buffer, riscv_gdb_stub_target_desc); else if (!strncmp(remcom_in_buffer, gdb_xfer_read_cpuxml, sizeof(gdb_xfer_read_cpuxml))) strcpy(remcom_out_buffer, riscv_gdb_stub_cpuxml); } static inline void kgdb_arch_update_addr(struct pt_regs *regs, char *remcom_in_buffer) { unsigned long addr; char *ptr; ptr = &remcom_in_buffer[1]; if (kgdb_hex2long(&ptr, &addr)) regs->epc = addr; } int kgdb_arch_handle_exception(int vector, int signo, int err_code, char *remcom_in_buffer, char *remcom_out_buffer, struct pt_regs *regs) { int err = 0; undo_single_step(regs); switch (remcom_in_buffer[0]) { case 'c': case 'D': case 'k': if (remcom_in_buffer[0] == 'c') kgdb_arch_update_addr(regs, remcom_in_buffer); break; case 's': kgdb_arch_update_addr(regs, remcom_in_buffer); err = do_single_step(regs); break; default: err = -1; } return err; } static int kgdb_riscv_kgdbbreak(unsigned long addr) { if (stepped_address == addr) return KGDB_SW_SINGLE_STEP; if (atomic_read(&kgdb_setting_breakpoint)) if (addr == (unsigned long)&kgdb_compiled_break) return KGDB_COMPILED_BREAK; return kgdb_has_hit_break(addr); } static int kgdb_riscv_notify(struct notifier_block *self, unsigned long cmd, void *ptr) { struct die_args *args = (struct die_args *)ptr; struct pt_regs *regs = args->regs; unsigned long flags; int type; if (user_mode(regs)) return NOTIFY_DONE; type = kgdb_riscv_kgdbbreak(regs->epc); if (type == NOT_KGDB_BREAK && cmd == DIE_TRAP) return NOTIFY_DONE; local_irq_save(flags); if (kgdb_handle_exception(type == KGDB_SW_SINGLE_STEP ? 0 : 1, args->signr, cmd, regs)) return NOTIFY_DONE; if (type == KGDB_COMPILED_BREAK) regs->epc += 4; local_irq_restore(flags); return NOTIFY_STOP; } static struct notifier_block kgdb_notifier = { .notifier_call = kgdb_riscv_notify, }; int kgdb_arch_init(void) { register_die_notifier(&kgdb_notifier); return 0; } void kgdb_arch_exit(void) { unregister_die_notifier(&kgdb_notifier); } /* * Global data */ #ifdef CONFIG_RISCV_ISA_C const struct kgdb_arch arch_kgdb_ops = { .gdb_bpt_instr = {0x02, 0x90}, /* c.ebreak */ }; #else const struct kgdb_arch arch_kgdb_ops = { .gdb_bpt_instr = {0x73, 0x00, 0x10, 0x00}, /* ebreak */ }; #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1