Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Heiko Carstens | 781 | 53.75% | 12 | 30.00% |
Martin Schwidefsky | 323 | 22.23% | 9 | 22.50% |
Linus Torvalds (pre-git) | 194 | 13.35% | 1 | 2.50% |
Vasily Gorbik | 34 | 2.34% | 2 | 5.00% |
Alexander Lobakin | 33 | 2.27% | 1 | 2.50% |
Arnd Bergmann | 24 | 1.65% | 1 | 2.50% |
Linus Torvalds | 13 | 0.89% | 1 | 2.50% |
Akinobu Mita | 12 | 0.83% | 4 | 10.00% |
Andrew Morton | 9 | 0.62% | 2 | 5.00% |
Jiri Slaby | 8 | 0.55% | 1 | 2.50% |
Daniel Axtens | 7 | 0.48% | 1 | 2.50% |
Mikulas Patocka | 7 | 0.48% | 1 | 2.50% |
Jens Freimann | 5 | 0.34% | 1 | 2.50% |
Huilong Deng | 1 | 0.07% | 1 | 2.50% |
Matthew Wilcox | 1 | 0.07% | 1 | 2.50% |
Greg Kroah-Hartman | 1 | 0.07% | 1 | 2.50% |
Total | 1453 | 40 |
/* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright IBM Corp. 1999,2013 * * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>, * * The description below was taken in large parts from the powerpc * bitops header file: * Within a word, bits are numbered LSB first. Lot's of places make * this assumption by directly testing bits with (val & (1<<nr)). * This can cause confusion for large (> 1 word) bitmaps on a * big-endian system because, unlike little endian, the number of each * bit depends on the word size. * * The bitop functions are defined to work on unsigned longs, so the bits * end up numbered: * |63..............0|127............64|191...........128|255...........192| * * We also have special functions which work with an MSB0 encoding. * The bits are numbered: * |0..............63|64............127|128...........191|192...........255| * * The main difference is that bit 0-63 in the bit number field needs to be * reversed compared to the LSB0 encoded bit fields. This can be achieved by * XOR with 0x3f. * */ #ifndef _S390_BITOPS_H #define _S390_BITOPS_H #ifndef _LINUX_BITOPS_H #error only <linux/bitops.h> can be included directly #endif #include <linux/typecheck.h> #include <linux/compiler.h> #include <linux/types.h> #include <asm/atomic_ops.h> #include <asm/barrier.h> #define __BITOPS_WORDS(bits) (((bits) + BITS_PER_LONG - 1) / BITS_PER_LONG) static inline unsigned long * __bitops_word(unsigned long nr, const volatile unsigned long *ptr) { unsigned long addr; addr = (unsigned long)ptr + ((nr ^ (nr & (BITS_PER_LONG - 1))) >> 3); return (unsigned long *)addr; } static inline unsigned long __bitops_mask(unsigned long nr) { return 1UL << (nr & (BITS_PER_LONG - 1)); } static __always_inline void arch_set_bit(unsigned long nr, volatile unsigned long *ptr) { unsigned long *addr = __bitops_word(nr, ptr); unsigned long mask = __bitops_mask(nr); __atomic64_or(mask, (long *)addr); } static __always_inline void arch_clear_bit(unsigned long nr, volatile unsigned long *ptr) { unsigned long *addr = __bitops_word(nr, ptr); unsigned long mask = __bitops_mask(nr); __atomic64_and(~mask, (long *)addr); } static __always_inline void arch_change_bit(unsigned long nr, volatile unsigned long *ptr) { unsigned long *addr = __bitops_word(nr, ptr); unsigned long mask = __bitops_mask(nr); __atomic64_xor(mask, (long *)addr); } static inline bool arch_test_and_set_bit(unsigned long nr, volatile unsigned long *ptr) { unsigned long *addr = __bitops_word(nr, ptr); unsigned long mask = __bitops_mask(nr); unsigned long old; old = __atomic64_or_barrier(mask, (long *)addr); return old & mask; } static inline bool arch_test_and_clear_bit(unsigned long nr, volatile unsigned long *ptr) { unsigned long *addr = __bitops_word(nr, ptr); unsigned long mask = __bitops_mask(nr); unsigned long old; old = __atomic64_and_barrier(~mask, (long *)addr); return old & mask; } static inline bool arch_test_and_change_bit(unsigned long nr, volatile unsigned long *ptr) { unsigned long *addr = __bitops_word(nr, ptr); unsigned long mask = __bitops_mask(nr); unsigned long old; old = __atomic64_xor_barrier(mask, (long *)addr); return old & mask; } static __always_inline void arch___set_bit(unsigned long nr, volatile unsigned long *addr) { unsigned long *p = __bitops_word(nr, addr); unsigned long mask = __bitops_mask(nr); *p |= mask; } static __always_inline void arch___clear_bit(unsigned long nr, volatile unsigned long *addr) { unsigned long *p = __bitops_word(nr, addr); unsigned long mask = __bitops_mask(nr); *p &= ~mask; } static __always_inline void arch___change_bit(unsigned long nr, volatile unsigned long *addr) { unsigned long *p = __bitops_word(nr, addr); unsigned long mask = __bitops_mask(nr); *p ^= mask; } static __always_inline bool arch___test_and_set_bit(unsigned long nr, volatile unsigned long *addr) { unsigned long *p = __bitops_word(nr, addr); unsigned long mask = __bitops_mask(nr); unsigned long old; old = *p; *p |= mask; return old & mask; } static __always_inline bool arch___test_and_clear_bit(unsigned long nr, volatile unsigned long *addr) { unsigned long *p = __bitops_word(nr, addr); unsigned long mask = __bitops_mask(nr); unsigned long old; old = *p; *p &= ~mask; return old & mask; } static __always_inline bool arch___test_and_change_bit(unsigned long nr, volatile unsigned long *addr) { unsigned long *p = __bitops_word(nr, addr); unsigned long mask = __bitops_mask(nr); unsigned long old; old = *p; *p ^= mask; return old & mask; } #define arch_test_bit generic_test_bit #define arch_test_bit_acquire generic_test_bit_acquire static inline bool arch_test_and_set_bit_lock(unsigned long nr, volatile unsigned long *ptr) { if (arch_test_bit(nr, ptr)) return true; return arch_test_and_set_bit(nr, ptr); } static inline void arch_clear_bit_unlock(unsigned long nr, volatile unsigned long *ptr) { smp_mb__before_atomic(); arch_clear_bit(nr, ptr); } static inline void arch___clear_bit_unlock(unsigned long nr, volatile unsigned long *ptr) { smp_mb(); arch___clear_bit(nr, ptr); } #include <asm-generic/bitops/instrumented-atomic.h> #include <asm-generic/bitops/instrumented-non-atomic.h> #include <asm-generic/bitops/instrumented-lock.h> /* * Functions which use MSB0 bit numbering. * The bits are numbered: * |0..............63|64............127|128...........191|192...........255| */ unsigned long find_first_bit_inv(const unsigned long *addr, unsigned long size); unsigned long find_next_bit_inv(const unsigned long *addr, unsigned long size, unsigned long offset); #define for_each_set_bit_inv(bit, addr, size) \ for ((bit) = find_first_bit_inv((addr), (size)); \ (bit) < (size); \ (bit) = find_next_bit_inv((addr), (size), (bit) + 1)) static inline void set_bit_inv(unsigned long nr, volatile unsigned long *ptr) { return set_bit(nr ^ (BITS_PER_LONG - 1), ptr); } static inline void clear_bit_inv(unsigned long nr, volatile unsigned long *ptr) { return clear_bit(nr ^ (BITS_PER_LONG - 1), ptr); } static inline bool test_and_clear_bit_inv(unsigned long nr, volatile unsigned long *ptr) { return test_and_clear_bit(nr ^ (BITS_PER_LONG - 1), ptr); } static inline void __set_bit_inv(unsigned long nr, volatile unsigned long *ptr) { return __set_bit(nr ^ (BITS_PER_LONG - 1), ptr); } static inline void __clear_bit_inv(unsigned long nr, volatile unsigned long *ptr) { return __clear_bit(nr ^ (BITS_PER_LONG - 1), ptr); } static inline bool test_bit_inv(unsigned long nr, const volatile unsigned long *ptr) { return test_bit(nr ^ (BITS_PER_LONG - 1), ptr); } /** * __flogr - find leftmost one * @word - The word to search * * Returns the bit number of the most significant bit set, * where the most significant bit has bit number 0. * If no bit is set this function returns 64. */ static inline unsigned char __flogr(unsigned long word) { if (__builtin_constant_p(word)) { unsigned long bit = 0; if (!word) return 64; if (!(word & 0xffffffff00000000UL)) { word <<= 32; bit += 32; } if (!(word & 0xffff000000000000UL)) { word <<= 16; bit += 16; } if (!(word & 0xff00000000000000UL)) { word <<= 8; bit += 8; } if (!(word & 0xf000000000000000UL)) { word <<= 4; bit += 4; } if (!(word & 0xc000000000000000UL)) { word <<= 2; bit += 2; } if (!(word & 0x8000000000000000UL)) { word <<= 1; bit += 1; } return bit; } else { union register_pair rp; rp.even = word; asm volatile( " flogr %[rp],%[rp]\n" : [rp] "+d" (rp.pair) : : "cc"); return rp.even; } } /** * __ffs - find first bit in word. * @word: The word to search * * Undefined if no bit exists, so code should check against 0 first. */ static inline unsigned long __ffs(unsigned long word) { return __flogr(-word & word) ^ (BITS_PER_LONG - 1); } /** * ffs - find first bit set * @word: the word to search * * This is defined the same way as the libc and * compiler builtin ffs routines (man ffs). */ static inline int ffs(int word) { unsigned long mask = 2 * BITS_PER_LONG - 1; unsigned int val = (unsigned int)word; return (1 + (__flogr(-val & val) ^ (BITS_PER_LONG - 1))) & mask; } /** * __fls - find last (most-significant) set bit in a long word * @word: the word to search * * Undefined if no set bit exists, so code should check against 0 first. */ static inline unsigned long __fls(unsigned long word) { return __flogr(word) ^ (BITS_PER_LONG - 1); } /** * fls64 - find last set bit in a 64-bit word * @word: the word to search * * This is defined in a similar way as the libc and compiler builtin * ffsll, but returns the position of the most significant set bit. * * fls64(value) returns 0 if value is 0 or the position of the last * set bit if value is nonzero. The last (most significant) bit is * at position 64. */ static inline int fls64(unsigned long word) { unsigned long mask = 2 * BITS_PER_LONG - 1; return (1 + (__flogr(word) ^ (BITS_PER_LONG - 1))) & mask; } /** * fls - find last (most-significant) bit set * @word: the word to search * * This is defined the same way as ffs. * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32. */ static inline int fls(unsigned int word) { return fls64(word); } #include <asm-generic/bitops/ffz.h> #include <asm-generic/bitops/hweight.h> #include <asm-generic/bitops/sched.h> #include <asm-generic/bitops/le.h> #include <asm-generic/bitops/ext2-atomic-setbit.h> #endif /* _S390_BITOPS_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1