Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David S. Miller | 2357 | 86.37% | 7 | 46.67% |
Eric Biggers | 349 | 12.79% | 1 | 6.67% |
Dave Kleikamp | 10 | 0.37% | 1 | 6.67% |
Ard Biesheuvel | 7 | 0.26% | 2 | 13.33% |
Sam Ravnborg | 3 | 0.11% | 1 | 6.67% |
Mathias Krause | 1 | 0.04% | 1 | 6.67% |
Kees Cook | 1 | 0.04% | 1 | 6.67% |
Thomas Gleixner | 1 | 0.04% | 1 | 6.67% |
Total | 2729 | 15 |
// SPDX-License-Identifier: GPL-2.0-only /* Glue code for AES encryption optimized for sparc64 crypto opcodes. * * This is based largely upon arch/x86/crypto/aesni-intel_glue.c * * Copyright (C) 2008, Intel Corp. * Author: Huang Ying <ying.huang@intel.com> * * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD * interface for 64-bit kernels. * Authors: Adrian Hoban <adrian.hoban@intel.com> * Gabriele Paoloni <gabriele.paoloni@intel.com> * Tadeusz Struk (tadeusz.struk@intel.com) * Aidan O'Mahony (aidan.o.mahony@intel.com) * Copyright (c) 2010, Intel Corporation. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/crypto.h> #include <linux/init.h> #include <linux/module.h> #include <linux/mm.h> #include <linux/types.h> #include <crypto/algapi.h> #include <crypto/aes.h> #include <crypto/internal/skcipher.h> #include <asm/fpumacro.h> #include <asm/pstate.h> #include <asm/elf.h> #include "opcodes.h" struct aes_ops { void (*encrypt)(const u64 *key, const u32 *input, u32 *output); void (*decrypt)(const u64 *key, const u32 *input, u32 *output); void (*load_encrypt_keys)(const u64 *key); void (*load_decrypt_keys)(const u64 *key); void (*ecb_encrypt)(const u64 *key, const u64 *input, u64 *output, unsigned int len); void (*ecb_decrypt)(const u64 *key, const u64 *input, u64 *output, unsigned int len); void (*cbc_encrypt)(const u64 *key, const u64 *input, u64 *output, unsigned int len, u64 *iv); void (*cbc_decrypt)(const u64 *key, const u64 *input, u64 *output, unsigned int len, u64 *iv); void (*ctr_crypt)(const u64 *key, const u64 *input, u64 *output, unsigned int len, u64 *iv); }; struct crypto_sparc64_aes_ctx { struct aes_ops *ops; u64 key[AES_MAX_KEYLENGTH / sizeof(u64)]; u32 key_length; u32 expanded_key_length; }; extern void aes_sparc64_encrypt_128(const u64 *key, const u32 *input, u32 *output); extern void aes_sparc64_encrypt_192(const u64 *key, const u32 *input, u32 *output); extern void aes_sparc64_encrypt_256(const u64 *key, const u32 *input, u32 *output); extern void aes_sparc64_decrypt_128(const u64 *key, const u32 *input, u32 *output); extern void aes_sparc64_decrypt_192(const u64 *key, const u32 *input, u32 *output); extern void aes_sparc64_decrypt_256(const u64 *key, const u32 *input, u32 *output); extern void aes_sparc64_load_encrypt_keys_128(const u64 *key); extern void aes_sparc64_load_encrypt_keys_192(const u64 *key); extern void aes_sparc64_load_encrypt_keys_256(const u64 *key); extern void aes_sparc64_load_decrypt_keys_128(const u64 *key); extern void aes_sparc64_load_decrypt_keys_192(const u64 *key); extern void aes_sparc64_load_decrypt_keys_256(const u64 *key); extern void aes_sparc64_ecb_encrypt_128(const u64 *key, const u64 *input, u64 *output, unsigned int len); extern void aes_sparc64_ecb_encrypt_192(const u64 *key, const u64 *input, u64 *output, unsigned int len); extern void aes_sparc64_ecb_encrypt_256(const u64 *key, const u64 *input, u64 *output, unsigned int len); extern void aes_sparc64_ecb_decrypt_128(const u64 *key, const u64 *input, u64 *output, unsigned int len); extern void aes_sparc64_ecb_decrypt_192(const u64 *key, const u64 *input, u64 *output, unsigned int len); extern void aes_sparc64_ecb_decrypt_256(const u64 *key, const u64 *input, u64 *output, unsigned int len); extern void aes_sparc64_cbc_encrypt_128(const u64 *key, const u64 *input, u64 *output, unsigned int len, u64 *iv); extern void aes_sparc64_cbc_encrypt_192(const u64 *key, const u64 *input, u64 *output, unsigned int len, u64 *iv); extern void aes_sparc64_cbc_encrypt_256(const u64 *key, const u64 *input, u64 *output, unsigned int len, u64 *iv); extern void aes_sparc64_cbc_decrypt_128(const u64 *key, const u64 *input, u64 *output, unsigned int len, u64 *iv); extern void aes_sparc64_cbc_decrypt_192(const u64 *key, const u64 *input, u64 *output, unsigned int len, u64 *iv); extern void aes_sparc64_cbc_decrypt_256(const u64 *key, const u64 *input, u64 *output, unsigned int len, u64 *iv); extern void aes_sparc64_ctr_crypt_128(const u64 *key, const u64 *input, u64 *output, unsigned int len, u64 *iv); extern void aes_sparc64_ctr_crypt_192(const u64 *key, const u64 *input, u64 *output, unsigned int len, u64 *iv); extern void aes_sparc64_ctr_crypt_256(const u64 *key, const u64 *input, u64 *output, unsigned int len, u64 *iv); static struct aes_ops aes128_ops = { .encrypt = aes_sparc64_encrypt_128, .decrypt = aes_sparc64_decrypt_128, .load_encrypt_keys = aes_sparc64_load_encrypt_keys_128, .load_decrypt_keys = aes_sparc64_load_decrypt_keys_128, .ecb_encrypt = aes_sparc64_ecb_encrypt_128, .ecb_decrypt = aes_sparc64_ecb_decrypt_128, .cbc_encrypt = aes_sparc64_cbc_encrypt_128, .cbc_decrypt = aes_sparc64_cbc_decrypt_128, .ctr_crypt = aes_sparc64_ctr_crypt_128, }; static struct aes_ops aes192_ops = { .encrypt = aes_sparc64_encrypt_192, .decrypt = aes_sparc64_decrypt_192, .load_encrypt_keys = aes_sparc64_load_encrypt_keys_192, .load_decrypt_keys = aes_sparc64_load_decrypt_keys_192, .ecb_encrypt = aes_sparc64_ecb_encrypt_192, .ecb_decrypt = aes_sparc64_ecb_decrypt_192, .cbc_encrypt = aes_sparc64_cbc_encrypt_192, .cbc_decrypt = aes_sparc64_cbc_decrypt_192, .ctr_crypt = aes_sparc64_ctr_crypt_192, }; static struct aes_ops aes256_ops = { .encrypt = aes_sparc64_encrypt_256, .decrypt = aes_sparc64_decrypt_256, .load_encrypt_keys = aes_sparc64_load_encrypt_keys_256, .load_decrypt_keys = aes_sparc64_load_decrypt_keys_256, .ecb_encrypt = aes_sparc64_ecb_encrypt_256, .ecb_decrypt = aes_sparc64_ecb_decrypt_256, .cbc_encrypt = aes_sparc64_cbc_encrypt_256, .cbc_decrypt = aes_sparc64_cbc_decrypt_256, .ctr_crypt = aes_sparc64_ctr_crypt_256, }; extern void aes_sparc64_key_expand(const u32 *in_key, u64 *output_key, unsigned int key_len); static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key, unsigned int key_len) { struct crypto_sparc64_aes_ctx *ctx = crypto_tfm_ctx(tfm); switch (key_len) { case AES_KEYSIZE_128: ctx->expanded_key_length = 0xb0; ctx->ops = &aes128_ops; break; case AES_KEYSIZE_192: ctx->expanded_key_length = 0xd0; ctx->ops = &aes192_ops; break; case AES_KEYSIZE_256: ctx->expanded_key_length = 0xf0; ctx->ops = &aes256_ops; break; default: return -EINVAL; } aes_sparc64_key_expand((const u32 *)in_key, &ctx->key[0], key_len); ctx->key_length = key_len; return 0; } static int aes_set_key_skcipher(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len) { return aes_set_key(crypto_skcipher_tfm(tfm), in_key, key_len); } static void crypto_aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) { struct crypto_sparc64_aes_ctx *ctx = crypto_tfm_ctx(tfm); ctx->ops->encrypt(&ctx->key[0], (const u32 *) src, (u32 *) dst); } static void crypto_aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) { struct crypto_sparc64_aes_ctx *ctx = crypto_tfm_ctx(tfm); ctx->ops->decrypt(&ctx->key[0], (const u32 *) src, (u32 *) dst); } static int ecb_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); const struct crypto_sparc64_aes_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; unsigned int nbytes; int err; err = skcipher_walk_virt(&walk, req, true); if (err) return err; ctx->ops->load_encrypt_keys(&ctx->key[0]); while ((nbytes = walk.nbytes) != 0) { ctx->ops->ecb_encrypt(&ctx->key[0], walk.src.virt.addr, walk.dst.virt.addr, round_down(nbytes, AES_BLOCK_SIZE)); err = skcipher_walk_done(&walk, nbytes % AES_BLOCK_SIZE); } fprs_write(0); return err; } static int ecb_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); const struct crypto_sparc64_aes_ctx *ctx = crypto_skcipher_ctx(tfm); const u64 *key_end; struct skcipher_walk walk; unsigned int nbytes; int err; err = skcipher_walk_virt(&walk, req, true); if (err) return err; ctx->ops->load_decrypt_keys(&ctx->key[0]); key_end = &ctx->key[ctx->expanded_key_length / sizeof(u64)]; while ((nbytes = walk.nbytes) != 0) { ctx->ops->ecb_decrypt(key_end, walk.src.virt.addr, walk.dst.virt.addr, round_down(nbytes, AES_BLOCK_SIZE)); err = skcipher_walk_done(&walk, nbytes % AES_BLOCK_SIZE); } fprs_write(0); return err; } static int cbc_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); const struct crypto_sparc64_aes_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; unsigned int nbytes; int err; err = skcipher_walk_virt(&walk, req, true); if (err) return err; ctx->ops->load_encrypt_keys(&ctx->key[0]); while ((nbytes = walk.nbytes) != 0) { ctx->ops->cbc_encrypt(&ctx->key[0], walk.src.virt.addr, walk.dst.virt.addr, round_down(nbytes, AES_BLOCK_SIZE), walk.iv); err = skcipher_walk_done(&walk, nbytes % AES_BLOCK_SIZE); } fprs_write(0); return err; } static int cbc_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); const struct crypto_sparc64_aes_ctx *ctx = crypto_skcipher_ctx(tfm); const u64 *key_end; struct skcipher_walk walk; unsigned int nbytes; int err; err = skcipher_walk_virt(&walk, req, true); if (err) return err; ctx->ops->load_decrypt_keys(&ctx->key[0]); key_end = &ctx->key[ctx->expanded_key_length / sizeof(u64)]; while ((nbytes = walk.nbytes) != 0) { ctx->ops->cbc_decrypt(key_end, walk.src.virt.addr, walk.dst.virt.addr, round_down(nbytes, AES_BLOCK_SIZE), walk.iv); err = skcipher_walk_done(&walk, nbytes % AES_BLOCK_SIZE); } fprs_write(0); return err; } static void ctr_crypt_final(const struct crypto_sparc64_aes_ctx *ctx, struct skcipher_walk *walk) { u8 *ctrblk = walk->iv; u64 keystream[AES_BLOCK_SIZE / sizeof(u64)]; u8 *src = walk->src.virt.addr; u8 *dst = walk->dst.virt.addr; unsigned int nbytes = walk->nbytes; ctx->ops->ecb_encrypt(&ctx->key[0], (const u64 *)ctrblk, keystream, AES_BLOCK_SIZE); crypto_xor_cpy(dst, (u8 *) keystream, src, nbytes); crypto_inc(ctrblk, AES_BLOCK_SIZE); } static int ctr_crypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); const struct crypto_sparc64_aes_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; unsigned int nbytes; int err; err = skcipher_walk_virt(&walk, req, true); if (err) return err; ctx->ops->load_encrypt_keys(&ctx->key[0]); while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) { ctx->ops->ctr_crypt(&ctx->key[0], walk.src.virt.addr, walk.dst.virt.addr, round_down(nbytes, AES_BLOCK_SIZE), walk.iv); err = skcipher_walk_done(&walk, nbytes % AES_BLOCK_SIZE); } if (walk.nbytes) { ctr_crypt_final(ctx, &walk); err = skcipher_walk_done(&walk, 0); } fprs_write(0); return err; } static struct crypto_alg cipher_alg = { .cra_name = "aes", .cra_driver_name = "aes-sparc64", .cra_priority = SPARC_CR_OPCODE_PRIORITY, .cra_flags = CRYPTO_ALG_TYPE_CIPHER, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct crypto_sparc64_aes_ctx), .cra_alignmask = 3, .cra_module = THIS_MODULE, .cra_u = { .cipher = { .cia_min_keysize = AES_MIN_KEY_SIZE, .cia_max_keysize = AES_MAX_KEY_SIZE, .cia_setkey = aes_set_key, .cia_encrypt = crypto_aes_encrypt, .cia_decrypt = crypto_aes_decrypt } } }; static struct skcipher_alg skcipher_algs[] = { { .base.cra_name = "ecb(aes)", .base.cra_driver_name = "ecb-aes-sparc64", .base.cra_priority = SPARC_CR_OPCODE_PRIORITY, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct crypto_sparc64_aes_ctx), .base.cra_alignmask = 7, .base.cra_module = THIS_MODULE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = aes_set_key_skcipher, .encrypt = ecb_encrypt, .decrypt = ecb_decrypt, }, { .base.cra_name = "cbc(aes)", .base.cra_driver_name = "cbc-aes-sparc64", .base.cra_priority = SPARC_CR_OPCODE_PRIORITY, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct crypto_sparc64_aes_ctx), .base.cra_alignmask = 7, .base.cra_module = THIS_MODULE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = aes_set_key_skcipher, .encrypt = cbc_encrypt, .decrypt = cbc_decrypt, }, { .base.cra_name = "ctr(aes)", .base.cra_driver_name = "ctr-aes-sparc64", .base.cra_priority = SPARC_CR_OPCODE_PRIORITY, .base.cra_blocksize = 1, .base.cra_ctxsize = sizeof(struct crypto_sparc64_aes_ctx), .base.cra_alignmask = 7, .base.cra_module = THIS_MODULE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = aes_set_key_skcipher, .encrypt = ctr_crypt, .decrypt = ctr_crypt, .chunksize = AES_BLOCK_SIZE, } }; static bool __init sparc64_has_aes_opcode(void) { unsigned long cfr; if (!(sparc64_elf_hwcap & HWCAP_SPARC_CRYPTO)) return false; __asm__ __volatile__("rd %%asr26, %0" : "=r" (cfr)); if (!(cfr & CFR_AES)) return false; return true; } static int __init aes_sparc64_mod_init(void) { int err; if (!sparc64_has_aes_opcode()) { pr_info("sparc64 aes opcodes not available.\n"); return -ENODEV; } pr_info("Using sparc64 aes opcodes optimized AES implementation\n"); err = crypto_register_alg(&cipher_alg); if (err) return err; err = crypto_register_skciphers(skcipher_algs, ARRAY_SIZE(skcipher_algs)); if (err) crypto_unregister_alg(&cipher_alg); return err; } static void __exit aes_sparc64_mod_fini(void) { crypto_unregister_alg(&cipher_alg); crypto_unregister_skciphers(skcipher_algs, ARRAY_SIZE(skcipher_algs)); } module_init(aes_sparc64_mod_init); module_exit(aes_sparc64_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, sparc64 aes opcode accelerated"); MODULE_ALIAS_CRYPTO("aes"); #include "crop_devid.c"
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1