Contributors: 30
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Borislav Petkov |
990 |
46.50% |
52 |
48.60% |
Ashok Raj |
217 |
10.19% |
4 |
3.74% |
Peter Oruba |
215 |
10.10% |
5 |
4.67% |
Shaohua Li |
165 |
7.75% |
3 |
2.80% |
Dmitry Adamushko |
133 |
6.25% |
6 |
5.61% |
Jacob Shin |
84 |
3.95% |
3 |
2.80% |
Fenghua Yu |
54 |
2.54% |
3 |
2.80% |
Tigran Aivazian |
35 |
1.64% |
1 |
0.93% |
Rafael J. Wysocki |
30 |
1.41% |
2 |
1.87% |
Sebastian Andrzej Siewior |
30 |
1.41% |
2 |
1.87% |
Josh Poimboeuf |
26 |
1.22% |
1 |
0.93% |
Thomas Gleixner |
19 |
0.89% |
2 |
1.87% |
Kay Sievers |
18 |
0.85% |
1 |
0.93% |
Ingo Molnar |
15 |
0.70% |
2 |
1.87% |
Linus Torvalds (pre-git) |
13 |
0.61% |
3 |
2.80% |
Andi Kleen |
13 |
0.61% |
2 |
1.87% |
Rusty Russell |
12 |
0.56% |
1 |
0.93% |
Mihai Carabas |
10 |
0.47% |
1 |
0.93% |
Joe Perches |
9 |
0.42% |
2 |
1.87% |
H. Peter Anvin |
8 |
0.38% |
1 |
0.93% |
Shuah Khan |
8 |
0.38% |
1 |
0.93% |
Andreas Herrmann |
6 |
0.28% |
1 |
0.93% |
Peter Zijlstra |
4 |
0.19% |
1 |
0.93% |
Jan Beulich |
3 |
0.14% |
1 |
0.93% |
jacek.tomaka@poczta.fm |
2 |
0.09% |
1 |
0.93% |
Hannes Eder |
2 |
0.09% |
1 |
0.93% |
Arvind Yadav |
2 |
0.09% |
1 |
0.93% |
Boris Ostrovsky |
2 |
0.09% |
1 |
0.93% |
Srivatsa S. Bhat |
2 |
0.09% |
1 |
0.93% |
Dave Jones |
2 |
0.09% |
1 |
0.93% |
Total |
2129 |
|
107 |
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* CPU Microcode Update Driver for Linux
*
* Copyright (C) 2000-2006 Tigran Aivazian <aivazian.tigran@gmail.com>
* 2006 Shaohua Li <shaohua.li@intel.com>
* 2013-2016 Borislav Petkov <bp@alien8.de>
*
* X86 CPU microcode early update for Linux:
*
* Copyright (C) 2012 Fenghua Yu <fenghua.yu@intel.com>
* H Peter Anvin" <hpa@zytor.com>
* (C) 2015 Borislav Petkov <bp@alien8.de>
*
* This driver allows to upgrade microcode on x86 processors.
*/
#define pr_fmt(fmt) "microcode: " fmt
#include <linux/platform_device.h>
#include <linux/stop_machine.h>
#include <linux/syscore_ops.h>
#include <linux/miscdevice.h>
#include <linux/capability.h>
#include <linux/firmware.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/cpu.h>
#include <linux/nmi.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <asm/microcode_intel.h>
#include <asm/cpu_device_id.h>
#include <asm/microcode_amd.h>
#include <asm/perf_event.h>
#include <asm/microcode.h>
#include <asm/processor.h>
#include <asm/cmdline.h>
#include <asm/setup.h>
#define DRIVER_VERSION "2.2"
static struct microcode_ops *microcode_ops;
static bool dis_ucode_ldr = true;
bool initrd_gone;
LIST_HEAD(microcode_cache);
/*
* Synchronization.
*
* All non cpu-hotplug-callback call sites use:
*
* - microcode_mutex to synchronize with each other;
* - cpus_read_lock/unlock() to synchronize with
* the cpu-hotplug-callback call sites.
*
* We guarantee that only a single cpu is being
* updated at any particular moment of time.
*/
static DEFINE_MUTEX(microcode_mutex);
struct ucode_cpu_info ucode_cpu_info[NR_CPUS];
struct cpu_info_ctx {
struct cpu_signature *cpu_sig;
int err;
};
/*
* Those patch levels cannot be updated to newer ones and thus should be final.
*/
static u32 final_levels[] = {
0x01000098,
0x0100009f,
0x010000af,
0, /* T-101 terminator */
};
/*
* Check the current patch level on this CPU.
*
* Returns:
* - true: if update should stop
* - false: otherwise
*/
static bool amd_check_current_patch_level(void)
{
u32 lvl, dummy, i;
u32 *levels;
native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy);
if (IS_ENABLED(CONFIG_X86_32))
levels = (u32 *)__pa_nodebug(&final_levels);
else
levels = final_levels;
for (i = 0; levels[i]; i++) {
if (lvl == levels[i])
return true;
}
return false;
}
static bool __init check_loader_disabled_bsp(void)
{
static const char *__dis_opt_str = "dis_ucode_ldr";
#ifdef CONFIG_X86_32
const char *cmdline = (const char *)__pa_nodebug(boot_command_line);
const char *option = (const char *)__pa_nodebug(__dis_opt_str);
bool *res = (bool *)__pa_nodebug(&dis_ucode_ldr);
#else /* CONFIG_X86_64 */
const char *cmdline = boot_command_line;
const char *option = __dis_opt_str;
bool *res = &dis_ucode_ldr;
#endif
/*
* CPUID(1).ECX[31]: reserved for hypervisor use. This is still not
* completely accurate as xen pv guests don't see that CPUID bit set but
* that's good enough as they don't land on the BSP path anyway.
*/
if (native_cpuid_ecx(1) & BIT(31))
return *res;
if (x86_cpuid_vendor() == X86_VENDOR_AMD) {
if (amd_check_current_patch_level())
return *res;
}
if (cmdline_find_option_bool(cmdline, option) <= 0)
*res = false;
return *res;
}
void __init load_ucode_bsp(void)
{
unsigned int cpuid_1_eax;
bool intel = true;
if (!have_cpuid_p())
return;
cpuid_1_eax = native_cpuid_eax(1);
switch (x86_cpuid_vendor()) {
case X86_VENDOR_INTEL:
if (x86_family(cpuid_1_eax) < 6)
return;
break;
case X86_VENDOR_AMD:
if (x86_family(cpuid_1_eax) < 0x10)
return;
intel = false;
break;
default:
return;
}
if (check_loader_disabled_bsp())
return;
if (intel)
load_ucode_intel_bsp();
else
load_ucode_amd_bsp(cpuid_1_eax);
}
static bool check_loader_disabled_ap(void)
{
#ifdef CONFIG_X86_32
return *((bool *)__pa_nodebug(&dis_ucode_ldr));
#else
return dis_ucode_ldr;
#endif
}
void load_ucode_ap(void)
{
unsigned int cpuid_1_eax;
if (check_loader_disabled_ap())
return;
cpuid_1_eax = native_cpuid_eax(1);
switch (x86_cpuid_vendor()) {
case X86_VENDOR_INTEL:
if (x86_family(cpuid_1_eax) >= 6)
load_ucode_intel_ap();
break;
case X86_VENDOR_AMD:
if (x86_family(cpuid_1_eax) >= 0x10)
load_ucode_amd_ap(cpuid_1_eax);
break;
default:
break;
}
}
static int __init save_microcode_in_initrd(void)
{
struct cpuinfo_x86 *c = &boot_cpu_data;
int ret = -EINVAL;
switch (c->x86_vendor) {
case X86_VENDOR_INTEL:
if (c->x86 >= 6)
ret = save_microcode_in_initrd_intel();
break;
case X86_VENDOR_AMD:
if (c->x86 >= 0x10)
ret = save_microcode_in_initrd_amd(cpuid_eax(1));
break;
default:
break;
}
initrd_gone = true;
return ret;
}
struct cpio_data find_microcode_in_initrd(const char *path, bool use_pa)
{
#ifdef CONFIG_BLK_DEV_INITRD
unsigned long start = 0;
size_t size;
#ifdef CONFIG_X86_32
struct boot_params *params;
if (use_pa)
params = (struct boot_params *)__pa_nodebug(&boot_params);
else
params = &boot_params;
size = params->hdr.ramdisk_size;
/*
* Set start only if we have an initrd image. We cannot use initrd_start
* because it is not set that early yet.
*/
if (size)
start = params->hdr.ramdisk_image;
# else /* CONFIG_X86_64 */
size = (unsigned long)boot_params.ext_ramdisk_size << 32;
size |= boot_params.hdr.ramdisk_size;
if (size) {
start = (unsigned long)boot_params.ext_ramdisk_image << 32;
start |= boot_params.hdr.ramdisk_image;
start += PAGE_OFFSET;
}
# endif
/*
* Fixup the start address: after reserve_initrd() runs, initrd_start
* has the virtual address of the beginning of the initrd. It also
* possibly relocates the ramdisk. In either case, initrd_start contains
* the updated address so use that instead.
*
* initrd_gone is for the hotplug case where we've thrown out initrd
* already.
*/
if (!use_pa) {
if (initrd_gone)
return (struct cpio_data){ NULL, 0, "" };
if (initrd_start)
start = initrd_start;
} else {
/*
* The picture with physical addresses is a bit different: we
* need to get the *physical* address to which the ramdisk was
* relocated, i.e., relocated_ramdisk (not initrd_start) and
* since we're running from physical addresses, we need to access
* relocated_ramdisk through its *physical* address too.
*/
u64 *rr = (u64 *)__pa_nodebug(&relocated_ramdisk);
if (*rr)
start = *rr;
}
return find_cpio_data(path, (void *)start, size, NULL);
#else /* !CONFIG_BLK_DEV_INITRD */
return (struct cpio_data){ NULL, 0, "" };
#endif
}
void reload_early_microcode(void)
{
int vendor, family;
vendor = x86_cpuid_vendor();
family = x86_cpuid_family();
switch (vendor) {
case X86_VENDOR_INTEL:
if (family >= 6)
reload_ucode_intel();
break;
case X86_VENDOR_AMD:
if (family >= 0x10)
reload_ucode_amd();
break;
default:
break;
}
}
/* fake device for request_firmware */
static struct platform_device *microcode_pdev;
#ifdef CONFIG_MICROCODE_LATE_LOADING
/*
* Late loading dance. Why the heavy-handed stomp_machine effort?
*
* - HT siblings must be idle and not execute other code while the other sibling
* is loading microcode in order to avoid any negative interactions caused by
* the loading.
*
* - In addition, microcode update on the cores must be serialized until this
* requirement can be relaxed in the future. Right now, this is conservative
* and good.
*/
#define SPINUNIT 100 /* 100 nsec */
static int check_online_cpus(void)
{
unsigned int cpu;
/*
* Make sure all CPUs are online. It's fine for SMT to be disabled if
* all the primary threads are still online.
*/
for_each_present_cpu(cpu) {
if (topology_is_primary_thread(cpu) && !cpu_online(cpu)) {
pr_err("Not all CPUs online, aborting microcode update.\n");
return -EINVAL;
}
}
return 0;
}
static atomic_t late_cpus_in;
static atomic_t late_cpus_out;
static int __wait_for_cpus(atomic_t *t, long long timeout)
{
int all_cpus = num_online_cpus();
atomic_inc(t);
while (atomic_read(t) < all_cpus) {
if (timeout < SPINUNIT) {
pr_err("Timeout while waiting for CPUs rendezvous, remaining: %d\n",
all_cpus - atomic_read(t));
return 1;
}
ndelay(SPINUNIT);
timeout -= SPINUNIT;
touch_nmi_watchdog();
}
return 0;
}
/*
* Returns:
* < 0 - on error
* 0 - success (no update done or microcode was updated)
*/
static int __reload_late(void *info)
{
int cpu = smp_processor_id();
enum ucode_state err;
int ret = 0;
/*
* Wait for all CPUs to arrive. A load will not be attempted unless all
* CPUs show up.
* */
if (__wait_for_cpus(&late_cpus_in, NSEC_PER_SEC))
return -1;
/*
* On an SMT system, it suffices to load the microcode on one sibling of
* the core because the microcode engine is shared between the threads.
* Synchronization still needs to take place so that no concurrent
* loading attempts happen on multiple threads of an SMT core. See
* below.
*/
if (cpumask_first(topology_sibling_cpumask(cpu)) == cpu)
err = microcode_ops->apply_microcode(cpu);
else
goto wait_for_siblings;
if (err >= UCODE_NFOUND) {
if (err == UCODE_ERROR)
pr_warn("Error reloading microcode on CPU %d\n", cpu);
ret = -1;
}
wait_for_siblings:
if (__wait_for_cpus(&late_cpus_out, NSEC_PER_SEC))
panic("Timeout during microcode update!\n");
/*
* At least one thread has completed update on each core.
* For others, simply call the update to make sure the
* per-cpu cpuinfo can be updated with right microcode
* revision.
*/
if (cpumask_first(topology_sibling_cpumask(cpu)) != cpu)
err = microcode_ops->apply_microcode(cpu);
return ret;
}
/*
* Reload microcode late on all CPUs. Wait for a sec until they
* all gather together.
*/
static int microcode_reload_late(void)
{
int old = boot_cpu_data.microcode, ret;
pr_err("Attempting late microcode loading - it is dangerous and taints the kernel.\n");
pr_err("You should switch to early loading, if possible.\n");
atomic_set(&late_cpus_in, 0);
atomic_set(&late_cpus_out, 0);
ret = stop_machine_cpuslocked(__reload_late, NULL, cpu_online_mask);
if (ret == 0)
microcode_check();
pr_info("Reload completed, microcode revision: 0x%x -> 0x%x\n",
old, boot_cpu_data.microcode);
return ret;
}
static ssize_t reload_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
enum ucode_state tmp_ret = UCODE_OK;
int bsp = boot_cpu_data.cpu_index;
unsigned long val;
ssize_t ret = 0;
ret = kstrtoul(buf, 0, &val);
if (ret)
return ret;
if (val != 1)
return size;
cpus_read_lock();
ret = check_online_cpus();
if (ret)
goto put;
tmp_ret = microcode_ops->request_microcode_fw(bsp, µcode_pdev->dev);
if (tmp_ret != UCODE_NEW)
goto put;
mutex_lock(µcode_mutex);
ret = microcode_reload_late();
mutex_unlock(µcode_mutex);
put:
cpus_read_unlock();
if (ret == 0)
ret = size;
add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
return ret;
}
static DEVICE_ATTR_WO(reload);
#endif
static ssize_t version_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ucode_cpu_info *uci = ucode_cpu_info + dev->id;
return sprintf(buf, "0x%x\n", uci->cpu_sig.rev);
}
static ssize_t pf_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ucode_cpu_info *uci = ucode_cpu_info + dev->id;
return sprintf(buf, "0x%x\n", uci->cpu_sig.pf);
}
static DEVICE_ATTR(version, 0444, version_show, NULL);
static DEVICE_ATTR(processor_flags, 0444, pf_show, NULL);
static struct attribute *mc_default_attrs[] = {
&dev_attr_version.attr,
&dev_attr_processor_flags.attr,
NULL
};
static const struct attribute_group mc_attr_group = {
.attrs = mc_default_attrs,
.name = "microcode",
};
static void microcode_fini_cpu(int cpu)
{
if (microcode_ops->microcode_fini_cpu)
microcode_ops->microcode_fini_cpu(cpu);
}
static enum ucode_state microcode_init_cpu(int cpu)
{
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
memset(uci, 0, sizeof(*uci));
microcode_ops->collect_cpu_info(cpu, &uci->cpu_sig);
return microcode_ops->apply_microcode(cpu);
}
/**
* microcode_bsp_resume - Update boot CPU microcode during resume.
*/
void microcode_bsp_resume(void)
{
int cpu = smp_processor_id();
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
if (uci->mc)
microcode_ops->apply_microcode(cpu);
else
reload_early_microcode();
}
static struct syscore_ops mc_syscore_ops = {
.resume = microcode_bsp_resume,
};
static int mc_cpu_starting(unsigned int cpu)
{
enum ucode_state err = microcode_ops->apply_microcode(cpu);
pr_debug("%s: CPU%d, err: %d\n", __func__, cpu, err);
return err == UCODE_ERROR;
}
static int mc_cpu_online(unsigned int cpu)
{
struct device *dev = get_cpu_device(cpu);
if (sysfs_create_group(&dev->kobj, &mc_attr_group))
pr_err("Failed to create group for CPU%d\n", cpu);
return 0;
}
static int mc_cpu_down_prep(unsigned int cpu)
{
struct device *dev;
dev = get_cpu_device(cpu);
microcode_fini_cpu(cpu);
/* Suspend is in progress, only remove the interface */
sysfs_remove_group(&dev->kobj, &mc_attr_group);
pr_debug("%s: CPU%d\n", __func__, cpu);
return 0;
}
static void setup_online_cpu(struct work_struct *work)
{
int cpu = smp_processor_id();
enum ucode_state err;
err = microcode_init_cpu(cpu);
if (err == UCODE_ERROR) {
pr_err("Error applying microcode on CPU%d\n", cpu);
return;
}
mc_cpu_online(cpu);
}
static struct attribute *cpu_root_microcode_attrs[] = {
#ifdef CONFIG_MICROCODE_LATE_LOADING
&dev_attr_reload.attr,
#endif
NULL
};
static const struct attribute_group cpu_root_microcode_group = {
.name = "microcode",
.attrs = cpu_root_microcode_attrs,
};
static int __init microcode_init(void)
{
struct cpuinfo_x86 *c = &boot_cpu_data;
int error;
if (dis_ucode_ldr)
return -EINVAL;
if (c->x86_vendor == X86_VENDOR_INTEL)
microcode_ops = init_intel_microcode();
else if (c->x86_vendor == X86_VENDOR_AMD)
microcode_ops = init_amd_microcode();
else
pr_err("no support for this CPU vendor\n");
if (!microcode_ops)
return -ENODEV;
microcode_pdev = platform_device_register_simple("microcode", -1, NULL, 0);
if (IS_ERR(microcode_pdev))
return PTR_ERR(microcode_pdev);
error = sysfs_create_group(&cpu_subsys.dev_root->kobj, &cpu_root_microcode_group);
if (error) {
pr_err("Error creating microcode group!\n");
goto out_pdev;
}
/* Do per-CPU setup */
schedule_on_each_cpu(setup_online_cpu);
register_syscore_ops(&mc_syscore_ops);
cpuhp_setup_state_nocalls(CPUHP_AP_MICROCODE_LOADER, "x86/microcode:starting",
mc_cpu_starting, NULL);
cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "x86/microcode:online",
mc_cpu_online, mc_cpu_down_prep);
pr_info("Microcode Update Driver: v%s.", DRIVER_VERSION);
return 0;
out_pdev:
platform_device_unregister(microcode_pdev);
return error;
}
fs_initcall(save_microcode_in_initrd);
late_initcall(microcode_init);