Contributors: 44
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Dave Jones |
978 |
43.76% |
1 |
1.33% |
Jan Beulich |
178 |
7.96% |
1 |
1.33% |
Linus Torvalds (pre-git) |
163 |
7.29% |
8 |
10.67% |
Andrew Lutomirski |
137 |
6.13% |
1 |
1.33% |
Patrick Mochel |
127 |
5.68% |
3 |
4.00% |
Yinghai Lu |
94 |
4.21% |
5 |
6.67% |
Shaohua Li |
78 |
3.49% |
2 |
2.67% |
Luis R. Rodriguez |
64 |
2.86% |
4 |
5.33% |
Juergen Gross |
56 |
2.51% |
5 |
6.67% |
Jaswinder Singh Rajput |
50 |
2.24% |
2 |
2.67% |
Suresh B. Siddha |
41 |
1.83% |
3 |
4.00% |
Andrew Morton |
32 |
1.43% |
3 |
4.00% |
Linus Torvalds |
23 |
1.03% |
2 |
2.67% |
Alan Cox |
22 |
0.98% |
1 |
1.33% |
Jesse Barnes |
18 |
0.81% |
1 |
1.33% |
Bernhard Kaindl |
17 |
0.76% |
1 |
1.33% |
Greg Kroah-Hartman |
16 |
0.72% |
1 |
1.33% |
Joe Perches |
15 |
0.67% |
1 |
1.33% |
Ingo Molnar |
15 |
0.67% |
4 |
5.33% |
Dave Hansen |
12 |
0.54% |
1 |
1.33% |
Fenghua Yu |
11 |
0.49% |
1 |
1.33% |
Chen Yucong |
10 |
0.45% |
1 |
1.33% |
Paul Jimenez |
10 |
0.45% |
1 |
1.33% |
Rafael J. Wysocki |
10 |
0.45% |
1 |
1.33% |
Thomas Gleixner |
7 |
0.31% |
1 |
1.33% |
Andi Kleen |
7 |
0.31% |
1 |
1.33% |
Pu Wen |
5 |
0.22% |
1 |
1.33% |
Lee Revell |
5 |
0.22% |
1 |
1.33% |
Borislav Petkov |
5 |
0.22% |
2 |
2.67% |
Sebastian Andrzej Siewior |
4 |
0.18% |
1 |
1.33% |
Suravee Suthikulpanit |
3 |
0.13% |
1 |
1.33% |
Peter Zijlstra |
3 |
0.13% |
1 |
1.33% |
Sergei Shtylyov |
3 |
0.13% |
1 |
1.33% |
Andreas Herrmann |
2 |
0.09% |
1 |
1.33% |
Sheng Yang |
2 |
0.09% |
1 |
1.33% |
Joerg Roedel |
2 |
0.09% |
1 |
1.33% |
jia zhang |
2 |
0.09% |
1 |
1.33% |
Toshi Kani |
2 |
0.09% |
1 |
1.33% |
Andries E. Brouwer |
1 |
0.04% |
1 |
1.33% |
Olaf Hering |
1 |
0.04% |
1 |
1.33% |
Emese Revfy |
1 |
0.04% |
1 |
1.33% |
Paul Gortmaker |
1 |
0.04% |
1 |
1.33% |
Sam Ravnborg |
1 |
0.04% |
1 |
1.33% |
Mauro Carvalho Chehab |
1 |
0.04% |
1 |
1.33% |
Total |
2235 |
|
75 |
|
/* Generic MTRR (Memory Type Range Register) driver.
Copyright (C) 1997-2000 Richard Gooch
Copyright (c) 2002 Patrick Mochel
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
Richard Gooch may be reached by email at rgooch@atnf.csiro.au
The postal address is:
Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
Source: "Pentium Pro Family Developer's Manual, Volume 3:
Operating System Writer's Guide" (Intel document number 242692),
section 11.11.7
This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
on 6-7 March 2002.
Source: Intel Architecture Software Developers Manual, Volume 3:
System Programming Guide; Section 9.11. (1997 edition - PPro).
*/
#include <linux/types.h> /* FIXME: kvm_para.h needs this */
#include <linux/stop_machine.h>
#include <linux/kvm_para.h>
#include <linux/uaccess.h>
#include <linux/export.h>
#include <linux/mutex.h>
#include <linux/init.h>
#include <linux/sort.h>
#include <linux/cpu.h>
#include <linux/pci.h>
#include <linux/smp.h>
#include <linux/syscore_ops.h>
#include <linux/rcupdate.h>
#include <asm/cacheinfo.h>
#include <asm/cpufeature.h>
#include <asm/e820/api.h>
#include <asm/mtrr.h>
#include <asm/msr.h>
#include <asm/memtype.h>
#include "mtrr.h"
/* arch_phys_wc_add returns an MTRR register index plus this offset. */
#define MTRR_TO_PHYS_WC_OFFSET 1000
u32 num_var_ranges;
static bool mtrr_enabled(void)
{
return !!mtrr_if;
}
unsigned int mtrr_usage_table[MTRR_MAX_VAR_RANGES];
static DEFINE_MUTEX(mtrr_mutex);
u64 size_or_mask, size_and_mask;
const struct mtrr_ops *mtrr_if;
/* Returns non-zero if we have the write-combining memory type */
static int have_wrcomb(void)
{
struct pci_dev *dev;
dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL);
if (dev != NULL) {
/*
* ServerWorks LE chipsets < rev 6 have problems with
* write-combining. Don't allow it and leave room for other
* chipsets to be tagged
*/
if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
dev->device == PCI_DEVICE_ID_SERVERWORKS_LE &&
dev->revision <= 5) {
pr_info("Serverworks LE rev < 6 detected. Write-combining disabled.\n");
pci_dev_put(dev);
return 0;
}
/*
* Intel 450NX errata # 23. Non ascending cacheline evictions to
* write combining memory may resulting in data corruption
*/
if (dev->vendor == PCI_VENDOR_ID_INTEL &&
dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
pr_info("Intel 450NX MMC detected. Write-combining disabled.\n");
pci_dev_put(dev);
return 0;
}
pci_dev_put(dev);
}
return mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0;
}
/* This function returns the number of variable MTRRs */
static void __init set_num_var_ranges(bool use_generic)
{
unsigned long config = 0, dummy;
if (use_generic)
rdmsr(MSR_MTRRcap, config, dummy);
else if (is_cpu(AMD) || is_cpu(HYGON))
config = 2;
else if (is_cpu(CYRIX) || is_cpu(CENTAUR))
config = 8;
num_var_ranges = config & 0xff;
}
static void __init init_table(void)
{
int i, max;
max = num_var_ranges;
for (i = 0; i < max; i++)
mtrr_usage_table[i] = 1;
}
struct set_mtrr_data {
unsigned long smp_base;
unsigned long smp_size;
unsigned int smp_reg;
mtrr_type smp_type;
};
/**
* mtrr_rendezvous_handler - Work done in the synchronization handler. Executed
* by all the CPUs.
* @info: pointer to mtrr configuration data
*
* Returns nothing.
*/
static int mtrr_rendezvous_handler(void *info)
{
struct set_mtrr_data *data = info;
mtrr_if->set(data->smp_reg, data->smp_base,
data->smp_size, data->smp_type);
return 0;
}
static inline int types_compatible(mtrr_type type1, mtrr_type type2)
{
return type1 == MTRR_TYPE_UNCACHABLE ||
type2 == MTRR_TYPE_UNCACHABLE ||
(type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
(type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
}
/**
* set_mtrr - update mtrrs on all processors
* @reg: mtrr in question
* @base: mtrr base
* @size: mtrr size
* @type: mtrr type
*
* This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
*
* 1. Queue work to do the following on all processors:
* 2. Disable Interrupts
* 3. Wait for all procs to do so
* 4. Enter no-fill cache mode
* 5. Flush caches
* 6. Clear PGE bit
* 7. Flush all TLBs
* 8. Disable all range registers
* 9. Update the MTRRs
* 10. Enable all range registers
* 11. Flush all TLBs and caches again
* 12. Enter normal cache mode and reenable caching
* 13. Set PGE
* 14. Wait for buddies to catch up
* 15. Enable interrupts.
*
* What does that mean for us? Well, stop_machine() will ensure that
* the rendezvous handler is started on each CPU. And in lockstep they
* do the state transition of disabling interrupts, updating MTRR's
* (the CPU vendors may each do it differently, so we call mtrr_if->set()
* callback and let them take care of it.) and enabling interrupts.
*
* Note that the mechanism is the same for UP systems, too; all the SMP stuff
* becomes nops.
*/
static void
set_mtrr(unsigned int reg, unsigned long base, unsigned long size, mtrr_type type)
{
struct set_mtrr_data data = { .smp_reg = reg,
.smp_base = base,
.smp_size = size,
.smp_type = type
};
stop_machine(mtrr_rendezvous_handler, &data, cpu_online_mask);
}
static void set_mtrr_cpuslocked(unsigned int reg, unsigned long base,
unsigned long size, mtrr_type type)
{
struct set_mtrr_data data = { .smp_reg = reg,
.smp_base = base,
.smp_size = size,
.smp_type = type
};
stop_machine_cpuslocked(mtrr_rendezvous_handler, &data, cpu_online_mask);
}
/**
* mtrr_add_page - Add a memory type region
* @base: Physical base address of region in pages (in units of 4 kB!)
* @size: Physical size of region in pages (4 kB)
* @type: Type of MTRR desired
* @increment: If this is true do usage counting on the region
*
* Memory type region registers control the caching on newer Intel and
* non Intel processors. This function allows drivers to request an
* MTRR is added. The details and hardware specifics of each processor's
* implementation are hidden from the caller, but nevertheless the
* caller should expect to need to provide a power of two size on an
* equivalent power of two boundary.
*
* If the region cannot be added either because all regions are in use
* or the CPU cannot support it a negative value is returned. On success
* the register number for this entry is returned, but should be treated
* as a cookie only.
*
* On a multiprocessor machine the changes are made to all processors.
* This is required on x86 by the Intel processors.
*
* The available types are
*
* %MTRR_TYPE_UNCACHABLE - No caching
*
* %MTRR_TYPE_WRBACK - Write data back in bursts whenever
*
* %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
*
* %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
*
* BUGS: Needs a quiet flag for the cases where drivers do not mind
* failures and do not wish system log messages to be sent.
*/
int mtrr_add_page(unsigned long base, unsigned long size,
unsigned int type, bool increment)
{
unsigned long lbase, lsize;
int i, replace, error;
mtrr_type ltype;
if (!mtrr_enabled())
return -ENXIO;
error = mtrr_if->validate_add_page(base, size, type);
if (error)
return error;
if (type >= MTRR_NUM_TYPES) {
pr_warn("type: %u invalid\n", type);
return -EINVAL;
}
/* If the type is WC, check that this processor supports it */
if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
pr_warn("your processor doesn't support write-combining\n");
return -ENOSYS;
}
if (!size) {
pr_warn("zero sized request\n");
return -EINVAL;
}
if ((base | (base + size - 1)) >>
(boot_cpu_data.x86_phys_bits - PAGE_SHIFT)) {
pr_warn("base or size exceeds the MTRR width\n");
return -EINVAL;
}
error = -EINVAL;
replace = -1;
/* No CPU hotplug when we change MTRR entries */
cpus_read_lock();
/* Search for existing MTRR */
mutex_lock(&mtrr_mutex);
for (i = 0; i < num_var_ranges; ++i) {
mtrr_if->get(i, &lbase, &lsize, <ype);
if (!lsize || base > lbase + lsize - 1 ||
base + size - 1 < lbase)
continue;
/*
* At this point we know there is some kind of
* overlap/enclosure
*/
if (base < lbase || base + size - 1 > lbase + lsize - 1) {
if (base <= lbase &&
base + size - 1 >= lbase + lsize - 1) {
/* New region encloses an existing region */
if (type == ltype) {
replace = replace == -1 ? i : -2;
continue;
} else if (types_compatible(type, ltype))
continue;
}
pr_warn("0x%lx000,0x%lx000 overlaps existing 0x%lx000,0x%lx000\n", base, size, lbase,
lsize);
goto out;
}
/* New region is enclosed by an existing region */
if (ltype != type) {
if (types_compatible(type, ltype))
continue;
pr_warn("type mismatch for %lx000,%lx000 old: %s new: %s\n",
base, size, mtrr_attrib_to_str(ltype),
mtrr_attrib_to_str(type));
goto out;
}
if (increment)
++mtrr_usage_table[i];
error = i;
goto out;
}
/* Search for an empty MTRR */
i = mtrr_if->get_free_region(base, size, replace);
if (i >= 0) {
set_mtrr_cpuslocked(i, base, size, type);
if (likely(replace < 0)) {
mtrr_usage_table[i] = 1;
} else {
mtrr_usage_table[i] = mtrr_usage_table[replace];
if (increment)
mtrr_usage_table[i]++;
if (unlikely(replace != i)) {
set_mtrr_cpuslocked(replace, 0, 0, 0);
mtrr_usage_table[replace] = 0;
}
}
} else {
pr_info("no more MTRRs available\n");
}
error = i;
out:
mutex_unlock(&mtrr_mutex);
cpus_read_unlock();
return error;
}
static int mtrr_check(unsigned long base, unsigned long size)
{
if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
pr_warn("size and base must be multiples of 4 kiB\n");
pr_debug("size: 0x%lx base: 0x%lx\n", size, base);
dump_stack();
return -1;
}
return 0;
}
/**
* mtrr_add - Add a memory type region
* @base: Physical base address of region
* @size: Physical size of region
* @type: Type of MTRR desired
* @increment: If this is true do usage counting on the region
*
* Memory type region registers control the caching on newer Intel and
* non Intel processors. This function allows drivers to request an
* MTRR is added. The details and hardware specifics of each processor's
* implementation are hidden from the caller, but nevertheless the
* caller should expect to need to provide a power of two size on an
* equivalent power of two boundary.
*
* If the region cannot be added either because all regions are in use
* or the CPU cannot support it a negative value is returned. On success
* the register number for this entry is returned, but should be treated
* as a cookie only.
*
* On a multiprocessor machine the changes are made to all processors.
* This is required on x86 by the Intel processors.
*
* The available types are
*
* %MTRR_TYPE_UNCACHABLE - No caching
*
* %MTRR_TYPE_WRBACK - Write data back in bursts whenever
*
* %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
*
* %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
*
* BUGS: Needs a quiet flag for the cases where drivers do not mind
* failures and do not wish system log messages to be sent.
*/
int mtrr_add(unsigned long base, unsigned long size, unsigned int type,
bool increment)
{
if (!mtrr_enabled())
return -ENODEV;
if (mtrr_check(base, size))
return -EINVAL;
return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
increment);
}
/**
* mtrr_del_page - delete a memory type region
* @reg: Register returned by mtrr_add
* @base: Physical base address
* @size: Size of region
*
* If register is supplied then base and size are ignored. This is
* how drivers should call it.
*
* Releases an MTRR region. If the usage count drops to zero the
* register is freed and the region returns to default state.
* On success the register is returned, on failure a negative error
* code.
*/
int mtrr_del_page(int reg, unsigned long base, unsigned long size)
{
int i, max;
mtrr_type ltype;
unsigned long lbase, lsize;
int error = -EINVAL;
if (!mtrr_enabled())
return -ENODEV;
max = num_var_ranges;
/* No CPU hotplug when we change MTRR entries */
cpus_read_lock();
mutex_lock(&mtrr_mutex);
if (reg < 0) {
/* Search for existing MTRR */
for (i = 0; i < max; ++i) {
mtrr_if->get(i, &lbase, &lsize, <ype);
if (lbase == base && lsize == size) {
reg = i;
break;
}
}
if (reg < 0) {
pr_debug("no MTRR for %lx000,%lx000 found\n",
base, size);
goto out;
}
}
if (reg >= max) {
pr_warn("register: %d too big\n", reg);
goto out;
}
mtrr_if->get(reg, &lbase, &lsize, <ype);
if (lsize < 1) {
pr_warn("MTRR %d not used\n", reg);
goto out;
}
if (mtrr_usage_table[reg] < 1) {
pr_warn("reg: %d has count=0\n", reg);
goto out;
}
if (--mtrr_usage_table[reg] < 1)
set_mtrr_cpuslocked(reg, 0, 0, 0);
error = reg;
out:
mutex_unlock(&mtrr_mutex);
cpus_read_unlock();
return error;
}
/**
* mtrr_del - delete a memory type region
* @reg: Register returned by mtrr_add
* @base: Physical base address
* @size: Size of region
*
* If register is supplied then base and size are ignored. This is
* how drivers should call it.
*
* Releases an MTRR region. If the usage count drops to zero the
* register is freed and the region returns to default state.
* On success the register is returned, on failure a negative error
* code.
*/
int mtrr_del(int reg, unsigned long base, unsigned long size)
{
if (!mtrr_enabled())
return -ENODEV;
if (mtrr_check(base, size))
return -EINVAL;
return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
}
/**
* arch_phys_wc_add - add a WC MTRR and handle errors if PAT is unavailable
* @base: Physical base address
* @size: Size of region
*
* If PAT is available, this does nothing. If PAT is unavailable, it
* attempts to add a WC MTRR covering size bytes starting at base and
* logs an error if this fails.
*
* The called should provide a power of two size on an equivalent
* power of two boundary.
*
* Drivers must store the return value to pass to mtrr_del_wc_if_needed,
* but drivers should not try to interpret that return value.
*/
int arch_phys_wc_add(unsigned long base, unsigned long size)
{
int ret;
if (pat_enabled() || !mtrr_enabled())
return 0; /* Success! (We don't need to do anything.) */
ret = mtrr_add(base, size, MTRR_TYPE_WRCOMB, true);
if (ret < 0) {
pr_warn("Failed to add WC MTRR for [%p-%p]; performance may suffer.",
(void *)base, (void *)(base + size - 1));
return ret;
}
return ret + MTRR_TO_PHYS_WC_OFFSET;
}
EXPORT_SYMBOL(arch_phys_wc_add);
/*
* arch_phys_wc_del - undoes arch_phys_wc_add
* @handle: Return value from arch_phys_wc_add
*
* This cleans up after mtrr_add_wc_if_needed.
*
* The API guarantees that mtrr_del_wc_if_needed(error code) and
* mtrr_del_wc_if_needed(0) do nothing.
*/
void arch_phys_wc_del(int handle)
{
if (handle >= 1) {
WARN_ON(handle < MTRR_TO_PHYS_WC_OFFSET);
mtrr_del(handle - MTRR_TO_PHYS_WC_OFFSET, 0, 0);
}
}
EXPORT_SYMBOL(arch_phys_wc_del);
/*
* arch_phys_wc_index - translates arch_phys_wc_add's return value
* @handle: Return value from arch_phys_wc_add
*
* This will turn the return value from arch_phys_wc_add into an mtrr
* index suitable for debugging.
*
* Note: There is no legitimate use for this function, except possibly
* in printk line. Alas there is an illegitimate use in some ancient
* drm ioctls.
*/
int arch_phys_wc_index(int handle)
{
if (handle < MTRR_TO_PHYS_WC_OFFSET)
return -1;
else
return handle - MTRR_TO_PHYS_WC_OFFSET;
}
EXPORT_SYMBOL_GPL(arch_phys_wc_index);
/* The suspend/resume methods are only for CPU without MTRR. CPU using generic
* MTRR driver doesn't require this
*/
struct mtrr_value {
mtrr_type ltype;
unsigned long lbase;
unsigned long lsize;
};
static struct mtrr_value mtrr_value[MTRR_MAX_VAR_RANGES];
static int mtrr_save(void)
{
int i;
for (i = 0; i < num_var_ranges; i++) {
mtrr_if->get(i, &mtrr_value[i].lbase,
&mtrr_value[i].lsize,
&mtrr_value[i].ltype);
}
return 0;
}
static void mtrr_restore(void)
{
int i;
for (i = 0; i < num_var_ranges; i++) {
if (mtrr_value[i].lsize) {
set_mtrr(i, mtrr_value[i].lbase,
mtrr_value[i].lsize,
mtrr_value[i].ltype);
}
}
}
static struct syscore_ops mtrr_syscore_ops = {
.suspend = mtrr_save,
.resume = mtrr_restore,
};
int __initdata changed_by_mtrr_cleanup;
#define SIZE_OR_MASK_BITS(n) (~((1ULL << ((n) - PAGE_SHIFT)) - 1))
/**
* mtrr_bp_init - initialize mtrrs on the boot CPU
*
* This needs to be called early; before any of the other CPUs are
* initialized (i.e. before smp_init()).
*
*/
void __init mtrr_bp_init(void)
{
const char *why = "(not available)";
u32 phys_addr;
phys_addr = 32;
if (boot_cpu_has(X86_FEATURE_MTRR)) {
mtrr_if = &generic_mtrr_ops;
size_or_mask = SIZE_OR_MASK_BITS(36);
size_and_mask = 0x00f00000;
phys_addr = 36;
/*
* This is an AMD specific MSR, but we assume(hope?) that
* Intel will implement it too when they extend the address
* bus of the Xeon.
*/
if (cpuid_eax(0x80000000) >= 0x80000008) {
phys_addr = cpuid_eax(0x80000008) & 0xff;
/* CPUID workaround for Intel 0F33/0F34 CPU */
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
boot_cpu_data.x86 == 0xF &&
boot_cpu_data.x86_model == 0x3 &&
(boot_cpu_data.x86_stepping == 0x3 ||
boot_cpu_data.x86_stepping == 0x4))
phys_addr = 36;
size_or_mask = SIZE_OR_MASK_BITS(phys_addr);
size_and_mask = ~size_or_mask & 0xfffff00000ULL;
} else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR &&
boot_cpu_data.x86 == 6) {
/*
* VIA C* family have Intel style MTRRs,
* but don't support PAE
*/
size_or_mask = SIZE_OR_MASK_BITS(32);
size_and_mask = 0;
phys_addr = 32;
}
} else {
switch (boot_cpu_data.x86_vendor) {
case X86_VENDOR_AMD:
if (cpu_feature_enabled(X86_FEATURE_K6_MTRR)) {
/* Pre-Athlon (K6) AMD CPU MTRRs */
mtrr_if = &amd_mtrr_ops;
size_or_mask = SIZE_OR_MASK_BITS(32);
size_and_mask = 0;
}
break;
case X86_VENDOR_CENTAUR:
if (cpu_feature_enabled(X86_FEATURE_CENTAUR_MCR)) {
mtrr_if = ¢aur_mtrr_ops;
size_or_mask = SIZE_OR_MASK_BITS(32);
size_and_mask = 0;
}
break;
case X86_VENDOR_CYRIX:
if (cpu_feature_enabled(X86_FEATURE_CYRIX_ARR)) {
mtrr_if = &cyrix_mtrr_ops;
size_or_mask = SIZE_OR_MASK_BITS(32);
size_and_mask = 0;
}
break;
default:
break;
}
}
if (mtrr_enabled()) {
set_num_var_ranges(mtrr_if == &generic_mtrr_ops);
init_table();
if (mtrr_if == &generic_mtrr_ops) {
/* BIOS may override */
if (get_mtrr_state()) {
memory_caching_control |= CACHE_MTRR;
changed_by_mtrr_cleanup = mtrr_cleanup(phys_addr);
} else {
mtrr_if = NULL;
why = "by BIOS";
}
}
}
if (!mtrr_enabled())
pr_info("MTRRs disabled %s\n", why);
}
/**
* mtrr_save_state - Save current fixed-range MTRR state of the first
* cpu in cpu_online_mask.
*/
void mtrr_save_state(void)
{
int first_cpu;
if (!mtrr_enabled())
return;
first_cpu = cpumask_first(cpu_online_mask);
smp_call_function_single(first_cpu, mtrr_save_fixed_ranges, NULL, 1);
}
static int __init mtrr_init_finialize(void)
{
if (!mtrr_enabled())
return 0;
if (memory_caching_control & CACHE_MTRR) {
if (!changed_by_mtrr_cleanup)
mtrr_state_warn();
return 0;
}
/*
* The CPU has no MTRR and seems to not support SMP. They have
* specific drivers, we use a tricky method to support
* suspend/resume for them.
*
* TBD: is there any system with such CPU which supports
* suspend/resume? If no, we should remove the code.
*/
register_syscore_ops(&mtrr_syscore_ops);
return 0;
}
subsys_initcall(mtrr_init_finialize);