Contributors: 38
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Borislav Petkov |
1792 |
57.77% |
41 |
37.61% |
Fenghua Yu |
229 |
7.38% |
4 |
3.67% |
Dmitry Adamushko |
166 |
5.35% |
5 |
4.59% |
Jann Horn |
135 |
4.35% |
1 |
0.92% |
Shaohua Li |
133 |
4.29% |
3 |
2.75% |
Linus Torvalds (pre-git) |
118 |
3.80% |
7 |
6.42% |
Peter Oruba |
81 |
2.61% |
6 |
5.50% |
jia zhang |
75 |
2.42% |
3 |
2.75% |
Chen Yu |
39 |
1.26% |
1 |
0.92% |
Dimitri Sivanich |
35 |
1.13% |
1 |
0.92% |
Tigran Aivazian |
34 |
1.10% |
1 |
0.92% |
Ashok Raj |
34 |
1.10% |
2 |
1.83% |
David Woodhouse |
32 |
1.03% |
1 |
0.92% |
Andi Kleen |
20 |
0.64% |
2 |
1.83% |
Srivatsa S. Bhat |
18 |
0.58% |
1 |
0.92% |
Dave Jones |
18 |
0.58% |
3 |
2.75% |
Jithu Joseph |
18 |
0.58% |
5 |
4.59% |
Filippo Sironi |
16 |
0.52% |
1 |
0.92% |
Joe Perches |
13 |
0.42% |
1 |
0.92% |
Jun'ichi Nomura |
12 |
0.39% |
2 |
1.83% |
Ingo Molnar |
12 |
0.39% |
1 |
0.92% |
Quentin Casasnovas |
12 |
0.39% |
1 |
0.92% |
Prarit Bhargava |
10 |
0.32% |
1 |
0.92% |
Duan Zhenzhong |
8 |
0.26% |
1 |
0.92% |
Jan Beulich |
7 |
0.23% |
1 |
0.92% |
Dan Carpenter |
6 |
0.19% |
1 |
0.92% |
Mike Travis |
5 |
0.16% |
1 |
0.92% |
Jacob Shin |
5 |
0.16% |
1 |
0.92% |
Tom Rini |
4 |
0.13% |
1 |
0.92% |
Henrique de Moraes Holschuh |
3 |
0.10% |
1 |
0.92% |
Brian Gerst |
3 |
0.10% |
1 |
0.92% |
Thomas Gleixner |
2 |
0.06% |
1 |
0.92% |
Linus Torvalds |
2 |
0.06% |
1 |
0.92% |
Takashi Iwai |
1 |
0.03% |
1 |
0.92% |
Gustavo A. R. Silva |
1 |
0.03% |
1 |
0.92% |
Colin Ian King |
1 |
0.03% |
1 |
0.92% |
Al Viro |
1 |
0.03% |
1 |
0.92% |
Hannes Eder |
1 |
0.03% |
1 |
0.92% |
Total |
3102 |
|
109 |
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Intel CPU Microcode Update Driver for Linux
*
* Copyright (C) 2000-2006 Tigran Aivazian <aivazian.tigran@gmail.com>
* 2006 Shaohua Li <shaohua.li@intel.com>
*
* Intel CPU microcode early update for Linux
*
* Copyright (C) 2012 Fenghua Yu <fenghua.yu@intel.com>
* H Peter Anvin" <hpa@zytor.com>
*/
/*
* This needs to be before all headers so that pr_debug in printk.h doesn't turn
* printk calls into no_printk().
*
*#define DEBUG
*/
#define pr_fmt(fmt) "microcode: " fmt
#include <linux/earlycpio.h>
#include <linux/firmware.h>
#include <linux/uaccess.h>
#include <linux/vmalloc.h>
#include <linux/initrd.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/uio.h>
#include <linux/mm.h>
#include <asm/microcode_intel.h>
#include <asm/intel-family.h>
#include <asm/processor.h>
#include <asm/tlbflush.h>
#include <asm/setup.h>
#include <asm/msr.h>
static const char ucode_path[] = "kernel/x86/microcode/GenuineIntel.bin";
/* Current microcode patch used in early patching on the APs. */
static struct microcode_intel *intel_ucode_patch;
/* last level cache size per core */
static int llc_size_per_core;
/*
* Returns 1 if update has been found, 0 otherwise.
*/
static int has_newer_microcode(void *mc, unsigned int csig, int cpf, int new_rev)
{
struct microcode_header_intel *mc_hdr = mc;
if (mc_hdr->rev <= new_rev)
return 0;
return intel_find_matching_signature(mc, csig, cpf);
}
static struct ucode_patch *memdup_patch(void *data, unsigned int size)
{
struct ucode_patch *p;
p = kzalloc(sizeof(struct ucode_patch), GFP_KERNEL);
if (!p)
return NULL;
p->data = kmemdup(data, size, GFP_KERNEL);
if (!p->data) {
kfree(p);
return NULL;
}
return p;
}
static void save_microcode_patch(struct ucode_cpu_info *uci, void *data, unsigned int size)
{
struct microcode_header_intel *mc_hdr, *mc_saved_hdr;
struct ucode_patch *iter, *tmp, *p = NULL;
bool prev_found = false;
unsigned int sig, pf;
mc_hdr = (struct microcode_header_intel *)data;
list_for_each_entry_safe(iter, tmp, µcode_cache, plist) {
mc_saved_hdr = (struct microcode_header_intel *)iter->data;
sig = mc_saved_hdr->sig;
pf = mc_saved_hdr->pf;
if (intel_find_matching_signature(data, sig, pf)) {
prev_found = true;
if (mc_hdr->rev <= mc_saved_hdr->rev)
continue;
p = memdup_patch(data, size);
if (!p)
pr_err("Error allocating buffer %p\n", data);
else {
list_replace(&iter->plist, &p->plist);
kfree(iter->data);
kfree(iter);
}
}
}
/*
* There weren't any previous patches found in the list cache; save the
* newly found.
*/
if (!prev_found) {
p = memdup_patch(data, size);
if (!p)
pr_err("Error allocating buffer for %p\n", data);
else
list_add_tail(&p->plist, µcode_cache);
}
if (!p)
return;
if (!intel_find_matching_signature(p->data, uci->cpu_sig.sig, uci->cpu_sig.pf))
return;
/*
* Save for early loading. On 32-bit, that needs to be a physical
* address as the APs are running from physical addresses, before
* paging has been enabled.
*/
if (IS_ENABLED(CONFIG_X86_32))
intel_ucode_patch = (struct microcode_intel *)__pa_nodebug(p->data);
else
intel_ucode_patch = p->data;
}
/*
* Get microcode matching with BSP's model. Only CPUs with the same model as
* BSP can stay in the platform.
*/
static struct microcode_intel *
scan_microcode(void *data, size_t size, struct ucode_cpu_info *uci, bool save)
{
struct microcode_header_intel *mc_header;
struct microcode_intel *patch = NULL;
unsigned int mc_size;
while (size) {
if (size < sizeof(struct microcode_header_intel))
break;
mc_header = (struct microcode_header_intel *)data;
mc_size = get_totalsize(mc_header);
if (!mc_size ||
mc_size > size ||
intel_microcode_sanity_check(data, false, MC_HEADER_TYPE_MICROCODE) < 0)
break;
size -= mc_size;
if (!intel_find_matching_signature(data, uci->cpu_sig.sig,
uci->cpu_sig.pf)) {
data += mc_size;
continue;
}
if (save) {
save_microcode_patch(uci, data, mc_size);
goto next;
}
if (!patch) {
if (!has_newer_microcode(data,
uci->cpu_sig.sig,
uci->cpu_sig.pf,
uci->cpu_sig.rev))
goto next;
} else {
struct microcode_header_intel *phdr = &patch->hdr;
if (!has_newer_microcode(data,
phdr->sig,
phdr->pf,
phdr->rev))
goto next;
}
/* We have a newer patch, save it. */
patch = data;
next:
data += mc_size;
}
if (size)
return NULL;
return patch;
}
static void show_saved_mc(void)
{
#ifdef DEBUG
int i = 0, j;
unsigned int sig, pf, rev, total_size, data_size, date;
struct ucode_cpu_info uci;
struct ucode_patch *p;
if (list_empty(µcode_cache)) {
pr_debug("no microcode data saved.\n");
return;
}
intel_cpu_collect_info(&uci);
sig = uci.cpu_sig.sig;
pf = uci.cpu_sig.pf;
rev = uci.cpu_sig.rev;
pr_debug("CPU: sig=0x%x, pf=0x%x, rev=0x%x\n", sig, pf, rev);
list_for_each_entry(p, µcode_cache, plist) {
struct microcode_header_intel *mc_saved_header;
struct extended_sigtable *ext_header;
struct extended_signature *ext_sig;
int ext_sigcount;
mc_saved_header = (struct microcode_header_intel *)p->data;
sig = mc_saved_header->sig;
pf = mc_saved_header->pf;
rev = mc_saved_header->rev;
date = mc_saved_header->date;
total_size = get_totalsize(mc_saved_header);
data_size = get_datasize(mc_saved_header);
pr_debug("mc_saved[%d]: sig=0x%x, pf=0x%x, rev=0x%x, total size=0x%x, date = %04x-%02x-%02x\n",
i++, sig, pf, rev, total_size,
date & 0xffff,
date >> 24,
(date >> 16) & 0xff);
/* Look for ext. headers: */
if (total_size <= data_size + MC_HEADER_SIZE)
continue;
ext_header = (void *)mc_saved_header + data_size + MC_HEADER_SIZE;
ext_sigcount = ext_header->count;
ext_sig = (void *)ext_header + EXT_HEADER_SIZE;
for (j = 0; j < ext_sigcount; j++) {
sig = ext_sig->sig;
pf = ext_sig->pf;
pr_debug("\tExtended[%d]: sig=0x%x, pf=0x%x\n",
j, sig, pf);
ext_sig++;
}
}
#endif
}
/*
* Save this microcode patch. It will be loaded early when a CPU is
* hot-added or resumes.
*/
static void save_mc_for_early(struct ucode_cpu_info *uci, u8 *mc, unsigned int size)
{
/* Synchronization during CPU hotplug. */
static DEFINE_MUTEX(x86_cpu_microcode_mutex);
mutex_lock(&x86_cpu_microcode_mutex);
save_microcode_patch(uci, mc, size);
show_saved_mc();
mutex_unlock(&x86_cpu_microcode_mutex);
}
static bool load_builtin_intel_microcode(struct cpio_data *cp)
{
unsigned int eax = 1, ebx, ecx = 0, edx;
struct firmware fw;
char name[30];
if (IS_ENABLED(CONFIG_X86_32))
return false;
native_cpuid(&eax, &ebx, &ecx, &edx);
sprintf(name, "intel-ucode/%02x-%02x-%02x",
x86_family(eax), x86_model(eax), x86_stepping(eax));
if (firmware_request_builtin(&fw, name)) {
cp->size = fw.size;
cp->data = (void *)fw.data;
return true;
}
return false;
}
/*
* Print ucode update info.
*/
static void
print_ucode_info(struct ucode_cpu_info *uci, unsigned int date)
{
pr_info_once("microcode updated early to revision 0x%x, date = %04x-%02x-%02x\n",
uci->cpu_sig.rev,
date & 0xffff,
date >> 24,
(date >> 16) & 0xff);
}
#ifdef CONFIG_X86_32
static int delay_ucode_info;
static int current_mc_date;
/*
* Print early updated ucode info after printk works. This is delayed info dump.
*/
void show_ucode_info_early(void)
{
struct ucode_cpu_info uci;
if (delay_ucode_info) {
intel_cpu_collect_info(&uci);
print_ucode_info(&uci, current_mc_date);
delay_ucode_info = 0;
}
}
/*
* At this point, we can not call printk() yet. Delay printing microcode info in
* show_ucode_info_early() until printk() works.
*/
static void print_ucode(struct ucode_cpu_info *uci)
{
struct microcode_intel *mc;
int *delay_ucode_info_p;
int *current_mc_date_p;
mc = uci->mc;
if (!mc)
return;
delay_ucode_info_p = (int *)__pa_nodebug(&delay_ucode_info);
current_mc_date_p = (int *)__pa_nodebug(¤t_mc_date);
*delay_ucode_info_p = 1;
*current_mc_date_p = mc->hdr.date;
}
#else
static inline void print_ucode(struct ucode_cpu_info *uci)
{
struct microcode_intel *mc;
mc = uci->mc;
if (!mc)
return;
print_ucode_info(uci, mc->hdr.date);
}
#endif
static int apply_microcode_early(struct ucode_cpu_info *uci, bool early)
{
struct microcode_intel *mc;
u32 rev;
mc = uci->mc;
if (!mc)
return 0;
/*
* Save us the MSR write below - which is a particular expensive
* operation - when the other hyperthread has updated the microcode
* already.
*/
rev = intel_get_microcode_revision();
if (rev >= mc->hdr.rev) {
uci->cpu_sig.rev = rev;
return UCODE_OK;
}
/*
* Writeback and invalidate caches before updating microcode to avoid
* internal issues depending on what the microcode is updating.
*/
native_wbinvd();
/* write microcode via MSR 0x79 */
native_wrmsrl(MSR_IA32_UCODE_WRITE, (unsigned long)mc->bits);
rev = intel_get_microcode_revision();
if (rev != mc->hdr.rev)
return -1;
uci->cpu_sig.rev = rev;
if (early)
print_ucode(uci);
else
print_ucode_info(uci, mc->hdr.date);
return 0;
}
int __init save_microcode_in_initrd_intel(void)
{
struct ucode_cpu_info uci;
struct cpio_data cp;
/*
* initrd is going away, clear patch ptr. We will scan the microcode one
* last time before jettisoning and save a patch, if found. Then we will
* update that pointer too, with a stable patch address to use when
* resuming the cores.
*/
intel_ucode_patch = NULL;
if (!load_builtin_intel_microcode(&cp))
cp = find_microcode_in_initrd(ucode_path, false);
if (!(cp.data && cp.size))
return 0;
intel_cpu_collect_info(&uci);
scan_microcode(cp.data, cp.size, &uci, true);
show_saved_mc();
return 0;
}
/*
* @res_patch, output: a pointer to the patch we found.
*/
static struct microcode_intel *__load_ucode_intel(struct ucode_cpu_info *uci)
{
static const char *path;
struct cpio_data cp;
bool use_pa;
if (IS_ENABLED(CONFIG_X86_32)) {
path = (const char *)__pa_nodebug(ucode_path);
use_pa = true;
} else {
path = ucode_path;
use_pa = false;
}
/* try built-in microcode first */
if (!load_builtin_intel_microcode(&cp))
cp = find_microcode_in_initrd(path, use_pa);
if (!(cp.data && cp.size))
return NULL;
intel_cpu_collect_info(uci);
return scan_microcode(cp.data, cp.size, uci, false);
}
void __init load_ucode_intel_bsp(void)
{
struct microcode_intel *patch;
struct ucode_cpu_info uci;
patch = __load_ucode_intel(&uci);
if (!patch)
return;
uci.mc = patch;
apply_microcode_early(&uci, true);
}
void load_ucode_intel_ap(void)
{
struct microcode_intel *patch, **iup;
struct ucode_cpu_info uci;
if (IS_ENABLED(CONFIG_X86_32))
iup = (struct microcode_intel **) __pa_nodebug(&intel_ucode_patch);
else
iup = &intel_ucode_patch;
if (!*iup) {
patch = __load_ucode_intel(&uci);
if (!patch)
return;
*iup = patch;
}
uci.mc = *iup;
apply_microcode_early(&uci, true);
}
static struct microcode_intel *find_patch(struct ucode_cpu_info *uci)
{
struct microcode_header_intel *phdr;
struct ucode_patch *iter, *tmp;
list_for_each_entry_safe(iter, tmp, µcode_cache, plist) {
phdr = (struct microcode_header_intel *)iter->data;
if (phdr->rev <= uci->cpu_sig.rev)
continue;
if (!intel_find_matching_signature(phdr,
uci->cpu_sig.sig,
uci->cpu_sig.pf))
continue;
return iter->data;
}
return NULL;
}
void reload_ucode_intel(void)
{
struct microcode_intel *p;
struct ucode_cpu_info uci;
intel_cpu_collect_info(&uci);
p = find_patch(&uci);
if (!p)
return;
uci.mc = p;
apply_microcode_early(&uci, false);
}
static int collect_cpu_info(int cpu_num, struct cpu_signature *csig)
{
struct cpuinfo_x86 *c = &cpu_data(cpu_num);
unsigned int val[2];
memset(csig, 0, sizeof(*csig));
csig->sig = cpuid_eax(0x00000001);
if ((c->x86_model >= 5) || (c->x86 > 6)) {
/* get processor flags from MSR 0x17 */
rdmsr(MSR_IA32_PLATFORM_ID, val[0], val[1]);
csig->pf = 1 << ((val[1] >> 18) & 7);
}
csig->rev = c->microcode;
return 0;
}
static enum ucode_state apply_microcode_intel(int cpu)
{
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
struct cpuinfo_x86 *c = &cpu_data(cpu);
bool bsp = c->cpu_index == boot_cpu_data.cpu_index;
struct microcode_intel *mc;
enum ucode_state ret;
static int prev_rev;
u32 rev;
/* We should bind the task to the CPU */
if (WARN_ON(raw_smp_processor_id() != cpu))
return UCODE_ERROR;
/* Look for a newer patch in our cache: */
mc = find_patch(uci);
if (!mc) {
mc = uci->mc;
if (!mc)
return UCODE_NFOUND;
}
/*
* Save us the MSR write below - which is a particular expensive
* operation - when the other hyperthread has updated the microcode
* already.
*/
rev = intel_get_microcode_revision();
if (rev >= mc->hdr.rev) {
ret = UCODE_OK;
goto out;
}
/*
* Writeback and invalidate caches before updating microcode to avoid
* internal issues depending on what the microcode is updating.
*/
native_wbinvd();
/* write microcode via MSR 0x79 */
wrmsrl(MSR_IA32_UCODE_WRITE, (unsigned long)mc->bits);
rev = intel_get_microcode_revision();
if (rev != mc->hdr.rev) {
pr_err("CPU%d update to revision 0x%x failed\n",
cpu, mc->hdr.rev);
return UCODE_ERROR;
}
if (bsp && rev != prev_rev) {
pr_info("updated to revision 0x%x, date = %04x-%02x-%02x\n",
rev,
mc->hdr.date & 0xffff,
mc->hdr.date >> 24,
(mc->hdr.date >> 16) & 0xff);
prev_rev = rev;
}
ret = UCODE_UPDATED;
out:
uci->cpu_sig.rev = rev;
c->microcode = rev;
/* Update boot_cpu_data's revision too, if we're on the BSP: */
if (bsp)
boot_cpu_data.microcode = rev;
return ret;
}
static enum ucode_state generic_load_microcode(int cpu, struct iov_iter *iter)
{
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
unsigned int curr_mc_size = 0, new_mc_size = 0;
enum ucode_state ret = UCODE_OK;
int new_rev = uci->cpu_sig.rev;
u8 *new_mc = NULL, *mc = NULL;
unsigned int csig, cpf;
while (iov_iter_count(iter)) {
struct microcode_header_intel mc_header;
unsigned int mc_size, data_size;
u8 *data;
if (!copy_from_iter_full(&mc_header, sizeof(mc_header), iter)) {
pr_err("error! Truncated or inaccessible header in microcode data file\n");
break;
}
mc_size = get_totalsize(&mc_header);
if (mc_size < sizeof(mc_header)) {
pr_err("error! Bad data in microcode data file (totalsize too small)\n");
break;
}
data_size = mc_size - sizeof(mc_header);
if (data_size > iov_iter_count(iter)) {
pr_err("error! Bad data in microcode data file (truncated file?)\n");
break;
}
/* For performance reasons, reuse mc area when possible */
if (!mc || mc_size > curr_mc_size) {
vfree(mc);
mc = vmalloc(mc_size);
if (!mc)
break;
curr_mc_size = mc_size;
}
memcpy(mc, &mc_header, sizeof(mc_header));
data = mc + sizeof(mc_header);
if (!copy_from_iter_full(data, data_size, iter) ||
intel_microcode_sanity_check(mc, true, MC_HEADER_TYPE_MICROCODE) < 0) {
break;
}
csig = uci->cpu_sig.sig;
cpf = uci->cpu_sig.pf;
if (has_newer_microcode(mc, csig, cpf, new_rev)) {
vfree(new_mc);
new_rev = mc_header.rev;
new_mc = mc;
new_mc_size = mc_size;
mc = NULL; /* trigger new vmalloc */
ret = UCODE_NEW;
}
}
vfree(mc);
if (iov_iter_count(iter)) {
vfree(new_mc);
return UCODE_ERROR;
}
if (!new_mc)
return UCODE_NFOUND;
vfree(uci->mc);
uci->mc = (struct microcode_intel *)new_mc;
/*
* If early loading microcode is supported, save this mc into
* permanent memory. So it will be loaded early when a CPU is hot added
* or resumes.
*/
save_mc_for_early(uci, new_mc, new_mc_size);
pr_debug("CPU%d found a matching microcode update with version 0x%x (current=0x%x)\n",
cpu, new_rev, uci->cpu_sig.rev);
return ret;
}
static bool is_blacklisted(unsigned int cpu)
{
struct cpuinfo_x86 *c = &cpu_data(cpu);
/*
* Late loading on model 79 with microcode revision less than 0x0b000021
* and LLC size per core bigger than 2.5MB may result in a system hang.
* This behavior is documented in item BDF90, #334165 (Intel Xeon
* Processor E7-8800/4800 v4 Product Family).
*/
if (c->x86 == 6 &&
c->x86_model == INTEL_FAM6_BROADWELL_X &&
c->x86_stepping == 0x01 &&
llc_size_per_core > 2621440 &&
c->microcode < 0x0b000021) {
pr_err_once("Erratum BDF90: late loading with revision < 0x0b000021 (0x%x) disabled.\n", c->microcode);
pr_err_once("Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
return true;
}
return false;
}
static enum ucode_state request_microcode_fw(int cpu, struct device *device)
{
struct cpuinfo_x86 *c = &cpu_data(cpu);
const struct firmware *firmware;
struct iov_iter iter;
enum ucode_state ret;
struct kvec kvec;
char name[30];
if (is_blacklisted(cpu))
return UCODE_NFOUND;
sprintf(name, "intel-ucode/%02x-%02x-%02x",
c->x86, c->x86_model, c->x86_stepping);
if (request_firmware_direct(&firmware, name, device)) {
pr_debug("data file %s load failed\n", name);
return UCODE_NFOUND;
}
kvec.iov_base = (void *)firmware->data;
kvec.iov_len = firmware->size;
iov_iter_kvec(&iter, ITER_SOURCE, &kvec, 1, firmware->size);
ret = generic_load_microcode(cpu, &iter);
release_firmware(firmware);
return ret;
}
static struct microcode_ops microcode_intel_ops = {
.request_microcode_fw = request_microcode_fw,
.collect_cpu_info = collect_cpu_info,
.apply_microcode = apply_microcode_intel,
};
static int __init calc_llc_size_per_core(struct cpuinfo_x86 *c)
{
u64 llc_size = c->x86_cache_size * 1024ULL;
do_div(llc_size, c->x86_max_cores);
return (int)llc_size;
}
struct microcode_ops * __init init_intel_microcode(void)
{
struct cpuinfo_x86 *c = &boot_cpu_data;
if (c->x86_vendor != X86_VENDOR_INTEL || c->x86 < 6 ||
cpu_has(c, X86_FEATURE_IA64)) {
pr_err("Intel CPU family 0x%x not supported\n", c->x86);
return NULL;
}
llc_size_per_core = calc_llc_size_per_core(c);
return µcode_intel_ops;
}