Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Thomas Richter | 3302 | 98.66% | 5 | 20.83% |
Heiko Carstens | 17 | 0.51% | 8 | 33.33% |
Namhyung Kim | 6 | 0.18% | 1 | 4.17% |
Martin Schwidefsky | 6 | 0.18% | 2 | 8.33% |
Andrew Morton | 4 | 0.12% | 1 | 4.17% |
Sven Schnelle | 3 | 0.09% | 1 | 4.17% |
Serge E. Hallyn | 2 | 0.06% | 1 | 4.17% |
Peter Zijlstra | 2 | 0.06% | 1 | 4.17% |
QingFeng Hao | 2 | 0.06% | 1 | 4.17% |
Greg Kroah-Hartman | 1 | 0.03% | 1 | 4.17% |
Paul Gortmaker | 1 | 0.03% | 1 | 4.17% |
Linus Torvalds | 1 | 0.03% | 1 | 4.17% |
Total | 3347 | 24 |
// SPDX-License-Identifier: GPL-2.0 /* * Performance event support - Processor Activity Instrumentation Facility * * Copyright IBM Corp. 2022 * Author(s): Thomas Richter <tmricht@linux.ibm.com> */ #define KMSG_COMPONENT "pai_crypto" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/kernel.h> #include <linux/kernel_stat.h> #include <linux/percpu.h> #include <linux/notifier.h> #include <linux/init.h> #include <linux/export.h> #include <linux/io.h> #include <linux/perf_event.h> #include <asm/ctl_reg.h> #include <asm/pai.h> #include <asm/debug.h> static debug_info_t *cfm_dbg; static unsigned int paicrypt_cnt; /* Size of the mapped counter sets */ /* extracted with QPACI instruction */ DEFINE_STATIC_KEY_FALSE(pai_key); struct pai_userdata { u16 num; u64 value; } __packed; struct paicrypt_map { unsigned long *page; /* Page for CPU to store counters */ struct pai_userdata *save; /* Page to store no-zero counters */ unsigned int active_events; /* # of PAI crypto users */ unsigned int refcnt; /* Reference count mapped buffers */ enum paievt_mode mode; /* Type of event */ struct perf_event *event; /* Perf event for sampling */ }; static DEFINE_PER_CPU(struct paicrypt_map, paicrypt_map); /* Release the PMU if event is the last perf event */ static DEFINE_MUTEX(pai_reserve_mutex); /* Adjust usage counters and remove allocated memory when all users are * gone. */ static void paicrypt_event_destroy(struct perf_event *event) { struct paicrypt_map *cpump = per_cpu_ptr(&paicrypt_map, event->cpu); cpump->event = NULL; static_branch_dec(&pai_key); mutex_lock(&pai_reserve_mutex); debug_sprintf_event(cfm_dbg, 5, "%s event %#llx cpu %d users %d" " mode %d refcnt %d\n", __func__, event->attr.config, event->cpu, cpump->active_events, cpump->mode, cpump->refcnt); if (!--cpump->refcnt) { debug_sprintf_event(cfm_dbg, 4, "%s page %#lx save %p\n", __func__, (unsigned long)cpump->page, cpump->save); free_page((unsigned long)cpump->page); cpump->page = NULL; kvfree(cpump->save); cpump->save = NULL; cpump->mode = PAI_MODE_NONE; } mutex_unlock(&pai_reserve_mutex); } static u64 paicrypt_getctr(struct paicrypt_map *cpump, int nr, bool kernel) { if (kernel) nr += PAI_CRYPTO_MAXCTR; return cpump->page[nr]; } /* Read the counter values. Return value from location in CMP. For event * CRYPTO_ALL sum up all events. */ static u64 paicrypt_getdata(struct perf_event *event, bool kernel) { struct paicrypt_map *cpump = this_cpu_ptr(&paicrypt_map); u64 sum = 0; int i; if (event->attr.config != PAI_CRYPTO_BASE) { return paicrypt_getctr(cpump, event->attr.config - PAI_CRYPTO_BASE, kernel); } for (i = 1; i <= paicrypt_cnt; i++) { u64 val = paicrypt_getctr(cpump, i, kernel); if (!val) continue; sum += val; } return sum; } static u64 paicrypt_getall(struct perf_event *event) { u64 sum = 0; if (!event->attr.exclude_kernel) sum += paicrypt_getdata(event, true); if (!event->attr.exclude_user) sum += paicrypt_getdata(event, false); return sum; } /* Used to avoid races in checking concurrent access of counting and * sampling for crypto events * * Only one instance of event pai_crypto/CRYPTO_ALL/ for sampling is * allowed and when this event is running, no counting event is allowed. * Several counting events are allowed in parallel, but no sampling event * is allowed while one (or more) counting events are running. * * This function is called in process context and it is save to block. * When the event initialization functions fails, no other call back will * be invoked. * * Allocate the memory for the event. */ static int paicrypt_busy(struct perf_event_attr *a, struct paicrypt_map *cpump) { int rc = 0; mutex_lock(&pai_reserve_mutex); if (a->sample_period) { /* Sampling requested */ if (cpump->mode != PAI_MODE_NONE) rc = -EBUSY; /* ... sampling/counting active */ } else { /* Counting requested */ if (cpump->mode == PAI_MODE_SAMPLING) rc = -EBUSY; /* ... and sampling active */ } if (rc) goto unlock; /* Allocate memory for counter page and counter extraction. * Only the first counting event has to allocate a page. */ if (cpump->page) goto unlock; rc = -ENOMEM; cpump->page = (unsigned long *)get_zeroed_page(GFP_KERNEL); if (!cpump->page) goto unlock; cpump->save = kvmalloc_array(paicrypt_cnt + 1, sizeof(struct pai_userdata), GFP_KERNEL); if (!cpump->save) { free_page((unsigned long)cpump->page); cpump->page = NULL; goto unlock; } rc = 0; unlock: /* If rc is non-zero, do not set mode and reference count */ if (!rc) { cpump->refcnt++; cpump->mode = a->sample_period ? PAI_MODE_SAMPLING : PAI_MODE_COUNTING; } debug_sprintf_event(cfm_dbg, 5, "%s sample_period %#llx users %d" " mode %d refcnt %d page %#lx save %p rc %d\n", __func__, a->sample_period, cpump->active_events, cpump->mode, cpump->refcnt, (unsigned long)cpump->page, cpump->save, rc); mutex_unlock(&pai_reserve_mutex); return rc; } /* Might be called on different CPU than the one the event is intended for. */ static int paicrypt_event_init(struct perf_event *event) { struct perf_event_attr *a = &event->attr; struct paicrypt_map *cpump; int rc; /* PAI crypto PMU registered as PERF_TYPE_RAW, check event type */ if (a->type != PERF_TYPE_RAW && event->pmu->type != a->type) return -ENOENT; /* PAI crypto event must be in valid range */ if (a->config < PAI_CRYPTO_BASE || a->config > PAI_CRYPTO_BASE + paicrypt_cnt) return -EINVAL; /* Allow only CPU wide operation, no process context for now. */ if (event->hw.target || event->cpu == -1) return -ENOENT; /* Allow only CRYPTO_ALL for sampling. */ if (a->sample_period && a->config != PAI_CRYPTO_BASE) return -EINVAL; cpump = per_cpu_ptr(&paicrypt_map, event->cpu); rc = paicrypt_busy(a, cpump); if (rc) return rc; /* Event initialization sets last_tag to 0. When later on the events * are deleted and re-added, do not reset the event count value to zero. * Events are added, deleted and re-added when 2 or more events * are active at the same time. */ event->hw.last_tag = 0; cpump->event = event; event->destroy = paicrypt_event_destroy; if (a->sample_period) { a->sample_period = 1; a->freq = 0; /* Register for paicrypt_sched_task() to be called */ event->attach_state |= PERF_ATTACH_SCHED_CB; /* Add raw data which contain the memory mapped counters */ a->sample_type |= PERF_SAMPLE_RAW; /* Turn off inheritance */ a->inherit = 0; } static_branch_inc(&pai_key); return 0; } static void paicrypt_read(struct perf_event *event) { u64 prev, new, delta; prev = local64_read(&event->hw.prev_count); new = paicrypt_getall(event); local64_set(&event->hw.prev_count, new); delta = (prev <= new) ? new - prev : (-1ULL - prev) + new + 1; /* overflow */ local64_add(delta, &event->count); } static void paicrypt_start(struct perf_event *event, int flags) { u64 sum; if (!event->hw.last_tag) { event->hw.last_tag = 1; sum = paicrypt_getall(event); /* Get current value */ local64_set(&event->count, 0); local64_set(&event->hw.prev_count, sum); } } static int paicrypt_add(struct perf_event *event, int flags) { struct paicrypt_map *cpump = this_cpu_ptr(&paicrypt_map); unsigned long ccd; if (++cpump->active_events == 1) { ccd = virt_to_phys(cpump->page) | PAI_CRYPTO_KERNEL_OFFSET; WRITE_ONCE(S390_lowcore.ccd, ccd); __ctl_set_bit(0, 50); } cpump->event = event; if (flags & PERF_EF_START && !event->attr.sample_period) { /* Only counting needs initial counter value */ paicrypt_start(event, PERF_EF_RELOAD); } event->hw.state = 0; if (event->attr.sample_period) perf_sched_cb_inc(event->pmu); return 0; } static void paicrypt_stop(struct perf_event *event, int flags) { paicrypt_read(event); event->hw.state = PERF_HES_STOPPED; } static void paicrypt_del(struct perf_event *event, int flags) { struct paicrypt_map *cpump = this_cpu_ptr(&paicrypt_map); if (event->attr.sample_period) perf_sched_cb_dec(event->pmu); if (!event->attr.sample_period) /* Only counting needs to read counter */ paicrypt_stop(event, PERF_EF_UPDATE); if (--cpump->active_events == 0) { __ctl_clear_bit(0, 50); WRITE_ONCE(S390_lowcore.ccd, 0); } } /* Create raw data and save it in buffer. Returns number of bytes copied. * Saves only positive counter entries of the form * 2 bytes: Number of counter * 8 bytes: Value of counter */ static size_t paicrypt_copy(struct pai_userdata *userdata, struct paicrypt_map *cpump, bool exclude_user, bool exclude_kernel) { int i, outidx = 0; for (i = 1; i <= paicrypt_cnt; i++) { u64 val = 0; if (!exclude_kernel) val += paicrypt_getctr(cpump, i, true); if (!exclude_user) val += paicrypt_getctr(cpump, i, false); if (val) { userdata[outidx].num = i; userdata[outidx].value = val; outidx++; } } return outidx * sizeof(struct pai_userdata); } static int paicrypt_push_sample(void) { struct paicrypt_map *cpump = this_cpu_ptr(&paicrypt_map); struct perf_event *event = cpump->event; struct perf_sample_data data; struct perf_raw_record raw; struct pt_regs regs; size_t rawsize; int overflow; if (!cpump->event) /* No event active */ return 0; rawsize = paicrypt_copy(cpump->save, cpump, cpump->event->attr.exclude_user, cpump->event->attr.exclude_kernel); if (!rawsize) /* No incremented counters */ return 0; /* Setup perf sample */ memset(®s, 0, sizeof(regs)); memset(&raw, 0, sizeof(raw)); memset(&data, 0, sizeof(data)); perf_sample_data_init(&data, 0, event->hw.last_period); if (event->attr.sample_type & PERF_SAMPLE_TID) { data.tid_entry.pid = task_tgid_nr(current); data.tid_entry.tid = task_pid_nr(current); } if (event->attr.sample_type & PERF_SAMPLE_TIME) data.time = event->clock(); if (event->attr.sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) data.id = event->id; if (event->attr.sample_type & PERF_SAMPLE_CPU) { data.cpu_entry.cpu = smp_processor_id(); data.cpu_entry.reserved = 0; } if (event->attr.sample_type & PERF_SAMPLE_RAW) { raw.frag.size = rawsize; raw.frag.data = cpump->save; raw.size = raw.frag.size; data.raw = &raw; data.sample_flags |= PERF_SAMPLE_RAW; } overflow = perf_event_overflow(event, &data, ®s); perf_event_update_userpage(event); /* Clear lowcore page after read */ memset(cpump->page, 0, PAGE_SIZE); return overflow; } /* Called on schedule-in and schedule-out. No access to event structure, * but for sampling only event CRYPTO_ALL is allowed. */ static void paicrypt_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in) { /* We started with a clean page on event installation. So read out * results on schedule_out and if page was dirty, clear values. */ if (!sched_in) paicrypt_push_sample(); } /* Attribute definitions for paicrypt interface. As with other CPU * Measurement Facilities, there is one attribute per mapped counter. * The number of mapped counters may vary per machine generation. Use * the QUERY PROCESSOR ACTIVITY COUNTER INFORMATION (QPACI) instruction * to determine the number of mapped counters. The instructions returns * a positive number, which is the highest number of supported counters. * All counters less than this number are also supported, there are no * holes. A returned number of zero means no support for mapped counters. * * The identification of the counter is a unique number. The chosen range * is 0x1000 + offset in mapped kernel page. * All CPU Measurement Facility counters identifiers must be unique and * the numbers from 0 to 496 are already used for the CPU Measurement * Counter facility. Numbers 0xb0000, 0xbc000 and 0xbd000 are already * used for the CPU Measurement Sampling facility. */ PMU_FORMAT_ATTR(event, "config:0-63"); static struct attribute *paicrypt_format_attr[] = { &format_attr_event.attr, NULL, }; static struct attribute_group paicrypt_events_group = { .name = "events", .attrs = NULL /* Filled in attr_event_init() */ }; static struct attribute_group paicrypt_format_group = { .name = "format", .attrs = paicrypt_format_attr, }; static const struct attribute_group *paicrypt_attr_groups[] = { &paicrypt_events_group, &paicrypt_format_group, NULL, }; /* Performance monitoring unit for mapped counters */ static struct pmu paicrypt = { .task_ctx_nr = perf_invalid_context, .event_init = paicrypt_event_init, .add = paicrypt_add, .del = paicrypt_del, .start = paicrypt_start, .stop = paicrypt_stop, .read = paicrypt_read, .sched_task = paicrypt_sched_task, .attr_groups = paicrypt_attr_groups }; /* List of symbolic PAI counter names. */ static const char * const paicrypt_ctrnames[] = { [0] = "CRYPTO_ALL", [1] = "KM_DEA", [2] = "KM_TDEA_128", [3] = "KM_TDEA_192", [4] = "KM_ENCRYPTED_DEA", [5] = "KM_ENCRYPTED_TDEA_128", [6] = "KM_ENCRYPTED_TDEA_192", [7] = "KM_AES_128", [8] = "KM_AES_192", [9] = "KM_AES_256", [10] = "KM_ENCRYPTED_AES_128", [11] = "KM_ENCRYPTED_AES_192", [12] = "KM_ENCRYPTED_AES_256", [13] = "KM_XTS_AES_128", [14] = "KM_XTS_AES_256", [15] = "KM_XTS_ENCRYPTED_AES_128", [16] = "KM_XTS_ENCRYPTED_AES_256", [17] = "KMC_DEA", [18] = "KMC_TDEA_128", [19] = "KMC_TDEA_192", [20] = "KMC_ENCRYPTED_DEA", [21] = "KMC_ENCRYPTED_TDEA_128", [22] = "KMC_ENCRYPTED_TDEA_192", [23] = "KMC_AES_128", [24] = "KMC_AES_192", [25] = "KMC_AES_256", [26] = "KMC_ENCRYPTED_AES_128", [27] = "KMC_ENCRYPTED_AES_192", [28] = "KMC_ENCRYPTED_AES_256", [29] = "KMC_PRNG", [30] = "KMA_GCM_AES_128", [31] = "KMA_GCM_AES_192", [32] = "KMA_GCM_AES_256", [33] = "KMA_GCM_ENCRYPTED_AES_128", [34] = "KMA_GCM_ENCRYPTED_AES_192", [35] = "KMA_GCM_ENCRYPTED_AES_256", [36] = "KMF_DEA", [37] = "KMF_TDEA_128", [38] = "KMF_TDEA_192", [39] = "KMF_ENCRYPTED_DEA", [40] = "KMF_ENCRYPTED_TDEA_128", [41] = "KMF_ENCRYPTED_TDEA_192", [42] = "KMF_AES_128", [43] = "KMF_AES_192", [44] = "KMF_AES_256", [45] = "KMF_ENCRYPTED_AES_128", [46] = "KMF_ENCRYPTED_AES_192", [47] = "KMF_ENCRYPTED_AES_256", [48] = "KMCTR_DEA", [49] = "KMCTR_TDEA_128", [50] = "KMCTR_TDEA_192", [51] = "KMCTR_ENCRYPTED_DEA", [52] = "KMCTR_ENCRYPTED_TDEA_128", [53] = "KMCTR_ENCRYPTED_TDEA_192", [54] = "KMCTR_AES_128", [55] = "KMCTR_AES_192", [56] = "KMCTR_AES_256", [57] = "KMCTR_ENCRYPTED_AES_128", [58] = "KMCTR_ENCRYPTED_AES_192", [59] = "KMCTR_ENCRYPTED_AES_256", [60] = "KMO_DEA", [61] = "KMO_TDEA_128", [62] = "KMO_TDEA_192", [63] = "KMO_ENCRYPTED_DEA", [64] = "KMO_ENCRYPTED_TDEA_128", [65] = "KMO_ENCRYPTED_TDEA_192", [66] = "KMO_AES_128", [67] = "KMO_AES_192", [68] = "KMO_AES_256", [69] = "KMO_ENCRYPTED_AES_128", [70] = "KMO_ENCRYPTED_AES_192", [71] = "KMO_ENCRYPTED_AES_256", [72] = "KIMD_SHA_1", [73] = "KIMD_SHA_256", [74] = "KIMD_SHA_512", [75] = "KIMD_SHA3_224", [76] = "KIMD_SHA3_256", [77] = "KIMD_SHA3_384", [78] = "KIMD_SHA3_512", [79] = "KIMD_SHAKE_128", [80] = "KIMD_SHAKE_256", [81] = "KIMD_GHASH", [82] = "KLMD_SHA_1", [83] = "KLMD_SHA_256", [84] = "KLMD_SHA_512", [85] = "KLMD_SHA3_224", [86] = "KLMD_SHA3_256", [87] = "KLMD_SHA3_384", [88] = "KLMD_SHA3_512", [89] = "KLMD_SHAKE_128", [90] = "KLMD_SHAKE_256", [91] = "KMAC_DEA", [92] = "KMAC_TDEA_128", [93] = "KMAC_TDEA_192", [94] = "KMAC_ENCRYPTED_DEA", [95] = "KMAC_ENCRYPTED_TDEA_128", [96] = "KMAC_ENCRYPTED_TDEA_192", [97] = "KMAC_AES_128", [98] = "KMAC_AES_192", [99] = "KMAC_AES_256", [100] = "KMAC_ENCRYPTED_AES_128", [101] = "KMAC_ENCRYPTED_AES_192", [102] = "KMAC_ENCRYPTED_AES_256", [103] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_DEA", [104] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_TDEA_128", [105] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_TDEA_192", [106] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_ENCRYPTED_DEA", [107] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_ENCRYPTED_TDEA_128", [108] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_ENCRYPTED_TDEA_192", [109] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_AES_128", [110] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_AES_192", [111] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_AES_256", [112] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_ENCRYPTED_AES_128", [113] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_ENCRYPTED_AES_192", [114] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_ENCRYPTED_AES_256A", [115] = "PCC_COMPUTE_XTS_PARAMETER_USING_AES_128", [116] = "PCC_COMPUTE_XTS_PARAMETER_USING_AES_256", [117] = "PCC_COMPUTE_XTS_PARAMETER_USING_ENCRYPTED_AES_128", [118] = "PCC_COMPUTE_XTS_PARAMETER_USING_ENCRYPTED_AES_256", [119] = "PCC_SCALAR_MULTIPLY_P256", [120] = "PCC_SCALAR_MULTIPLY_P384", [121] = "PCC_SCALAR_MULTIPLY_P521", [122] = "PCC_SCALAR_MULTIPLY_ED25519", [123] = "PCC_SCALAR_MULTIPLY_ED448", [124] = "PCC_SCALAR_MULTIPLY_X25519", [125] = "PCC_SCALAR_MULTIPLY_X448", [126] = "PRNO_SHA_512_DRNG", [127] = "PRNO_TRNG_QUERY_RAW_TO_CONDITIONED_RATIO", [128] = "PRNO_TRNG", [129] = "KDSA_ECDSA_VERIFY_P256", [130] = "KDSA_ECDSA_VERIFY_P384", [131] = "KDSA_ECDSA_VERIFY_P521", [132] = "KDSA_ECDSA_SIGN_P256", [133] = "KDSA_ECDSA_SIGN_P384", [134] = "KDSA_ECDSA_SIGN_P521", [135] = "KDSA_ENCRYPTED_ECDSA_SIGN_P256", [136] = "KDSA_ENCRYPTED_ECDSA_SIGN_P384", [137] = "KDSA_ENCRYPTED_ECDSA_SIGN_P521", [138] = "KDSA_EDDSA_VERIFY_ED25519", [139] = "KDSA_EDDSA_VERIFY_ED448", [140] = "KDSA_EDDSA_SIGN_ED25519", [141] = "KDSA_EDDSA_SIGN_ED448", [142] = "KDSA_ENCRYPTED_EDDSA_SIGN_ED25519", [143] = "KDSA_ENCRYPTED_EDDSA_SIGN_ED448", [144] = "PCKMO_ENCRYPT_DEA_KEY", [145] = "PCKMO_ENCRYPT_TDEA_128_KEY", [146] = "PCKMO_ENCRYPT_TDEA_192_KEY", [147] = "PCKMO_ENCRYPT_AES_128_KEY", [148] = "PCKMO_ENCRYPT_AES_192_KEY", [149] = "PCKMO_ENCRYPT_AES_256_KEY", [150] = "PCKMO_ENCRYPT_ECC_P256_KEY", [151] = "PCKMO_ENCRYPT_ECC_P384_KEY", [152] = "PCKMO_ENCRYPT_ECC_P521_KEY", [153] = "PCKMO_ENCRYPT_ECC_ED25519_KEY", [154] = "PCKMO_ENCRYPT_ECC_ED448_KEY", [155] = "IBM_RESERVED_155", [156] = "IBM_RESERVED_156", }; static void __init attr_event_free(struct attribute **attrs, int num) { struct perf_pmu_events_attr *pa; int i; for (i = 0; i < num; i++) { struct device_attribute *dap; dap = container_of(attrs[i], struct device_attribute, attr); pa = container_of(dap, struct perf_pmu_events_attr, attr); kfree(pa); } kfree(attrs); } static int __init attr_event_init_one(struct attribute **attrs, int num) { struct perf_pmu_events_attr *pa; pa = kzalloc(sizeof(*pa), GFP_KERNEL); if (!pa) return -ENOMEM; sysfs_attr_init(&pa->attr.attr); pa->id = PAI_CRYPTO_BASE + num; pa->attr.attr.name = paicrypt_ctrnames[num]; pa->attr.attr.mode = 0444; pa->attr.show = cpumf_events_sysfs_show; pa->attr.store = NULL; attrs[num] = &pa->attr.attr; return 0; } /* Create PMU sysfs event attributes on the fly. */ static int __init attr_event_init(void) { struct attribute **attrs; int ret, i; attrs = kmalloc_array(ARRAY_SIZE(paicrypt_ctrnames) + 1, sizeof(*attrs), GFP_KERNEL); if (!attrs) return -ENOMEM; for (i = 0; i < ARRAY_SIZE(paicrypt_ctrnames); i++) { ret = attr_event_init_one(attrs, i); if (ret) { attr_event_free(attrs, i - 1); return ret; } } attrs[i] = NULL; paicrypt_events_group.attrs = attrs; return 0; } static int __init paicrypt_init(void) { struct qpaci_info_block ib; int rc; if (!test_facility(196)) return 0; qpaci(&ib); paicrypt_cnt = ib.num_cc; if (paicrypt_cnt == 0) return 0; if (paicrypt_cnt >= PAI_CRYPTO_MAXCTR) paicrypt_cnt = PAI_CRYPTO_MAXCTR - 1; rc = attr_event_init(); /* Export known PAI crypto events */ if (rc) { pr_err("Creation of PMU pai_crypto /sysfs failed\n"); return rc; } /* Setup s390dbf facility */ cfm_dbg = debug_register(KMSG_COMPONENT, 2, 256, 128); if (!cfm_dbg) { pr_err("Registration of s390dbf pai_crypto failed\n"); return -ENOMEM; } debug_register_view(cfm_dbg, &debug_sprintf_view); rc = perf_pmu_register(&paicrypt, "pai_crypto", -1); if (rc) { pr_err("Registering the pai_crypto PMU failed with rc=%i\n", rc); debug_unregister_view(cfm_dbg, &debug_sprintf_view); debug_unregister(cfm_dbg); return rc; } return 0; } device_initcall(paicrypt_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1