Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Andi Kleen | 3135 | 31.64% | 63 | 16.45% |
Borislav Petkov | 1619 | 16.34% | 62 | 16.19% |
Tony Luck | 894 | 9.02% | 30 | 7.83% |
Yazen Ghannam | 632 | 6.38% | 20 | 5.22% |
Hidetoshi Seto | 538 | 5.43% | 22 | 5.74% |
Thomas Gleixner | 292 | 2.95% | 25 | 6.53% |
Chen Gong | 249 | 2.51% | 8 | 2.09% |
Huang Ying | 223 | 2.25% | 6 | 1.57% |
Tony W Wang-oc | 206 | 2.08% | 3 | 0.78% |
Jue Wang | 178 | 1.80% | 1 | 0.26% |
Ingo Molnar | 157 | 1.58% | 8 | 2.09% |
Peter Zijlstra | 153 | 1.54% | 4 | 1.04% |
Sebastian Andrzej Siewior | 121 | 1.22% | 5 | 1.31% |
Ashok Raj | 105 | 1.06% | 4 | 1.04% |
Kay Sievers | 92 | 0.93% | 2 | 0.52% |
Naveen N. Rao | 90 | 0.91% | 3 | 0.78% |
Aravind Gopalakrishnan | 84 | 0.85% | 6 | 1.57% |
David Wang | 73 | 0.74% | 1 | 0.26% |
Greg Kroah-Hartman | 68 | 0.69% | 3 | 0.78% |
Akinobu Mita | 61 | 0.62% | 2 | 0.52% |
Seunghun Han | 56 | 0.57% | 1 | 0.26% |
Tim Hockin | 56 | 0.57% | 3 | 0.78% |
Jan H. Schönherr | 54 | 0.54% | 6 | 1.57% |
Paul E. McKenney | 49 | 0.49% | 1 | 0.26% |
Mathieu Souchaud | 48 | 0.48% | 1 | 0.26% |
Shaohua Li | 42 | 0.42% | 1 | 0.26% |
Rafael J. Wysocki | 41 | 0.41% | 2 | 0.52% |
Zwane Mwaikambo | 37 | 0.37% | 2 | 0.52% |
Mauro Carvalho Chehab | 36 | 0.36% | 2 | 0.52% |
Andrew Lutomirski | 33 | 0.33% | 7 | 1.83% |
Pu Wen | 32 | 0.32% | 1 | 0.26% |
Tejun Heo | 28 | 0.28% | 3 | 0.78% |
Jacob Shin | 27 | 0.27% | 1 | 0.26% |
Gabriele Paoloni | 25 | 0.25% | 3 | 0.78% |
Christoph Lameter | 24 | 0.24% | 1 | 0.26% |
Smita Koralahalli | 23 | 0.23% | 2 | 0.52% |
Andrew Morton | 23 | 0.23% | 2 | 0.52% |
Chen Yucong | 22 | 0.22% | 2 | 0.52% |
Andreas Herrmann | 22 | 0.22% | 2 | 0.52% |
Naoya Horiguchi | 18 | 0.18% | 1 | 0.26% |
Dave Jones | 18 | 0.18% | 2 | 0.52% |
Youquan Song | 17 | 0.17% | 1 | 0.26% |
Jan Beulich | 15 | 0.15% | 2 | 0.52% |
Bartlomiej Zolnierkiewicz | 15 | 0.15% | 2 | 0.52% |
Prarit Bhargava | 14 | 0.14% | 1 | 0.26% |
Vishal Verma | 12 | 0.12% | 3 | 0.78% |
Rusty Russell | 11 | 0.11% | 2 | 0.52% |
Kees Cook | 11 | 0.11% | 1 | 0.26% |
Venkatesh Pallipadi | 10 | 0.10% | 2 | 0.52% |
Kirill A. Shutemov | 8 | 0.08% | 1 | 0.26% |
Eric W. Biedermann | 8 | 0.08% | 1 | 0.26% |
Levente Kurusa | 7 | 0.07% | 1 | 0.26% |
H. Peter Anvin | 7 | 0.07% | 2 | 0.52% |
Dan J Williams | 7 | 0.07% | 2 | 0.52% |
luofei | 6 | 0.06% | 1 | 0.26% |
Sergey Senozhatsky | 6 | 0.06% | 1 | 0.26% |
Linus Torvalds (pre-git) | 5 | 0.05% | 3 | 0.78% |
Wei Huang | 5 | 0.05% | 1 | 0.26% |
Zhen Lei | 5 | 0.05% | 1 | 0.26% |
Alexander van Heukelum | 4 | 0.04% | 2 | 0.52% |
Jann Horn | 3 | 0.03% | 1 | 0.26% |
Jordan Borgner | 3 | 0.03% | 1 | 0.26% |
Doug Thompson | 3 | 0.03% | 1 | 0.26% |
Jeremy Fitzhardinge | 3 | 0.03% | 2 | 0.52% |
Paul Gortmaker | 3 | 0.03% | 1 | 0.26% |
Daniel Walter | 3 | 0.03% | 1 | 0.26% |
Ricardo Neri | 3 | 0.03% | 1 | 0.26% |
Joe Perches | 3 | 0.03% | 1 | 0.26% |
Randy Dunlap | 2 | 0.02% | 1 | 0.26% |
Linus Torvalds | 2 | 0.02% | 2 | 0.52% |
Alex Shi | 2 | 0.02% | 1 | 0.26% |
Arnd Bergmann | 2 | 0.02% | 1 | 0.26% |
Derek Che | 2 | 0.02% | 1 | 0.26% |
Yue haibing | 2 | 0.02% | 1 | 0.26% |
Mikael Pettersson | 2 | 0.02% | 1 | 0.26% |
Roland Dreier | 2 | 0.02% | 1 | 0.26% |
Yinghai Lu | 2 | 0.02% | 2 | 0.52% |
Xia Kaixu | 2 | 0.02% | 1 | 0.26% |
Daniel Rahn | 1 | 0.01% | 1 | 0.26% |
Davidlohr Bueso A | 1 | 0.01% | 1 | 0.26% |
Liu Jinsong | 1 | 0.01% | 1 | 0.26% |
OGAWA Hirofumi | 1 | 0.01% | 1 | 0.26% |
Ira Weiny | 1 | 0.01% | 1 | 0.26% |
Miguel Botón | 1 | 0.01% | 1 | 0.26% |
Hiroshi Shimamoto | 1 | 0.01% | 1 | 0.26% |
Jens Axboe | 1 | 0.01% | 1 | 0.26% |
Total | 9909 | 383 |
// SPDX-License-Identifier: GPL-2.0-only /* * Machine check handler. * * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs. * Rest from unknown author(s). * 2004 Andi Kleen. Rewrote most of it. * Copyright 2008 Intel Corporation * Author: Andi Kleen */ #include <linux/thread_info.h> #include <linux/capability.h> #include <linux/miscdevice.h> #include <linux/ratelimit.h> #include <linux/rcupdate.h> #include <linux/kobject.h> #include <linux/uaccess.h> #include <linux/kdebug.h> #include <linux/kernel.h> #include <linux/percpu.h> #include <linux/string.h> #include <linux/device.h> #include <linux/syscore_ops.h> #include <linux/delay.h> #include <linux/ctype.h> #include <linux/sched.h> #include <linux/sysfs.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/kmod.h> #include <linux/poll.h> #include <linux/nmi.h> #include <linux/cpu.h> #include <linux/ras.h> #include <linux/smp.h> #include <linux/fs.h> #include <linux/mm.h> #include <linux/debugfs.h> #include <linux/irq_work.h> #include <linux/export.h> #include <linux/set_memory.h> #include <linux/sync_core.h> #include <linux/task_work.h> #include <linux/hardirq.h> #include <asm/intel-family.h> #include <asm/processor.h> #include <asm/traps.h> #include <asm/tlbflush.h> #include <asm/mce.h> #include <asm/msr.h> #include <asm/reboot.h> #include "internal.h" /* sysfs synchronization */ static DEFINE_MUTEX(mce_sysfs_mutex); #define CREATE_TRACE_POINTS #include <trace/events/mce.h> #define SPINUNIT 100 /* 100ns */ DEFINE_PER_CPU(unsigned, mce_exception_count); DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks); struct mce_bank { u64 ctl; /* subevents to enable */ __u64 init : 1, /* initialise bank? */ __reserved_1 : 63; }; static DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array); #define ATTR_LEN 16 /* One object for each MCE bank, shared by all CPUs */ struct mce_bank_dev { struct device_attribute attr; /* device attribute */ char attrname[ATTR_LEN]; /* attribute name */ u8 bank; /* bank number */ }; static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS]; struct mce_vendor_flags mce_flags __read_mostly; struct mca_config mca_cfg __read_mostly = { .bootlog = -1, .monarch_timeout = -1 }; static DEFINE_PER_CPU(struct mce, mces_seen); static unsigned long mce_need_notify; /* * MCA banks polled by the period polling timer for corrected events. * With Intel CMCI, this only has MCA banks which do not support CMCI (if any). */ DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = { [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL }; /* * MCA banks controlled through firmware first for corrected errors. * This is a global list of banks for which we won't enable CMCI and we * won't poll. Firmware controls these banks and is responsible for * reporting corrected errors through GHES. Uncorrected/recoverable * errors are still notified through a machine check. */ mce_banks_t mce_banks_ce_disabled; static struct work_struct mce_work; static struct irq_work mce_irq_work; /* * CPU/chipset specific EDAC code can register a notifier call here to print * MCE errors in a human-readable form. */ BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain); /* Do initial initialization of a struct mce */ void mce_setup(struct mce *m) { memset(m, 0, sizeof(struct mce)); m->cpu = m->extcpu = smp_processor_id(); /* need the internal __ version to avoid deadlocks */ m->time = __ktime_get_real_seconds(); m->cpuvendor = boot_cpu_data.x86_vendor; m->cpuid = cpuid_eax(1); m->socketid = cpu_data(m->extcpu).phys_proc_id; m->apicid = cpu_data(m->extcpu).initial_apicid; m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP); m->ppin = cpu_data(m->extcpu).ppin; m->microcode = boot_cpu_data.microcode; } DEFINE_PER_CPU(struct mce, injectm); EXPORT_PER_CPU_SYMBOL_GPL(injectm); void mce_log(struct mce *m) { if (!mce_gen_pool_add(m)) irq_work_queue(&mce_irq_work); } EXPORT_SYMBOL_GPL(mce_log); void mce_register_decode_chain(struct notifier_block *nb) { if (WARN_ON(nb->priority < MCE_PRIO_LOWEST || nb->priority > MCE_PRIO_HIGHEST)) return; blocking_notifier_chain_register(&x86_mce_decoder_chain, nb); } EXPORT_SYMBOL_GPL(mce_register_decode_chain); void mce_unregister_decode_chain(struct notifier_block *nb) { blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb); } EXPORT_SYMBOL_GPL(mce_unregister_decode_chain); static void __print_mce(struct mce *m) { pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n", m->extcpu, (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""), m->mcgstatus, m->bank, m->status); if (m->ip) { pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ", !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "", m->cs, m->ip); if (m->cs == __KERNEL_CS) pr_cont("{%pS}", (void *)(unsigned long)m->ip); pr_cont("\n"); } pr_emerg(HW_ERR "TSC %llx ", m->tsc); if (m->addr) pr_cont("ADDR %llx ", m->addr); if (m->misc) pr_cont("MISC %llx ", m->misc); if (m->ppin) pr_cont("PPIN %llx ", m->ppin); if (mce_flags.smca) { if (m->synd) pr_cont("SYND %llx ", m->synd); if (m->ipid) pr_cont("IPID %llx ", m->ipid); } pr_cont("\n"); /* * Note this output is parsed by external tools and old fields * should not be changed. */ pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n", m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid, m->microcode); } static void print_mce(struct mce *m) { __print_mce(m); if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON) pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n"); } #define PANIC_TIMEOUT 5 /* 5 seconds */ static atomic_t mce_panicked; static int fake_panic; static atomic_t mce_fake_panicked; /* Panic in progress. Enable interrupts and wait for final IPI */ static void wait_for_panic(void) { long timeout = PANIC_TIMEOUT*USEC_PER_SEC; preempt_disable(); local_irq_enable(); while (timeout-- > 0) udelay(1); if (panic_timeout == 0) panic_timeout = mca_cfg.panic_timeout; panic("Panicing machine check CPU died"); } static noinstr void mce_panic(const char *msg, struct mce *final, char *exp) { struct llist_node *pending; struct mce_evt_llist *l; int apei_err = 0; /* * Allow instrumentation around external facilities usage. Not that it * matters a whole lot since the machine is going to panic anyway. */ instrumentation_begin(); if (!fake_panic) { /* * Make sure only one CPU runs in machine check panic */ if (atomic_inc_return(&mce_panicked) > 1) wait_for_panic(); barrier(); bust_spinlocks(1); console_verbose(); } else { /* Don't log too much for fake panic */ if (atomic_inc_return(&mce_fake_panicked) > 1) goto out; } pending = mce_gen_pool_prepare_records(); /* First print corrected ones that are still unlogged */ llist_for_each_entry(l, pending, llnode) { struct mce *m = &l->mce; if (!(m->status & MCI_STATUS_UC)) { print_mce(m); if (!apei_err) apei_err = apei_write_mce(m); } } /* Now print uncorrected but with the final one last */ llist_for_each_entry(l, pending, llnode) { struct mce *m = &l->mce; if (!(m->status & MCI_STATUS_UC)) continue; if (!final || mce_cmp(m, final)) { print_mce(m); if (!apei_err) apei_err = apei_write_mce(m); } } if (final) { print_mce(final); if (!apei_err) apei_err = apei_write_mce(final); } if (exp) pr_emerg(HW_ERR "Machine check: %s\n", exp); if (!fake_panic) { if (panic_timeout == 0) panic_timeout = mca_cfg.panic_timeout; panic(msg); } else pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg); out: instrumentation_end(); } /* Support code for software error injection */ static int msr_to_offset(u32 msr) { unsigned bank = __this_cpu_read(injectm.bank); if (msr == mca_cfg.rip_msr) return offsetof(struct mce, ip); if (msr == mca_msr_reg(bank, MCA_STATUS)) return offsetof(struct mce, status); if (msr == mca_msr_reg(bank, MCA_ADDR)) return offsetof(struct mce, addr); if (msr == mca_msr_reg(bank, MCA_MISC)) return offsetof(struct mce, misc); if (msr == MSR_IA32_MCG_STATUS) return offsetof(struct mce, mcgstatus); return -1; } void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr) { if (wrmsr) { pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n", (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax, regs->ip, (void *)regs->ip); } else { pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n", (unsigned int)regs->cx, regs->ip, (void *)regs->ip); } show_stack_regs(regs); panic("MCA architectural violation!\n"); while (true) cpu_relax(); } /* MSR access wrappers used for error injection */ noinstr u64 mce_rdmsrl(u32 msr) { DECLARE_ARGS(val, low, high); if (__this_cpu_read(injectm.finished)) { int offset; u64 ret; instrumentation_begin(); offset = msr_to_offset(msr); if (offset < 0) ret = 0; else ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset); instrumentation_end(); return ret; } /* * RDMSR on MCA MSRs should not fault. If they do, this is very much an * architectural violation and needs to be reported to hw vendor. Panic * the box to not allow any further progress. */ asm volatile("1: rdmsr\n" "2:\n" _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE) : EAX_EDX_RET(val, low, high) : "c" (msr)); return EAX_EDX_VAL(val, low, high); } static noinstr void mce_wrmsrl(u32 msr, u64 v) { u32 low, high; if (__this_cpu_read(injectm.finished)) { int offset; instrumentation_begin(); offset = msr_to_offset(msr); if (offset >= 0) *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v; instrumentation_end(); return; } low = (u32)v; high = (u32)(v >> 32); /* See comment in mce_rdmsrl() */ asm volatile("1: wrmsr\n" "2:\n" _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE) : : "c" (msr), "a"(low), "d" (high) : "memory"); } /* * Collect all global (w.r.t. this processor) status about this machine * check into our "mce" struct so that we can use it later to assess * the severity of the problem as we read per-bank specific details. */ static noinstr void mce_gather_info(struct mce *m, struct pt_regs *regs) { /* * Enable instrumentation around mce_setup() which calls external * facilities. */ instrumentation_begin(); mce_setup(m); instrumentation_end(); m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); if (regs) { /* * Get the address of the instruction at the time of * the machine check error. */ if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) { m->ip = regs->ip; m->cs = regs->cs; /* * When in VM86 mode make the cs look like ring 3 * always. This is a lie, but it's better than passing * the additional vm86 bit around everywhere. */ if (v8086_mode(regs)) m->cs |= 3; } /* Use accurate RIP reporting if available. */ if (mca_cfg.rip_msr) m->ip = mce_rdmsrl(mca_cfg.rip_msr); } } int mce_available(struct cpuinfo_x86 *c) { if (mca_cfg.disabled) return 0; return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA); } static void mce_schedule_work(void) { if (!mce_gen_pool_empty()) schedule_work(&mce_work); } static void mce_irq_work_cb(struct irq_work *entry) { mce_schedule_work(); } /* * Check if the address reported by the CPU is in a format we can parse. * It would be possible to add code for most other cases, but all would * be somewhat complicated (e.g. segment offset would require an instruction * parser). So only support physical addresses up to page granularity for now. */ int mce_usable_address(struct mce *m) { if (!(m->status & MCI_STATUS_ADDRV)) return 0; /* Checks after this one are Intel/Zhaoxin-specific: */ if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL && boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN) return 1; if (!(m->status & MCI_STATUS_MISCV)) return 0; if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT) return 0; if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS) return 0; return 1; } EXPORT_SYMBOL_GPL(mce_usable_address); bool mce_is_memory_error(struct mce *m) { switch (m->cpuvendor) { case X86_VENDOR_AMD: case X86_VENDOR_HYGON: return amd_mce_is_memory_error(m); case X86_VENDOR_INTEL: case X86_VENDOR_ZHAOXIN: /* * Intel SDM Volume 3B - 15.9.2 Compound Error Codes * * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for * indicating a memory error. Bit 8 is used for indicating a * cache hierarchy error. The combination of bit 2 and bit 3 * is used for indicating a `generic' cache hierarchy error * But we can't just blindly check the above bits, because if * bit 11 is set, then it is a bus/interconnect error - and * either way the above bits just gives more detail on what * bus/interconnect error happened. Note that bit 12 can be * ignored, as it's the "filter" bit. */ return (m->status & 0xef80) == BIT(7) || (m->status & 0xef00) == BIT(8) || (m->status & 0xeffc) == 0xc; default: return false; } } EXPORT_SYMBOL_GPL(mce_is_memory_error); static bool whole_page(struct mce *m) { if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV)) return true; return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT; } bool mce_is_correctable(struct mce *m) { if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED) return false; if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED) return false; if (m->status & MCI_STATUS_UC) return false; return true; } EXPORT_SYMBOL_GPL(mce_is_correctable); static int mce_early_notifier(struct notifier_block *nb, unsigned long val, void *data) { struct mce *m = (struct mce *)data; if (!m) return NOTIFY_DONE; /* Emit the trace record: */ trace_mce_record(m); set_bit(0, &mce_need_notify); mce_notify_irq(); return NOTIFY_DONE; } static struct notifier_block early_nb = { .notifier_call = mce_early_notifier, .priority = MCE_PRIO_EARLY, }; static int uc_decode_notifier(struct notifier_block *nb, unsigned long val, void *data) { struct mce *mce = (struct mce *)data; unsigned long pfn; if (!mce || !mce_usable_address(mce)) return NOTIFY_DONE; if (mce->severity != MCE_AO_SEVERITY && mce->severity != MCE_DEFERRED_SEVERITY) return NOTIFY_DONE; pfn = mce->addr >> PAGE_SHIFT; if (!memory_failure(pfn, 0)) { set_mce_nospec(pfn); mce->kflags |= MCE_HANDLED_UC; } return NOTIFY_OK; } static struct notifier_block mce_uc_nb = { .notifier_call = uc_decode_notifier, .priority = MCE_PRIO_UC, }; static int mce_default_notifier(struct notifier_block *nb, unsigned long val, void *data) { struct mce *m = (struct mce *)data; if (!m) return NOTIFY_DONE; if (mca_cfg.print_all || !m->kflags) __print_mce(m); return NOTIFY_DONE; } static struct notifier_block mce_default_nb = { .notifier_call = mce_default_notifier, /* lowest prio, we want it to run last. */ .priority = MCE_PRIO_LOWEST, }; /* * Read ADDR and MISC registers. */ static noinstr void mce_read_aux(struct mce *m, int i) { if (m->status & MCI_STATUS_MISCV) m->misc = mce_rdmsrl(mca_msr_reg(i, MCA_MISC)); if (m->status & MCI_STATUS_ADDRV) { m->addr = mce_rdmsrl(mca_msr_reg(i, MCA_ADDR)); /* * Mask the reported address by the reported granularity. */ if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) { u8 shift = MCI_MISC_ADDR_LSB(m->misc); m->addr >>= shift; m->addr <<= shift; } /* * Extract [55:<lsb>] where lsb is the least significant * *valid* bit of the address bits. */ if (mce_flags.smca) { u8 lsb = (m->addr >> 56) & 0x3f; m->addr &= GENMASK_ULL(55, lsb); } } if (mce_flags.smca) { m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i)); if (m->status & MCI_STATUS_SYNDV) m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i)); } } DEFINE_PER_CPU(unsigned, mce_poll_count); /* * Poll for corrected events or events that happened before reset. * Those are just logged through /dev/mcelog. * * This is executed in standard interrupt context. * * Note: spec recommends to panic for fatal unsignalled * errors here. However this would be quite problematic -- * we would need to reimplement the Monarch handling and * it would mess up the exclusion between exception handler * and poll handler -- * so we skip this for now. * These cases should not happen anyways, or only when the CPU * is already totally * confused. In this case it's likely it will * not fully execute the machine check handler either. */ bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b) { struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); bool error_seen = false; struct mce m; int i; this_cpu_inc(mce_poll_count); mce_gather_info(&m, NULL); if (flags & MCP_TIMESTAMP) m.tsc = rdtsc(); for (i = 0; i < this_cpu_read(mce_num_banks); i++) { if (!mce_banks[i].ctl || !test_bit(i, *b)) continue; m.misc = 0; m.addr = 0; m.bank = i; barrier(); m.status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS)); /* If this entry is not valid, ignore it */ if (!(m.status & MCI_STATUS_VAL)) continue; /* * If we are logging everything (at CPU online) or this * is a corrected error, then we must log it. */ if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC)) goto log_it; /* * Newer Intel systems that support software error * recovery need to make additional checks. Other * CPUs should skip over uncorrected errors, but log * everything else. */ if (!mca_cfg.ser) { if (m.status & MCI_STATUS_UC) continue; goto log_it; } /* Log "not enabled" (speculative) errors */ if (!(m.status & MCI_STATUS_EN)) goto log_it; /* * Log UCNA (SDM: 15.6.3 "UCR Error Classification") * UC == 1 && PCC == 0 && S == 0 */ if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S)) goto log_it; /* * Skip anything else. Presumption is that our read of this * bank is racing with a machine check. Leave the log alone * for do_machine_check() to deal with it. */ continue; log_it: error_seen = true; if (flags & MCP_DONTLOG) goto clear_it; mce_read_aux(&m, i); m.severity = mce_severity(&m, NULL, NULL, false); /* * Don't get the IP here because it's unlikely to * have anything to do with the actual error location. */ if (mca_cfg.dont_log_ce && !mce_usable_address(&m)) goto clear_it; if (flags & MCP_QUEUE_LOG) mce_gen_pool_add(&m); else mce_log(&m); clear_it: /* * Clear state for this bank. */ mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0); } /* * Don't clear MCG_STATUS here because it's only defined for * exceptions. */ sync_core(); return error_seen; } EXPORT_SYMBOL_GPL(machine_check_poll); /* * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM * Vol 3B Table 15-20). But this confuses both the code that determines * whether the machine check occurred in kernel or user mode, and also * the severity assessment code. Pretend that EIPV was set, and take the * ip/cs values from the pt_regs that mce_gather_info() ignored earlier. */ static __always_inline void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs) { if (bank != 0) return; if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0) return; if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC| MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV| MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR| MCACOD)) != (MCI_STATUS_UC|MCI_STATUS_EN| MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S| MCI_STATUS_AR|MCACOD_INSTR)) return; m->mcgstatus |= MCG_STATUS_EIPV; m->ip = regs->ip; m->cs = regs->cs; } /* * Disable fast string copy and return from the MCE handler upon the first SRAR * MCE on bank 1 due to a CPU erratum on Intel Skylake/Cascade Lake/Cooper Lake * CPUs. * The fast string copy instructions ("REP; MOVS*") could consume an * uncorrectable memory error in the cache line _right after_ the desired region * to copy and raise an MCE with RIP pointing to the instruction _after_ the * "REP; MOVS*". * This mitigation addresses the issue completely with the caveat of performance * degradation on the CPU affected. This is still better than the OS crashing on * MCEs raised on an irrelevant process due to "REP; MOVS*" accesses from a * kernel context (e.g., copy_page). * * Returns true when fast string copy on CPU has been disabled. */ static noinstr bool quirk_skylake_repmov(void) { u64 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); u64 misc_enable = mce_rdmsrl(MSR_IA32_MISC_ENABLE); u64 mc1_status; /* * Apply the quirk only to local machine checks, i.e., no broadcast * sync is needed. */ if (!(mcgstatus & MCG_STATUS_LMCES) || !(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) return false; mc1_status = mce_rdmsrl(MSR_IA32_MCx_STATUS(1)); /* Check for a software-recoverable data fetch error. */ if ((mc1_status & (MCI_STATUS_VAL | MCI_STATUS_OVER | MCI_STATUS_UC | MCI_STATUS_EN | MCI_STATUS_ADDRV | MCI_STATUS_MISCV | MCI_STATUS_PCC | MCI_STATUS_AR | MCI_STATUS_S)) == (MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | MCI_STATUS_ADDRV | MCI_STATUS_MISCV | MCI_STATUS_AR | MCI_STATUS_S)) { misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING; mce_wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable); mce_wrmsrl(MSR_IA32_MCx_STATUS(1), 0); instrumentation_begin(); pr_err_once("Erratum detected, disable fast string copy instructions.\n"); instrumentation_end(); return true; } return false; } /* * Do a quick check if any of the events requires a panic. * This decides if we keep the events around or clear them. */ static __always_inline int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp, struct pt_regs *regs) { char *tmp = *msg; int i; for (i = 0; i < this_cpu_read(mce_num_banks); i++) { m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS)); if (!(m->status & MCI_STATUS_VAL)) continue; arch___set_bit(i, validp); if (mce_flags.snb_ifu_quirk) quirk_sandybridge_ifu(i, m, regs); m->bank = i; if (mce_severity(m, regs, &tmp, true) >= MCE_PANIC_SEVERITY) { mce_read_aux(m, i); *msg = tmp; return 1; } } return 0; } /* * Variable to establish order between CPUs while scanning. * Each CPU spins initially until executing is equal its number. */ static atomic_t mce_executing; /* * Defines order of CPUs on entry. First CPU becomes Monarch. */ static atomic_t mce_callin; /* * Track which CPUs entered the MCA broadcast synchronization and which not in * order to print holdouts. */ static cpumask_t mce_missing_cpus = CPU_MASK_ALL; /* * Check if a timeout waiting for other CPUs happened. */ static noinstr int mce_timed_out(u64 *t, const char *msg) { int ret = 0; /* Enable instrumentation around calls to external facilities */ instrumentation_begin(); /* * The others already did panic for some reason. * Bail out like in a timeout. * rmb() to tell the compiler that system_state * might have been modified by someone else. */ rmb(); if (atomic_read(&mce_panicked)) wait_for_panic(); if (!mca_cfg.monarch_timeout) goto out; if ((s64)*t < SPINUNIT) { if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus)) pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n", cpumask_pr_args(&mce_missing_cpus)); mce_panic(msg, NULL, NULL); ret = 1; goto out; } *t -= SPINUNIT; out: touch_nmi_watchdog(); instrumentation_end(); return ret; } /* * The Monarch's reign. The Monarch is the CPU who entered * the machine check handler first. It waits for the others to * raise the exception too and then grades them. When any * error is fatal panic. Only then let the others continue. * * The other CPUs entering the MCE handler will be controlled by the * Monarch. They are called Subjects. * * This way we prevent any potential data corruption in a unrecoverable case * and also makes sure always all CPU's errors are examined. * * Also this detects the case of a machine check event coming from outer * space (not detected by any CPUs) In this case some external agent wants * us to shut down, so panic too. * * The other CPUs might still decide to panic if the handler happens * in a unrecoverable place, but in this case the system is in a semi-stable * state and won't corrupt anything by itself. It's ok to let the others * continue for a bit first. * * All the spin loops have timeouts; when a timeout happens a CPU * typically elects itself to be Monarch. */ static void mce_reign(void) { int cpu; struct mce *m = NULL; int global_worst = 0; char *msg = NULL; /* * This CPU is the Monarch and the other CPUs have run * through their handlers. * Grade the severity of the errors of all the CPUs. */ for_each_possible_cpu(cpu) { struct mce *mtmp = &per_cpu(mces_seen, cpu); if (mtmp->severity > global_worst) { global_worst = mtmp->severity; m = &per_cpu(mces_seen, cpu); } } /* * Cannot recover? Panic here then. * This dumps all the mces in the log buffer and stops the * other CPUs. */ if (m && global_worst >= MCE_PANIC_SEVERITY) { /* call mce_severity() to get "msg" for panic */ mce_severity(m, NULL, &msg, true); mce_panic("Fatal machine check", m, msg); } /* * For UC somewhere we let the CPU who detects it handle it. * Also must let continue the others, otherwise the handling * CPU could deadlock on a lock. */ /* * No machine check event found. Must be some external * source or one CPU is hung. Panic. */ if (global_worst <= MCE_KEEP_SEVERITY) mce_panic("Fatal machine check from unknown source", NULL, NULL); /* * Now clear all the mces_seen so that they don't reappear on * the next mce. */ for_each_possible_cpu(cpu) memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce)); } static atomic_t global_nwo; /* * Start of Monarch synchronization. This waits until all CPUs have * entered the exception handler and then determines if any of them * saw a fatal event that requires panic. Then it executes them * in the entry order. * TBD double check parallel CPU hotunplug */ static noinstr int mce_start(int *no_way_out) { u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; int order, ret = -1; if (!timeout) return ret; arch_atomic_add(*no_way_out, &global_nwo); /* * Rely on the implied barrier below, such that global_nwo * is updated before mce_callin. */ order = arch_atomic_inc_return(&mce_callin); arch_cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus); /* Enable instrumentation around calls to external facilities */ instrumentation_begin(); /* * Wait for everyone. */ while (arch_atomic_read(&mce_callin) != num_online_cpus()) { if (mce_timed_out(&timeout, "Timeout: Not all CPUs entered broadcast exception handler")) { arch_atomic_set(&global_nwo, 0); goto out; } ndelay(SPINUNIT); } /* * mce_callin should be read before global_nwo */ smp_rmb(); if (order == 1) { /* * Monarch: Starts executing now, the others wait. */ arch_atomic_set(&mce_executing, 1); } else { /* * Subject: Now start the scanning loop one by one in * the original callin order. * This way when there are any shared banks it will be * only seen by one CPU before cleared, avoiding duplicates. */ while (arch_atomic_read(&mce_executing) < order) { if (mce_timed_out(&timeout, "Timeout: Subject CPUs unable to finish machine check processing")) { arch_atomic_set(&global_nwo, 0); goto out; } ndelay(SPINUNIT); } } /* * Cache the global no_way_out state. */ *no_way_out = arch_atomic_read(&global_nwo); ret = order; out: instrumentation_end(); return ret; } /* * Synchronize between CPUs after main scanning loop. * This invokes the bulk of the Monarch processing. */ static noinstr int mce_end(int order) { u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; int ret = -1; /* Allow instrumentation around external facilities. */ instrumentation_begin(); if (!timeout) goto reset; if (order < 0) goto reset; /* * Allow others to run. */ atomic_inc(&mce_executing); if (order == 1) { /* * Monarch: Wait for everyone to go through their scanning * loops. */ while (atomic_read(&mce_executing) <= num_online_cpus()) { if (mce_timed_out(&timeout, "Timeout: Monarch CPU unable to finish machine check processing")) goto reset; ndelay(SPINUNIT); } mce_reign(); barrier(); ret = 0; } else { /* * Subject: Wait for Monarch to finish. */ while (atomic_read(&mce_executing) != 0) { if (mce_timed_out(&timeout, "Timeout: Monarch CPU did not finish machine check processing")) goto reset; ndelay(SPINUNIT); } /* * Don't reset anything. That's done by the Monarch. */ ret = 0; goto out; } /* * Reset all global state. */ reset: atomic_set(&global_nwo, 0); atomic_set(&mce_callin, 0); cpumask_setall(&mce_missing_cpus); barrier(); /* * Let others run again. */ atomic_set(&mce_executing, 0); out: instrumentation_end(); return ret; } static __always_inline void mce_clear_state(unsigned long *toclear) { int i; for (i = 0; i < this_cpu_read(mce_num_banks); i++) { if (arch_test_bit(i, toclear)) mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0); } } /* * Cases where we avoid rendezvous handler timeout: * 1) If this CPU is offline. * * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to * skip those CPUs which remain looping in the 1st kernel - see * crash_nmi_callback(). * * Note: there still is a small window between kexec-ing and the new, * kdump kernel establishing a new #MC handler where a broadcasted MCE * might not get handled properly. */ static noinstr bool mce_check_crashing_cpu(void) { unsigned int cpu = smp_processor_id(); if (arch_cpu_is_offline(cpu) || (crashing_cpu != -1 && crashing_cpu != cpu)) { u64 mcgstatus; mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS); if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) { if (mcgstatus & MCG_STATUS_LMCES) return false; } if (mcgstatus & MCG_STATUS_RIPV) { __wrmsr(MSR_IA32_MCG_STATUS, 0, 0); return true; } } return false; } static __always_inline int __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final, unsigned long *toclear, unsigned long *valid_banks, int no_way_out, int *worst) { struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); struct mca_config *cfg = &mca_cfg; int severity, i, taint = 0; for (i = 0; i < this_cpu_read(mce_num_banks); i++) { arch___clear_bit(i, toclear); if (!arch_test_bit(i, valid_banks)) continue; if (!mce_banks[i].ctl) continue; m->misc = 0; m->addr = 0; m->bank = i; m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS)); if (!(m->status & MCI_STATUS_VAL)) continue; /* * Corrected or non-signaled errors are handled by * machine_check_poll(). Leave them alone, unless this panics. */ if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) && !no_way_out) continue; /* Set taint even when machine check was not enabled. */ taint++; severity = mce_severity(m, regs, NULL, true); /* * When machine check was for corrected/deferred handler don't * touch, unless we're panicking. */ if ((severity == MCE_KEEP_SEVERITY || severity == MCE_UCNA_SEVERITY) && !no_way_out) continue; arch___set_bit(i, toclear); /* Machine check event was not enabled. Clear, but ignore. */ if (severity == MCE_NO_SEVERITY) continue; mce_read_aux(m, i); /* assuming valid severity level != 0 */ m->severity = severity; /* * Enable instrumentation around the mce_log() call which is * done in #MC context, where instrumentation is disabled. */ instrumentation_begin(); mce_log(m); instrumentation_end(); if (severity > *worst) { *final = *m; *worst = severity; } } /* mce_clear_state will clear *final, save locally for use later */ *m = *final; return taint; } static void kill_me_now(struct callback_head *ch) { struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me); p->mce_count = 0; force_sig(SIGBUS); } static void kill_me_maybe(struct callback_head *cb) { struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me); int flags = MF_ACTION_REQUIRED; int ret; p->mce_count = 0; pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr); if (!p->mce_ripv) flags |= MF_MUST_KILL; ret = memory_failure(p->mce_addr >> PAGE_SHIFT, flags); if (!ret) { set_mce_nospec(p->mce_addr >> PAGE_SHIFT); sync_core(); return; } /* * -EHWPOISON from memory_failure() means that it already sent SIGBUS * to the current process with the proper error info, * -EOPNOTSUPP means hwpoison_filter() filtered the error event, * * In both cases, no further processing is required. */ if (ret == -EHWPOISON || ret == -EOPNOTSUPP) return; pr_err("Memory error not recovered"); kill_me_now(cb); } static void kill_me_never(struct callback_head *cb) { struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me); p->mce_count = 0; pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr); if (!memory_failure(p->mce_addr >> PAGE_SHIFT, 0)) set_mce_nospec(p->mce_addr >> PAGE_SHIFT); } static void queue_task_work(struct mce *m, char *msg, void (*func)(struct callback_head *)) { int count = ++current->mce_count; /* First call, save all the details */ if (count == 1) { current->mce_addr = m->addr; current->mce_kflags = m->kflags; current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV); current->mce_whole_page = whole_page(m); current->mce_kill_me.func = func; } /* Ten is likely overkill. Don't expect more than two faults before task_work() */ if (count > 10) mce_panic("Too many consecutive machine checks while accessing user data", m, msg); /* Second or later call, make sure page address matches the one from first call */ if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT)) mce_panic("Consecutive machine checks to different user pages", m, msg); /* Do not call task_work_add() more than once */ if (count > 1) return; task_work_add(current, ¤t->mce_kill_me, TWA_RESUME); } /* Handle unconfigured int18 (should never happen) */ static noinstr void unexpected_machine_check(struct pt_regs *regs) { instrumentation_begin(); pr_err("CPU#%d: Unexpected int18 (Machine Check)\n", smp_processor_id()); instrumentation_end(); } /* * The actual machine check handler. This only handles real exceptions when * something got corrupted coming in through int 18. * * This is executed in #MC context not subject to normal locking rules. * This implies that most kernel services cannot be safely used. Don't even * think about putting a printk in there! * * On Intel systems this is entered on all CPUs in parallel through * MCE broadcast. However some CPUs might be broken beyond repair, * so be always careful when synchronizing with others. * * Tracing and kprobes are disabled: if we interrupted a kernel context * with IF=1, we need to minimize stack usage. There are also recursion * issues: if the machine check was due to a failure of the memory * backing the user stack, tracing that reads the user stack will cause * potentially infinite recursion. * * Currently, the #MC handler calls out to a number of external facilities * and, therefore, allows instrumentation around them. The optimal thing to * have would be to do the absolutely minimal work required in #MC context * and have instrumentation disabled only around that. Further processing can * then happen in process context where instrumentation is allowed. Achieving * that requires careful auditing and modifications. Until then, the code * allows instrumentation temporarily, where required. * */ noinstr void do_machine_check(struct pt_regs *regs) { int worst = 0, order, no_way_out, kill_current_task, lmce, taint = 0; DECLARE_BITMAP(valid_banks, MAX_NR_BANKS) = { 0 }; DECLARE_BITMAP(toclear, MAX_NR_BANKS) = { 0 }; struct mce m, *final; char *msg = NULL; if (unlikely(mce_flags.p5)) return pentium_machine_check(regs); else if (unlikely(mce_flags.winchip)) return winchip_machine_check(regs); else if (unlikely(!mca_cfg.initialized)) return unexpected_machine_check(regs); if (mce_flags.skx_repmov_quirk && quirk_skylake_repmov()) goto clear; /* * Establish sequential order between the CPUs entering the machine * check handler. */ order = -1; /* * If no_way_out gets set, there is no safe way to recover from this * MCE. */ no_way_out = 0; /* * If kill_current_task is not set, there might be a way to recover from this * error. */ kill_current_task = 0; /* * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES * on Intel. */ lmce = 1; this_cpu_inc(mce_exception_count); mce_gather_info(&m, regs); m.tsc = rdtsc(); final = this_cpu_ptr(&mces_seen); *final = m; no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs); barrier(); /* * When no restart IP might need to kill or panic. * Assume the worst for now, but if we find the * severity is MCE_AR_SEVERITY we have other options. */ if (!(m.mcgstatus & MCG_STATUS_RIPV)) kill_current_task = 1; /* * Check if this MCE is signaled to only this logical processor, * on Intel, Zhaoxin only. */ if (m.cpuvendor == X86_VENDOR_INTEL || m.cpuvendor == X86_VENDOR_ZHAOXIN) lmce = m.mcgstatus & MCG_STATUS_LMCES; /* * Local machine check may already know that we have to panic. * Broadcast machine check begins rendezvous in mce_start() * Go through all banks in exclusion of the other CPUs. This way we * don't report duplicated events on shared banks because the first one * to see it will clear it. */ if (lmce) { if (no_way_out) mce_panic("Fatal local machine check", &m, msg); } else { order = mce_start(&no_way_out); } taint = __mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst); if (!no_way_out) mce_clear_state(toclear); /* * Do most of the synchronization with other CPUs. * When there's any problem use only local no_way_out state. */ if (!lmce) { if (mce_end(order) < 0) { if (!no_way_out) no_way_out = worst >= MCE_PANIC_SEVERITY; if (no_way_out) mce_panic("Fatal machine check on current CPU", &m, msg); } } else { /* * If there was a fatal machine check we should have * already called mce_panic earlier in this function. * Since we re-read the banks, we might have found * something new. Check again to see if we found a * fatal error. We call "mce_severity()" again to * make sure we have the right "msg". */ if (worst >= MCE_PANIC_SEVERITY) { mce_severity(&m, regs, &msg, true); mce_panic("Local fatal machine check!", &m, msg); } } /* * Enable instrumentation around the external facilities like task_work_add() * (via queue_task_work()), fixup_exception() etc. For now, that is. Fixing this * properly would need a lot more involved reorganization. */ instrumentation_begin(); if (taint) add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE); if (worst != MCE_AR_SEVERITY && !kill_current_task) goto out; /* Fault was in user mode and we need to take some action */ if ((m.cs & 3) == 3) { /* If this triggers there is no way to recover. Die hard. */ BUG_ON(!on_thread_stack() || !user_mode(regs)); if (kill_current_task) queue_task_work(&m, msg, kill_me_now); else queue_task_work(&m, msg, kill_me_maybe); } else { /* * Handle an MCE which has happened in kernel space but from * which the kernel can recover: ex_has_fault_handler() has * already verified that the rIP at which the error happened is * a rIP from which the kernel can recover (by jumping to * recovery code specified in _ASM_EXTABLE_FAULT()) and the * corresponding exception handler which would do that is the * proper one. */ if (m.kflags & MCE_IN_KERNEL_RECOV) { if (!fixup_exception(regs, X86_TRAP_MC, 0, 0)) mce_panic("Failed kernel mode recovery", &m, msg); } if (m.kflags & MCE_IN_KERNEL_COPYIN) queue_task_work(&m, msg, kill_me_never); } out: instrumentation_end(); clear: mce_wrmsrl(MSR_IA32_MCG_STATUS, 0); } EXPORT_SYMBOL_GPL(do_machine_check); #ifndef CONFIG_MEMORY_FAILURE int memory_failure(unsigned long pfn, int flags) { /* mce_severity() should not hand us an ACTION_REQUIRED error */ BUG_ON(flags & MF_ACTION_REQUIRED); pr_err("Uncorrected memory error in page 0x%lx ignored\n" "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n", pfn); return 0; } #endif /* * Periodic polling timer for "silent" machine check errors. If the * poller finds an MCE, poll 2x faster. When the poller finds no more * errors, poll 2x slower (up to check_interval seconds). */ static unsigned long check_interval = INITIAL_CHECK_INTERVAL; static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */ static DEFINE_PER_CPU(struct timer_list, mce_timer); static unsigned long mce_adjust_timer_default(unsigned long interval) { return interval; } static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default; static void __start_timer(struct timer_list *t, unsigned long interval) { unsigned long when = jiffies + interval; unsigned long flags; local_irq_save(flags); if (!timer_pending(t) || time_before(when, t->expires)) mod_timer(t, round_jiffies(when)); local_irq_restore(flags); } static void mce_timer_fn(struct timer_list *t) { struct timer_list *cpu_t = this_cpu_ptr(&mce_timer); unsigned long iv; WARN_ON(cpu_t != t); iv = __this_cpu_read(mce_next_interval); if (mce_available(this_cpu_ptr(&cpu_info))) { machine_check_poll(0, this_cpu_ptr(&mce_poll_banks)); if (mce_intel_cmci_poll()) { iv = mce_adjust_timer(iv); goto done; } } /* * Alert userspace if needed. If we logged an MCE, reduce the polling * interval, otherwise increase the polling interval. */ if (mce_notify_irq()) iv = max(iv / 2, (unsigned long) HZ/100); else iv = min(iv * 2, round_jiffies_relative(check_interval * HZ)); done: __this_cpu_write(mce_next_interval, iv); __start_timer(t, iv); } /* * Ensure that the timer is firing in @interval from now. */ void mce_timer_kick(unsigned long interval) { struct timer_list *t = this_cpu_ptr(&mce_timer); unsigned long iv = __this_cpu_read(mce_next_interval); __start_timer(t, interval); if (interval < iv) __this_cpu_write(mce_next_interval, interval); } /* Must not be called in IRQ context where del_timer_sync() can deadlock */ static void mce_timer_delete_all(void) { int cpu; for_each_online_cpu(cpu) del_timer_sync(&per_cpu(mce_timer, cpu)); } /* * Notify the user(s) about new machine check events. * Can be called from interrupt context, but not from machine check/NMI * context. */ int mce_notify_irq(void) { /* Not more than two messages every minute */ static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2); if (test_and_clear_bit(0, &mce_need_notify)) { mce_work_trigger(); if (__ratelimit(&ratelimit)) pr_info(HW_ERR "Machine check events logged\n"); return 1; } return 0; } EXPORT_SYMBOL_GPL(mce_notify_irq); static void __mcheck_cpu_mce_banks_init(void) { struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); u8 n_banks = this_cpu_read(mce_num_banks); int i; for (i = 0; i < n_banks; i++) { struct mce_bank *b = &mce_banks[i]; /* * Init them all, __mcheck_cpu_apply_quirks() is going to apply * the required vendor quirks before * __mcheck_cpu_init_clear_banks() does the final bank setup. */ b->ctl = -1ULL; b->init = true; } } /* * Initialize Machine Checks for a CPU. */ static void __mcheck_cpu_cap_init(void) { u64 cap; u8 b; rdmsrl(MSR_IA32_MCG_CAP, cap); b = cap & MCG_BANKCNT_MASK; if (b > MAX_NR_BANKS) { pr_warn("CPU%d: Using only %u machine check banks out of %u\n", smp_processor_id(), MAX_NR_BANKS, b); b = MAX_NR_BANKS; } this_cpu_write(mce_num_banks, b); __mcheck_cpu_mce_banks_init(); /* Use accurate RIP reporting if available. */ if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9) mca_cfg.rip_msr = MSR_IA32_MCG_EIP; if (cap & MCG_SER_P) mca_cfg.ser = 1; } static void __mcheck_cpu_init_generic(void) { enum mcp_flags m_fl = 0; mce_banks_t all_banks; u64 cap; if (!mca_cfg.bootlog) m_fl = MCP_DONTLOG; /* * Log the machine checks left over from the previous reset. Log them * only, do not start processing them. That will happen in mcheck_late_init() * when all consumers have been registered on the notifier chain. */ bitmap_fill(all_banks, MAX_NR_BANKS); machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks); cr4_set_bits(X86_CR4_MCE); rdmsrl(MSR_IA32_MCG_CAP, cap); if (cap & MCG_CTL_P) wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff); } static void __mcheck_cpu_init_clear_banks(void) { struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); int i; for (i = 0; i < this_cpu_read(mce_num_banks); i++) { struct mce_bank *b = &mce_banks[i]; if (!b->init) continue; wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl); wrmsrl(mca_msr_reg(i, MCA_STATUS), 0); } } /* * Do a final check to see if there are any unused/RAZ banks. * * This must be done after the banks have been initialized and any quirks have * been applied. * * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs. * Otherwise, a user who disables a bank will not be able to re-enable it * without a system reboot. */ static void __mcheck_cpu_check_banks(void) { struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); u64 msrval; int i; for (i = 0; i < this_cpu_read(mce_num_banks); i++) { struct mce_bank *b = &mce_banks[i]; if (!b->init) continue; rdmsrl(mca_msr_reg(i, MCA_CTL), msrval); b->init = !!msrval; } } /* Add per CPU specific workarounds here */ static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c) { struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); struct mca_config *cfg = &mca_cfg; if (c->x86_vendor == X86_VENDOR_UNKNOWN) { pr_info("unknown CPU type - not enabling MCE support\n"); return -EOPNOTSUPP; } /* This should be disabled by the BIOS, but isn't always */ if (c->x86_vendor == X86_VENDOR_AMD) { if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) { /* * disable GART TBL walk error reporting, which * trips off incorrectly with the IOMMU & 3ware * & Cerberus: */ clear_bit(10, (unsigned long *)&mce_banks[4].ctl); } if (c->x86 < 0x11 && cfg->bootlog < 0) { /* * Lots of broken BIOS around that don't clear them * by default and leave crap in there. Don't log: */ cfg->bootlog = 0; } /* * Various K7s with broken bank 0 around. Always disable * by default. */ if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0) mce_banks[0].ctl = 0; /* * overflow_recov is supported for F15h Models 00h-0fh * even though we don't have a CPUID bit for it. */ if (c->x86 == 0x15 && c->x86_model <= 0xf) mce_flags.overflow_recov = 1; } if (c->x86_vendor == X86_VENDOR_INTEL) { /* * SDM documents that on family 6 bank 0 should not be written * because it aliases to another special BIOS controlled * register. * But it's not aliased anymore on model 0x1a+ * Don't ignore bank 0 completely because there could be a * valid event later, merely don't write CTL0. */ if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0) mce_banks[0].init = false; /* * All newer Intel systems support MCE broadcasting. Enable * synchronization with a one second timeout. */ if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) && cfg->monarch_timeout < 0) cfg->monarch_timeout = USEC_PER_SEC; /* * There are also broken BIOSes on some Pentium M and * earlier systems: */ if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0) cfg->bootlog = 0; if (c->x86 == 6 && c->x86_model == 45) mce_flags.snb_ifu_quirk = 1; /* * Skylake, Cascacde Lake and Cooper Lake require a quirk on * rep movs. */ if (c->x86 == 6 && c->x86_model == INTEL_FAM6_SKYLAKE_X) mce_flags.skx_repmov_quirk = 1; } if (c->x86_vendor == X86_VENDOR_ZHAOXIN) { /* * All newer Zhaoxin CPUs support MCE broadcasting. Enable * synchronization with a one second timeout. */ if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) { if (cfg->monarch_timeout < 0) cfg->monarch_timeout = USEC_PER_SEC; } } if (cfg->monarch_timeout < 0) cfg->monarch_timeout = 0; if (cfg->bootlog != 0) cfg->panic_timeout = 30; return 0; } static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c) { if (c->x86 != 5) return 0; switch (c->x86_vendor) { case X86_VENDOR_INTEL: intel_p5_mcheck_init(c); mce_flags.p5 = 1; return 1; case X86_VENDOR_CENTAUR: winchip_mcheck_init(c); mce_flags.winchip = 1; return 1; default: return 0; } return 0; } /* * Init basic CPU features needed for early decoding of MCEs. */ static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c) { if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) { mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV); mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR); mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA); mce_flags.amd_threshold = 1; } } static void mce_centaur_feature_init(struct cpuinfo_x86 *c) { struct mca_config *cfg = &mca_cfg; /* * All newer Centaur CPUs support MCE broadcasting. Enable * synchronization with a one second timeout. */ if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) || c->x86 > 6) { if (cfg->monarch_timeout < 0) cfg->monarch_timeout = USEC_PER_SEC; } } static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c) { struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); /* * These CPUs have MCA bank 8 which reports only one error type called * SVAD (System View Address Decoder). The reporting of that error is * controlled by IA32_MC8.CTL.0. * * If enabled, prefetching on these CPUs will cause SVAD MCE when * virtual machines start and result in a system panic. Always disable * bank 8 SVAD error by default. */ if ((c->x86 == 7 && c->x86_model == 0x1b) || (c->x86_model == 0x19 || c->x86_model == 0x1f)) { if (this_cpu_read(mce_num_banks) > 8) mce_banks[8].ctl = 0; } intel_init_cmci(); intel_init_lmce(); mce_adjust_timer = cmci_intel_adjust_timer; } static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c) { intel_clear_lmce(); } static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c) { switch (c->x86_vendor) { case X86_VENDOR_INTEL: mce_intel_feature_init(c); mce_adjust_timer = cmci_intel_adjust_timer; break; case X86_VENDOR_AMD: { mce_amd_feature_init(c); break; } case X86_VENDOR_HYGON: mce_hygon_feature_init(c); break; case X86_VENDOR_CENTAUR: mce_centaur_feature_init(c); break; case X86_VENDOR_ZHAOXIN: mce_zhaoxin_feature_init(c); break; default: break; } } static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c) { switch (c->x86_vendor) { case X86_VENDOR_INTEL: mce_intel_feature_clear(c); break; case X86_VENDOR_ZHAOXIN: mce_zhaoxin_feature_clear(c); break; default: break; } } static void mce_start_timer(struct timer_list *t) { unsigned long iv = check_interval * HZ; if (mca_cfg.ignore_ce || !iv) return; this_cpu_write(mce_next_interval, iv); __start_timer(t, iv); } static void __mcheck_cpu_setup_timer(void) { struct timer_list *t = this_cpu_ptr(&mce_timer); timer_setup(t, mce_timer_fn, TIMER_PINNED); } static void __mcheck_cpu_init_timer(void) { struct timer_list *t = this_cpu_ptr(&mce_timer); timer_setup(t, mce_timer_fn, TIMER_PINNED); mce_start_timer(t); } bool filter_mce(struct mce *m) { if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) return amd_filter_mce(m); if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) return intel_filter_mce(m); return false; } static __always_inline void exc_machine_check_kernel(struct pt_regs *regs) { irqentry_state_t irq_state; WARN_ON_ONCE(user_mode(regs)); /* * Only required when from kernel mode. See * mce_check_crashing_cpu() for details. */ if (mca_cfg.initialized && mce_check_crashing_cpu()) return; irq_state = irqentry_nmi_enter(regs); do_machine_check(regs); irqentry_nmi_exit(regs, irq_state); } static __always_inline void exc_machine_check_user(struct pt_regs *regs) { irqentry_enter_from_user_mode(regs); do_machine_check(regs); irqentry_exit_to_user_mode(regs); } #ifdef CONFIG_X86_64 /* MCE hit kernel mode */ DEFINE_IDTENTRY_MCE(exc_machine_check) { unsigned long dr7; dr7 = local_db_save(); exc_machine_check_kernel(regs); local_db_restore(dr7); } /* The user mode variant. */ DEFINE_IDTENTRY_MCE_USER(exc_machine_check) { unsigned long dr7; dr7 = local_db_save(); exc_machine_check_user(regs); local_db_restore(dr7); } #else /* 32bit unified entry point */ DEFINE_IDTENTRY_RAW(exc_machine_check) { unsigned long dr7; dr7 = local_db_save(); if (user_mode(regs)) exc_machine_check_user(regs); else exc_machine_check_kernel(regs); local_db_restore(dr7); } #endif /* * Called for each booted CPU to set up machine checks. * Must be called with preempt off: */ void mcheck_cpu_init(struct cpuinfo_x86 *c) { if (mca_cfg.disabled) return; if (__mcheck_cpu_ancient_init(c)) return; if (!mce_available(c)) return; __mcheck_cpu_cap_init(); if (__mcheck_cpu_apply_quirks(c) < 0) { mca_cfg.disabled = 1; return; } if (mce_gen_pool_init()) { mca_cfg.disabled = 1; pr_emerg("Couldn't allocate MCE records pool!\n"); return; } mca_cfg.initialized = 1; __mcheck_cpu_init_early(c); __mcheck_cpu_init_generic(); __mcheck_cpu_init_vendor(c); __mcheck_cpu_init_clear_banks(); __mcheck_cpu_check_banks(); __mcheck_cpu_setup_timer(); } /* * Called for each booted CPU to clear some machine checks opt-ins */ void mcheck_cpu_clear(struct cpuinfo_x86 *c) { if (mca_cfg.disabled) return; if (!mce_available(c)) return; /* * Possibly to clear general settings generic to x86 * __mcheck_cpu_clear_generic(c); */ __mcheck_cpu_clear_vendor(c); } static void __mce_disable_bank(void *arg) { int bank = *((int *)arg); __clear_bit(bank, this_cpu_ptr(mce_poll_banks)); cmci_disable_bank(bank); } void mce_disable_bank(int bank) { if (bank >= this_cpu_read(mce_num_banks)) { pr_warn(FW_BUG "Ignoring request to disable invalid MCA bank %d.\n", bank); return; } set_bit(bank, mce_banks_ce_disabled); on_each_cpu(__mce_disable_bank, &bank, 1); } /* * mce=off Disables machine check * mce=no_cmci Disables CMCI * mce=no_lmce Disables LMCE * mce=dont_log_ce Clears corrected events silently, no log created for CEs. * mce=print_all Print all machine check logs to console * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared. * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above) * monarchtimeout is how long to wait for other CPUs on machine * check, or 0 to not wait * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h and older. * mce=nobootlog Don't log MCEs from before booting. * mce=bios_cmci_threshold Don't program the CMCI threshold * mce=recovery force enable copy_mc_fragile() */ static int __init mcheck_enable(char *str) { struct mca_config *cfg = &mca_cfg; if (*str == 0) { enable_p5_mce(); return 1; } if (*str == '=') str++; if (!strcmp(str, "off")) cfg->disabled = 1; else if (!strcmp(str, "no_cmci")) cfg->cmci_disabled = true; else if (!strcmp(str, "no_lmce")) cfg->lmce_disabled = 1; else if (!strcmp(str, "dont_log_ce")) cfg->dont_log_ce = true; else if (!strcmp(str, "print_all")) cfg->print_all = true; else if (!strcmp(str, "ignore_ce")) cfg->ignore_ce = true; else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog")) cfg->bootlog = (str[0] == 'b'); else if (!strcmp(str, "bios_cmci_threshold")) cfg->bios_cmci_threshold = 1; else if (!strcmp(str, "recovery")) cfg->recovery = 1; else if (isdigit(str[0])) get_option(&str, &(cfg->monarch_timeout)); else { pr_info("mce argument %s ignored. Please use /sys\n", str); return 0; } return 1; } __setup("mce", mcheck_enable); int __init mcheck_init(void) { mce_register_decode_chain(&early_nb); mce_register_decode_chain(&mce_uc_nb); mce_register_decode_chain(&mce_default_nb); INIT_WORK(&mce_work, mce_gen_pool_process); init_irq_work(&mce_irq_work, mce_irq_work_cb); return 0; } /* * mce_syscore: PM support */ /* * Disable machine checks on suspend and shutdown. We can't really handle * them later. */ static void mce_disable_error_reporting(void) { struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); int i; for (i = 0; i < this_cpu_read(mce_num_banks); i++) { struct mce_bank *b = &mce_banks[i]; if (b->init) wrmsrl(mca_msr_reg(i, MCA_CTL), 0); } return; } static void vendor_disable_error_reporting(void) { /* * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these * MSRs are socket-wide. Disabling them for just a single offlined CPU * is bad, since it will inhibit reporting for all shared resources on * the socket like the last level cache (LLC), the integrated memory * controller (iMC), etc. */ if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL || boot_cpu_data.x86_vendor == X86_VENDOR_HYGON || boot_cpu_data.x86_vendor == X86_VENDOR_AMD || boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) return; mce_disable_error_reporting(); } static int mce_syscore_suspend(void) { vendor_disable_error_reporting(); return 0; } static void mce_syscore_shutdown(void) { vendor_disable_error_reporting(); } /* * On resume clear all MCE state. Don't want to see leftovers from the BIOS. * Only one CPU is active at this time, the others get re-added later using * CPU hotplug: */ static void mce_syscore_resume(void) { __mcheck_cpu_init_generic(); __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info)); __mcheck_cpu_init_clear_banks(); } static struct syscore_ops mce_syscore_ops = { .suspend = mce_syscore_suspend, .shutdown = mce_syscore_shutdown, .resume = mce_syscore_resume, }; /* * mce_device: Sysfs support */ static void mce_cpu_restart(void *data) { if (!mce_available(raw_cpu_ptr(&cpu_info))) return; __mcheck_cpu_init_generic(); __mcheck_cpu_init_clear_banks(); __mcheck_cpu_init_timer(); } /* Reinit MCEs after user configuration changes */ static void mce_restart(void) { mce_timer_delete_all(); on_each_cpu(mce_cpu_restart, NULL, 1); } /* Toggle features for corrected errors */ static void mce_disable_cmci(void *data) { if (!mce_available(raw_cpu_ptr(&cpu_info))) return; cmci_clear(); } static void mce_enable_ce(void *all) { if (!mce_available(raw_cpu_ptr(&cpu_info))) return; cmci_reenable(); cmci_recheck(); if (all) __mcheck_cpu_init_timer(); } static struct bus_type mce_subsys = { .name = "machinecheck", .dev_name = "machinecheck", }; DEFINE_PER_CPU(struct device *, mce_device); static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr) { return container_of(attr, struct mce_bank_dev, attr); } static ssize_t show_bank(struct device *s, struct device_attribute *attr, char *buf) { u8 bank = attr_to_bank(attr)->bank; struct mce_bank *b; if (bank >= per_cpu(mce_num_banks, s->id)) return -EINVAL; b = &per_cpu(mce_banks_array, s->id)[bank]; if (!b->init) return -ENODEV; return sprintf(buf, "%llx\n", b->ctl); } static ssize_t set_bank(struct device *s, struct device_attribute *attr, const char *buf, size_t size) { u8 bank = attr_to_bank(attr)->bank; struct mce_bank *b; u64 new; if (kstrtou64(buf, 0, &new) < 0) return -EINVAL; if (bank >= per_cpu(mce_num_banks, s->id)) return -EINVAL; b = &per_cpu(mce_banks_array, s->id)[bank]; if (!b->init) return -ENODEV; b->ctl = new; mce_restart(); return size; } static ssize_t set_ignore_ce(struct device *s, struct device_attribute *attr, const char *buf, size_t size) { u64 new; if (kstrtou64(buf, 0, &new) < 0) return -EINVAL; mutex_lock(&mce_sysfs_mutex); if (mca_cfg.ignore_ce ^ !!new) { if (new) { /* disable ce features */ mce_timer_delete_all(); on_each_cpu(mce_disable_cmci, NULL, 1); mca_cfg.ignore_ce = true; } else { /* enable ce features */ mca_cfg.ignore_ce = false; on_each_cpu(mce_enable_ce, (void *)1, 1); } } mutex_unlock(&mce_sysfs_mutex); return size; } static ssize_t set_cmci_disabled(struct device *s, struct device_attribute *attr, const char *buf, size_t size) { u64 new; if (kstrtou64(buf, 0, &new) < 0) return -EINVAL; mutex_lock(&mce_sysfs_mutex); if (mca_cfg.cmci_disabled ^ !!new) { if (new) { /* disable cmci */ on_each_cpu(mce_disable_cmci, NULL, 1); mca_cfg.cmci_disabled = true; } else { /* enable cmci */ mca_cfg.cmci_disabled = false; on_each_cpu(mce_enable_ce, NULL, 1); } } mutex_unlock(&mce_sysfs_mutex); return size; } static ssize_t store_int_with_restart(struct device *s, struct device_attribute *attr, const char *buf, size_t size) { unsigned long old_check_interval = check_interval; ssize_t ret = device_store_ulong(s, attr, buf, size); if (check_interval == old_check_interval) return ret; mutex_lock(&mce_sysfs_mutex); mce_restart(); mutex_unlock(&mce_sysfs_mutex); return ret; } static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout); static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce); static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all); static struct dev_ext_attribute dev_attr_check_interval = { __ATTR(check_interval, 0644, device_show_int, store_int_with_restart), &check_interval }; static struct dev_ext_attribute dev_attr_ignore_ce = { __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce), &mca_cfg.ignore_ce }; static struct dev_ext_attribute dev_attr_cmci_disabled = { __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled), &mca_cfg.cmci_disabled }; static struct device_attribute *mce_device_attrs[] = { &dev_attr_check_interval.attr, #ifdef CONFIG_X86_MCELOG_LEGACY &dev_attr_trigger, #endif &dev_attr_monarch_timeout.attr, &dev_attr_dont_log_ce.attr, &dev_attr_print_all.attr, &dev_attr_ignore_ce.attr, &dev_attr_cmci_disabled.attr, NULL }; static cpumask_var_t mce_device_initialized; static void mce_device_release(struct device *dev) { kfree(dev); } /* Per CPU device init. All of the CPUs still share the same bank device: */ static int mce_device_create(unsigned int cpu) { struct device *dev; int err; int i, j; if (!mce_available(&boot_cpu_data)) return -EIO; dev = per_cpu(mce_device, cpu); if (dev) return 0; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return -ENOMEM; dev->id = cpu; dev->bus = &mce_subsys; dev->release = &mce_device_release; err = device_register(dev); if (err) { put_device(dev); return err; } for (i = 0; mce_device_attrs[i]; i++) { err = device_create_file(dev, mce_device_attrs[i]); if (err) goto error; } for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) { err = device_create_file(dev, &mce_bank_devs[j].attr); if (err) goto error2; } cpumask_set_cpu(cpu, mce_device_initialized); per_cpu(mce_device, cpu) = dev; return 0; error2: while (--j >= 0) device_remove_file(dev, &mce_bank_devs[j].attr); error: while (--i >= 0) device_remove_file(dev, mce_device_attrs[i]); device_unregister(dev); return err; } static void mce_device_remove(unsigned int cpu) { struct device *dev = per_cpu(mce_device, cpu); int i; if (!cpumask_test_cpu(cpu, mce_device_initialized)) return; for (i = 0; mce_device_attrs[i]; i++) device_remove_file(dev, mce_device_attrs[i]); for (i = 0; i < per_cpu(mce_num_banks, cpu); i++) device_remove_file(dev, &mce_bank_devs[i].attr); device_unregister(dev); cpumask_clear_cpu(cpu, mce_device_initialized); per_cpu(mce_device, cpu) = NULL; } /* Make sure there are no machine checks on offlined CPUs. */ static void mce_disable_cpu(void) { if (!mce_available(raw_cpu_ptr(&cpu_info))) return; if (!cpuhp_tasks_frozen) cmci_clear(); vendor_disable_error_reporting(); } static void mce_reenable_cpu(void) { struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); int i; if (!mce_available(raw_cpu_ptr(&cpu_info))) return; if (!cpuhp_tasks_frozen) cmci_reenable(); for (i = 0; i < this_cpu_read(mce_num_banks); i++) { struct mce_bank *b = &mce_banks[i]; if (b->init) wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl); } } static int mce_cpu_dead(unsigned int cpu) { mce_intel_hcpu_update(cpu); /* intentionally ignoring frozen here */ if (!cpuhp_tasks_frozen) cmci_rediscover(); return 0; } static int mce_cpu_online(unsigned int cpu) { struct timer_list *t = this_cpu_ptr(&mce_timer); int ret; mce_device_create(cpu); ret = mce_threshold_create_device(cpu); if (ret) { mce_device_remove(cpu); return ret; } mce_reenable_cpu(); mce_start_timer(t); return 0; } static int mce_cpu_pre_down(unsigned int cpu) { struct timer_list *t = this_cpu_ptr(&mce_timer); mce_disable_cpu(); del_timer_sync(t); mce_threshold_remove_device(cpu); mce_device_remove(cpu); return 0; } static __init void mce_init_banks(void) { int i; for (i = 0; i < MAX_NR_BANKS; i++) { struct mce_bank_dev *b = &mce_bank_devs[i]; struct device_attribute *a = &b->attr; b->bank = i; sysfs_attr_init(&a->attr); a->attr.name = b->attrname; snprintf(b->attrname, ATTR_LEN, "bank%d", i); a->attr.mode = 0644; a->show = show_bank; a->store = set_bank; } } /* * When running on XEN, this initcall is ordered against the XEN mcelog * initcall: * * device_initcall(xen_late_init_mcelog); * device_initcall_sync(mcheck_init_device); */ static __init int mcheck_init_device(void) { int err; /* * Check if we have a spare virtual bit. This will only become * a problem if/when we move beyond 5-level page tables. */ MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63); if (!mce_available(&boot_cpu_data)) { err = -EIO; goto err_out; } if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) { err = -ENOMEM; goto err_out; } mce_init_banks(); err = subsys_system_register(&mce_subsys, NULL); if (err) goto err_out_mem; err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL, mce_cpu_dead); if (err) goto err_out_mem; /* * Invokes mce_cpu_online() on all CPUs which are online when * the state is installed. */ err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online", mce_cpu_online, mce_cpu_pre_down); if (err < 0) goto err_out_online; register_syscore_ops(&mce_syscore_ops); return 0; err_out_online: cpuhp_remove_state(CPUHP_X86_MCE_DEAD); err_out_mem: free_cpumask_var(mce_device_initialized); err_out: pr_err("Unable to init MCE device (rc: %d)\n", err); return err; } device_initcall_sync(mcheck_init_device); /* * Old style boot options parsing. Only for compatibility. */ static int __init mcheck_disable(char *str) { mca_cfg.disabled = 1; return 1; } __setup("nomce", mcheck_disable); #ifdef CONFIG_DEBUG_FS struct dentry *mce_get_debugfs_dir(void) { static struct dentry *dmce; if (!dmce) dmce = debugfs_create_dir("mce", NULL); return dmce; } static void mce_reset(void) { atomic_set(&mce_fake_panicked, 0); atomic_set(&mce_executing, 0); atomic_set(&mce_callin, 0); atomic_set(&global_nwo, 0); cpumask_setall(&mce_missing_cpus); } static int fake_panic_get(void *data, u64 *val) { *val = fake_panic; return 0; } static int fake_panic_set(void *data, u64 val) { mce_reset(); fake_panic = val; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set, "%llu\n"); static void __init mcheck_debugfs_init(void) { struct dentry *dmce; dmce = mce_get_debugfs_dir(); debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL, &fake_panic_fops); } #else static void __init mcheck_debugfs_init(void) { } #endif static int __init mcheck_late_init(void) { if (mca_cfg.recovery) enable_copy_mc_fragile(); mcheck_debugfs_init(); /* * Flush out everything that has been logged during early boot, now that * everything has been initialized (workqueues, decoders, ...). */ mce_schedule_work(); return 0; } late_initcall(mcheck_late_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1