Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Andrey Smetanin | 4371 | 34.89% | 22 | 8.53% |
Vitaly Kuznetsov | 4365 | 34.84% | 99 | 38.37% |
Jon Doron | 772 | 6.16% | 3 | 1.16% |
Roman Kagan | 728 | 5.81% | 7 | 2.71% |
Paolo Bonzini | 634 | 5.06% | 9 | 3.49% |
Siddharth Chandrasekaran | 383 | 3.06% | 3 | 1.16% |
Sean Christopherson | 379 | 3.03% | 17 | 6.59% |
Avi Kivity | 213 | 1.70% | 8 | 3.10% |
Ladi Prosek | 85 | 0.68% | 3 | 1.16% |
Joao Martins | 84 | 0.67% | 2 | 0.78% |
Gleb Natapov | 61 | 0.49% | 9 | 3.49% |
Radim Krčmář | 37 | 0.30% | 3 | 1.16% |
Marcelo Tosatti | 32 | 0.26% | 6 | 2.33% |
Marios Pomonis | 32 | 0.26% | 1 | 0.39% |
Carsten Otte | 28 | 0.22% | 4 | 1.55% |
Wanpeng Li | 25 | 0.20% | 3 | 1.16% |
Xiantao Zhang | 25 | 0.20% | 3 | 1.16% |
Michael S. Tsirkin | 24 | 0.19% | 3 | 1.16% |
Nadav Amit | 21 | 0.17% | 1 | 0.39% |
Arnd Bergmann | 19 | 0.15% | 1 | 0.39% |
Xiao Guangrong | 15 | 0.12% | 1 | 0.39% |
Ben-Ami Yassour | 15 | 0.12% | 1 | 0.39% |
Dan Carpenter | 13 | 0.10% | 1 | 0.39% |
Steve Rutherford | 12 | 0.10% | 1 | 0.39% |
Joseph Salisbury | 10 | 0.08% | 1 | 0.39% |
Frédéric Weisbecker | 9 | 0.07% | 2 | 0.78% |
Yury Norov | 8 | 0.06% | 3 | 1.16% |
Feng Wu | 8 | 0.06% | 2 | 0.78% |
Marc Zyngier | 8 | 0.06% | 1 | 0.39% |
Jan Kiszka | 7 | 0.06% | 2 | 0.78% |
Heiko Carstens | 7 | 0.06% | 1 | 0.39% |
Joerg Roedel | 7 | 0.06% | 1 | 0.39% |
John Johansen | 7 | 0.06% | 1 | 0.39% |
Rusty Russell | 6 | 0.05% | 1 | 0.39% |
Christian Bornträger | 6 | 0.05% | 1 | 0.39% |
Jason Baron | 6 | 0.05% | 1 | 0.39% |
Tom Lendacky | 4 | 0.03% | 2 | 0.78% |
Al Viro | 4 | 0.03% | 1 | 0.39% |
Michael Kelley | 4 | 0.03% | 1 | 0.39% |
Qing He | 4 | 0.03% | 1 | 0.39% |
Alexander Graf | 4 | 0.03% | 1 | 0.39% |
Vadim Rozenfeld | 3 | 0.02% | 1 | 0.39% |
Suravee Suthikulpanit | 3 | 0.02% | 1 | 0.39% |
Andre Przywara | 3 | 0.02% | 1 | 0.39% |
Eddie Dong | 3 | 0.02% | 1 | 0.39% |
Gustavo A. R. Silva | 3 | 0.02% | 1 | 0.39% |
Weidong Han | 3 | 0.02% | 1 | 0.39% |
Miaohe Lin | 3 | 0.02% | 2 | 0.78% |
Ingo Molnar | 3 | 0.02% | 1 | 0.39% |
Peter Xu | 3 | 0.02% | 1 | 0.39% |
Glauber de Oliveira Costa | 2 | 0.02% | 1 | 0.39% |
Thomas Gleixner | 2 | 0.02% | 1 | 0.39% |
Longpeng( Mike) | 2 | 0.02% | 2 | 0.78% |
Hollis Blanchard | 2 | 0.02% | 1 | 0.39% |
Yang Zhang | 2 | 0.02% | 1 | 0.39% |
Linus Torvalds | 1 | 0.01% | 1 | 0.39% |
Sheng Yang | 1 | 0.01% | 1 | 0.39% |
Christoffer Dall | 1 | 0.01% | 1 | 0.39% |
Paul Mackerras | 1 | 0.01% | 1 | 0.39% |
Sebastian Andrzej Siewior | 1 | 0.01% | 1 | 0.39% |
Kyle Huey | 1 | 0.01% | 1 | 0.39% |
Jiang Biao | 1 | 0.01% | 1 | 0.39% |
Ben Gardon | 1 | 0.01% | 1 | 0.39% |
Total | 12527 | 258 |
// SPDX-License-Identifier: GPL-2.0-only /* * KVM Microsoft Hyper-V emulation * * derived from arch/x86/kvm/x86.c * * Copyright (C) 2006 Qumranet, Inc. * Copyright (C) 2008 Qumranet, Inc. * Copyright IBM Corporation, 2008 * Copyright 2010 Red Hat, Inc. and/or its affiliates. * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com> * * Authors: * Avi Kivity <avi@qumranet.com> * Yaniv Kamay <yaniv@qumranet.com> * Amit Shah <amit.shah@qumranet.com> * Ben-Ami Yassour <benami@il.ibm.com> * Andrey Smetanin <asmetanin@virtuozzo.com> */ #include "x86.h" #include "lapic.h" #include "ioapic.h" #include "cpuid.h" #include "hyperv.h" #include "mmu.h" #include "xen.h" #include <linux/cpu.h> #include <linux/kvm_host.h> #include <linux/highmem.h> #include <linux/sched/cputime.h> #include <linux/spinlock.h> #include <linux/eventfd.h> #include <asm/apicdef.h> #include <asm/mshyperv.h> #include <trace/events/kvm.h> #include "trace.h" #include "irq.h" #include "fpu.h" #define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, HV_VCPUS_PER_SPARSE_BANK) static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer, bool vcpu_kick); static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint) { return atomic64_read(&synic->sint[sint]); } static inline int synic_get_sint_vector(u64 sint_value) { if (sint_value & HV_SYNIC_SINT_MASKED) return -1; return sint_value & HV_SYNIC_SINT_VECTOR_MASK; } static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic, int vector) { int i; for (i = 0; i < ARRAY_SIZE(synic->sint); i++) { if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector) return true; } return false; } static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic, int vector) { int i; u64 sint_value; for (i = 0; i < ARRAY_SIZE(synic->sint); i++) { sint_value = synic_read_sint(synic, i); if (synic_get_sint_vector(sint_value) == vector && sint_value & HV_SYNIC_SINT_AUTO_EOI) return true; } return false; } static void synic_update_vector(struct kvm_vcpu_hv_synic *synic, int vector) { struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic); struct kvm_hv *hv = to_kvm_hv(vcpu->kvm); bool auto_eoi_old, auto_eoi_new; if (vector < HV_SYNIC_FIRST_VALID_VECTOR) return; if (synic_has_vector_connected(synic, vector)) __set_bit(vector, synic->vec_bitmap); else __clear_bit(vector, synic->vec_bitmap); auto_eoi_old = !bitmap_empty(synic->auto_eoi_bitmap, 256); if (synic_has_vector_auto_eoi(synic, vector)) __set_bit(vector, synic->auto_eoi_bitmap); else __clear_bit(vector, synic->auto_eoi_bitmap); auto_eoi_new = !bitmap_empty(synic->auto_eoi_bitmap, 256); if (auto_eoi_old == auto_eoi_new) return; if (!enable_apicv) return; down_write(&vcpu->kvm->arch.apicv_update_lock); if (auto_eoi_new) hv->synic_auto_eoi_used++; else hv->synic_auto_eoi_used--; /* * Inhibit APICv if any vCPU is using SynIC's AutoEOI, which relies on * the hypervisor to manually inject IRQs. */ __kvm_set_or_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_HYPERV, !!hv->synic_auto_eoi_used); up_write(&vcpu->kvm->arch.apicv_update_lock); } static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint, u64 data, bool host) { int vector, old_vector; bool masked; vector = data & HV_SYNIC_SINT_VECTOR_MASK; masked = data & HV_SYNIC_SINT_MASKED; /* * Valid vectors are 16-255, however, nested Hyper-V attempts to write * default '0x10000' value on boot and this should not #GP. We need to * allow zero-initing the register from host as well. */ if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked) return 1; /* * Guest may configure multiple SINTs to use the same vector, so * we maintain a bitmap of vectors handled by synic, and a * bitmap of vectors with auto-eoi behavior. The bitmaps are * updated here, and atomically queried on fast paths. */ old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK; atomic64_set(&synic->sint[sint], data); synic_update_vector(synic, old_vector); synic_update_vector(synic, vector); /* Load SynIC vectors into EOI exit bitmap */ kvm_make_request(KVM_REQ_SCAN_IOAPIC, hv_synic_to_vcpu(synic)); return 0; } static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx) { struct kvm_vcpu *vcpu = NULL; unsigned long i; if (vpidx >= KVM_MAX_VCPUS) return NULL; vcpu = kvm_get_vcpu(kvm, vpidx); if (vcpu && kvm_hv_get_vpindex(vcpu) == vpidx) return vcpu; kvm_for_each_vcpu(i, vcpu, kvm) if (kvm_hv_get_vpindex(vcpu) == vpidx) return vcpu; return NULL; } static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx) { struct kvm_vcpu *vcpu; struct kvm_vcpu_hv_synic *synic; vcpu = get_vcpu_by_vpidx(kvm, vpidx); if (!vcpu || !to_hv_vcpu(vcpu)) return NULL; synic = to_hv_synic(vcpu); return (synic->active) ? synic : NULL; } static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint) { struct kvm *kvm = vcpu->kvm; struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu); struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); struct kvm_vcpu_hv_stimer *stimer; int gsi, idx; trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint); /* Try to deliver pending Hyper-V SynIC timers messages */ for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) { stimer = &hv_vcpu->stimer[idx]; if (stimer->msg_pending && stimer->config.enable && !stimer->config.direct_mode && stimer->config.sintx == sint) stimer_mark_pending(stimer, false); } idx = srcu_read_lock(&kvm->irq_srcu); gsi = atomic_read(&synic->sint_to_gsi[sint]); if (gsi != -1) kvm_notify_acked_gsi(kvm, gsi); srcu_read_unlock(&kvm->irq_srcu, idx); } static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr) { struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic); struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC; hv_vcpu->exit.u.synic.msr = msr; hv_vcpu->exit.u.synic.control = synic->control; hv_vcpu->exit.u.synic.evt_page = synic->evt_page; hv_vcpu->exit.u.synic.msg_page = synic->msg_page; kvm_make_request(KVM_REQ_HV_EXIT, vcpu); } static int synic_set_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 data, bool host) { struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic); int ret; if (!synic->active && (!host || data)) return 1; trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host); ret = 0; switch (msr) { case HV_X64_MSR_SCONTROL: synic->control = data; if (!host) synic_exit(synic, msr); break; case HV_X64_MSR_SVERSION: if (!host) { ret = 1; break; } synic->version = data; break; case HV_X64_MSR_SIEFP: if ((data & HV_SYNIC_SIEFP_ENABLE) && !host && !synic->dont_zero_synic_pages) if (kvm_clear_guest(vcpu->kvm, data & PAGE_MASK, PAGE_SIZE)) { ret = 1; break; } synic->evt_page = data; if (!host) synic_exit(synic, msr); break; case HV_X64_MSR_SIMP: if ((data & HV_SYNIC_SIMP_ENABLE) && !host && !synic->dont_zero_synic_pages) if (kvm_clear_guest(vcpu->kvm, data & PAGE_MASK, PAGE_SIZE)) { ret = 1; break; } synic->msg_page = data; if (!host) synic_exit(synic, msr); break; case HV_X64_MSR_EOM: { int i; if (!synic->active) break; for (i = 0; i < ARRAY_SIZE(synic->sint); i++) kvm_hv_notify_acked_sint(vcpu, i); break; } case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host); break; default: ret = 1; break; } return ret; } static bool kvm_hv_is_syndbg_enabled(struct kvm_vcpu *vcpu) { struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); return hv_vcpu->cpuid_cache.syndbg_cap_eax & HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING; } static int kvm_hv_syndbg_complete_userspace(struct kvm_vcpu *vcpu) { struct kvm_hv *hv = to_kvm_hv(vcpu->kvm); if (vcpu->run->hyperv.u.syndbg.msr == HV_X64_MSR_SYNDBG_CONTROL) hv->hv_syndbg.control.status = vcpu->run->hyperv.u.syndbg.status; return 1; } static void syndbg_exit(struct kvm_vcpu *vcpu, u32 msr) { struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu); struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNDBG; hv_vcpu->exit.u.syndbg.msr = msr; hv_vcpu->exit.u.syndbg.control = syndbg->control.control; hv_vcpu->exit.u.syndbg.send_page = syndbg->control.send_page; hv_vcpu->exit.u.syndbg.recv_page = syndbg->control.recv_page; hv_vcpu->exit.u.syndbg.pending_page = syndbg->control.pending_page; vcpu->arch.complete_userspace_io = kvm_hv_syndbg_complete_userspace; kvm_make_request(KVM_REQ_HV_EXIT, vcpu); } static int syndbg_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host) { struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu); if (!kvm_hv_is_syndbg_enabled(vcpu) && !host) return 1; trace_kvm_hv_syndbg_set_msr(vcpu->vcpu_id, to_hv_vcpu(vcpu)->vp_index, msr, data); switch (msr) { case HV_X64_MSR_SYNDBG_CONTROL: syndbg->control.control = data; if (!host) syndbg_exit(vcpu, msr); break; case HV_X64_MSR_SYNDBG_STATUS: syndbg->control.status = data; break; case HV_X64_MSR_SYNDBG_SEND_BUFFER: syndbg->control.send_page = data; break; case HV_X64_MSR_SYNDBG_RECV_BUFFER: syndbg->control.recv_page = data; break; case HV_X64_MSR_SYNDBG_PENDING_BUFFER: syndbg->control.pending_page = data; if (!host) syndbg_exit(vcpu, msr); break; case HV_X64_MSR_SYNDBG_OPTIONS: syndbg->options = data; break; default: break; } return 0; } static int syndbg_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) { struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu); if (!kvm_hv_is_syndbg_enabled(vcpu) && !host) return 1; switch (msr) { case HV_X64_MSR_SYNDBG_CONTROL: *pdata = syndbg->control.control; break; case HV_X64_MSR_SYNDBG_STATUS: *pdata = syndbg->control.status; break; case HV_X64_MSR_SYNDBG_SEND_BUFFER: *pdata = syndbg->control.send_page; break; case HV_X64_MSR_SYNDBG_RECV_BUFFER: *pdata = syndbg->control.recv_page; break; case HV_X64_MSR_SYNDBG_PENDING_BUFFER: *pdata = syndbg->control.pending_page; break; case HV_X64_MSR_SYNDBG_OPTIONS: *pdata = syndbg->options; break; default: break; } trace_kvm_hv_syndbg_get_msr(vcpu->vcpu_id, kvm_hv_get_vpindex(vcpu), msr, *pdata); return 0; } static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata, bool host) { int ret; if (!synic->active && !host) return 1; ret = 0; switch (msr) { case HV_X64_MSR_SCONTROL: *pdata = synic->control; break; case HV_X64_MSR_SVERSION: *pdata = synic->version; break; case HV_X64_MSR_SIEFP: *pdata = synic->evt_page; break; case HV_X64_MSR_SIMP: *pdata = synic->msg_page; break; case HV_X64_MSR_EOM: *pdata = 0; break; case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: *pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]); break; default: ret = 1; break; } return ret; } static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint) { struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic); struct kvm_lapic_irq irq; int ret, vector; if (KVM_BUG_ON(!lapic_in_kernel(vcpu), vcpu->kvm)) return -EINVAL; if (sint >= ARRAY_SIZE(synic->sint)) return -EINVAL; vector = synic_get_sint_vector(synic_read_sint(synic, sint)); if (vector < 0) return -ENOENT; memset(&irq, 0, sizeof(irq)); irq.shorthand = APIC_DEST_SELF; irq.dest_mode = APIC_DEST_PHYSICAL; irq.delivery_mode = APIC_DM_FIXED; irq.vector = vector; irq.level = 1; ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL); trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret); return ret; } int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint) { struct kvm_vcpu_hv_synic *synic; synic = synic_get(kvm, vpidx); if (!synic) return -EINVAL; return synic_set_irq(synic, sint); } void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector) { struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu); int i; trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector); for (i = 0; i < ARRAY_SIZE(synic->sint); i++) if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector) kvm_hv_notify_acked_sint(vcpu, i); } static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi) { struct kvm_vcpu_hv_synic *synic; synic = synic_get(kvm, vpidx); if (!synic) return -EINVAL; if (sint >= ARRAY_SIZE(synic->sint_to_gsi)) return -EINVAL; atomic_set(&synic->sint_to_gsi[sint], gsi); return 0; } void kvm_hv_irq_routing_update(struct kvm *kvm) { struct kvm_irq_routing_table *irq_rt; struct kvm_kernel_irq_routing_entry *e; u32 gsi; irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu, lockdep_is_held(&kvm->irq_lock)); for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) { hlist_for_each_entry(e, &irq_rt->map[gsi], link) { if (e->type == KVM_IRQ_ROUTING_HV_SINT) kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu, e->hv_sint.sint, gsi); } } } static void synic_init(struct kvm_vcpu_hv_synic *synic) { int i; memset(synic, 0, sizeof(*synic)); synic->version = HV_SYNIC_VERSION_1; for (i = 0; i < ARRAY_SIZE(synic->sint); i++) { atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED); atomic_set(&synic->sint_to_gsi[i], -1); } } static u64 get_time_ref_counter(struct kvm *kvm) { struct kvm_hv *hv = to_kvm_hv(kvm); struct kvm_vcpu *vcpu; u64 tsc; /* * Fall back to get_kvmclock_ns() when TSC page hasn't been set up, * is broken, disabled or being updated. */ if (hv->hv_tsc_page_status != HV_TSC_PAGE_SET) return div_u64(get_kvmclock_ns(kvm), 100); vcpu = kvm_get_vcpu(kvm, 0); tsc = kvm_read_l1_tsc(vcpu, rdtsc()); return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64) + hv->tsc_ref.tsc_offset; } static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer, bool vcpu_kick) { struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer); set_bit(stimer->index, to_hv_vcpu(vcpu)->stimer_pending_bitmap); kvm_make_request(KVM_REQ_HV_STIMER, vcpu); if (vcpu_kick) kvm_vcpu_kick(vcpu); } static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer) { struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer); trace_kvm_hv_stimer_cleanup(hv_stimer_to_vcpu(stimer)->vcpu_id, stimer->index); hrtimer_cancel(&stimer->timer); clear_bit(stimer->index, to_hv_vcpu(vcpu)->stimer_pending_bitmap); stimer->msg_pending = false; stimer->exp_time = 0; } static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer) { struct kvm_vcpu_hv_stimer *stimer; stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer); trace_kvm_hv_stimer_callback(hv_stimer_to_vcpu(stimer)->vcpu_id, stimer->index); stimer_mark_pending(stimer, true); return HRTIMER_NORESTART; } /* * stimer_start() assumptions: * a) stimer->count is not equal to 0 * b) stimer->config has HV_STIMER_ENABLE flag */ static int stimer_start(struct kvm_vcpu_hv_stimer *stimer) { u64 time_now; ktime_t ktime_now; time_now = get_time_ref_counter(hv_stimer_to_vcpu(stimer)->kvm); ktime_now = ktime_get(); if (stimer->config.periodic) { if (stimer->exp_time) { if (time_now >= stimer->exp_time) { u64 remainder; div64_u64_rem(time_now - stimer->exp_time, stimer->count, &remainder); stimer->exp_time = time_now + (stimer->count - remainder); } } else stimer->exp_time = time_now + stimer->count; trace_kvm_hv_stimer_start_periodic( hv_stimer_to_vcpu(stimer)->vcpu_id, stimer->index, time_now, stimer->exp_time); hrtimer_start(&stimer->timer, ktime_add_ns(ktime_now, 100 * (stimer->exp_time - time_now)), HRTIMER_MODE_ABS); return 0; } stimer->exp_time = stimer->count; if (time_now >= stimer->count) { /* * Expire timer according to Hypervisor Top-Level Functional * specification v4(15.3.1): * "If a one shot is enabled and the specified count is in * the past, it will expire immediately." */ stimer_mark_pending(stimer, false); return 0; } trace_kvm_hv_stimer_start_one_shot(hv_stimer_to_vcpu(stimer)->vcpu_id, stimer->index, time_now, stimer->count); hrtimer_start(&stimer->timer, ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)), HRTIMER_MODE_ABS); return 0; } static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config, bool host) { union hv_stimer_config new_config = {.as_uint64 = config}, old_config = {.as_uint64 = stimer->config.as_uint64}; struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer); struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu); if (!synic->active && (!host || config)) return 1; if (unlikely(!host && hv_vcpu->enforce_cpuid && new_config.direct_mode && !(hv_vcpu->cpuid_cache.features_edx & HV_STIMER_DIRECT_MODE_AVAILABLE))) return 1; trace_kvm_hv_stimer_set_config(hv_stimer_to_vcpu(stimer)->vcpu_id, stimer->index, config, host); stimer_cleanup(stimer); if (old_config.enable && !new_config.direct_mode && new_config.sintx == 0) new_config.enable = 0; stimer->config.as_uint64 = new_config.as_uint64; if (stimer->config.enable) stimer_mark_pending(stimer, false); return 0; } static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count, bool host) { struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer); struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu); if (!synic->active && (!host || count)) return 1; trace_kvm_hv_stimer_set_count(hv_stimer_to_vcpu(stimer)->vcpu_id, stimer->index, count, host); stimer_cleanup(stimer); stimer->count = count; if (stimer->count == 0) stimer->config.enable = 0; else if (stimer->config.auto_enable) stimer->config.enable = 1; if (stimer->config.enable) stimer_mark_pending(stimer, false); return 0; } static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig) { *pconfig = stimer->config.as_uint64; return 0; } static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount) { *pcount = stimer->count; return 0; } static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint, struct hv_message *src_msg, bool no_retry) { struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic); int msg_off = offsetof(struct hv_message_page, sint_message[sint]); gfn_t msg_page_gfn; struct hv_message_header hv_hdr; int r; if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE)) return -ENOENT; msg_page_gfn = synic->msg_page >> PAGE_SHIFT; /* * Strictly following the spec-mandated ordering would assume setting * .msg_pending before checking .message_type. However, this function * is only called in vcpu context so the entire update is atomic from * guest POV and thus the exact order here doesn't matter. */ r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type, msg_off + offsetof(struct hv_message, header.message_type), sizeof(hv_hdr.message_type)); if (r < 0) return r; if (hv_hdr.message_type != HVMSG_NONE) { if (no_retry) return 0; hv_hdr.message_flags.msg_pending = 1; r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_flags, msg_off + offsetof(struct hv_message, header.message_flags), sizeof(hv_hdr.message_flags)); if (r < 0) return r; return -EAGAIN; } r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off, sizeof(src_msg->header) + src_msg->header.payload_size); if (r < 0) return r; r = synic_set_irq(synic, sint); if (r < 0) return r; if (r == 0) return -EFAULT; return 0; } static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer) { struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer); struct hv_message *msg = &stimer->msg; struct hv_timer_message_payload *payload = (struct hv_timer_message_payload *)&msg->u.payload; /* * To avoid piling up periodic ticks, don't retry message * delivery for them (within "lazy" lost ticks policy). */ bool no_retry = stimer->config.periodic; payload->expiration_time = stimer->exp_time; payload->delivery_time = get_time_ref_counter(vcpu->kvm); return synic_deliver_msg(to_hv_synic(vcpu), stimer->config.sintx, msg, no_retry); } static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer) { struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer); struct kvm_lapic_irq irq = { .delivery_mode = APIC_DM_FIXED, .vector = stimer->config.apic_vector }; if (lapic_in_kernel(vcpu)) return !kvm_apic_set_irq(vcpu, &irq, NULL); return 0; } static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer) { int r, direct = stimer->config.direct_mode; stimer->msg_pending = true; if (!direct) r = stimer_send_msg(stimer); else r = stimer_notify_direct(stimer); trace_kvm_hv_stimer_expiration(hv_stimer_to_vcpu(stimer)->vcpu_id, stimer->index, direct, r); if (!r) { stimer->msg_pending = false; if (!(stimer->config.periodic)) stimer->config.enable = 0; } } void kvm_hv_process_stimers(struct kvm_vcpu *vcpu) { struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); struct kvm_vcpu_hv_stimer *stimer; u64 time_now, exp_time; int i; if (!hv_vcpu) return; for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++) if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) { stimer = &hv_vcpu->stimer[i]; if (stimer->config.enable) { exp_time = stimer->exp_time; if (exp_time) { time_now = get_time_ref_counter(vcpu->kvm); if (time_now >= exp_time) stimer_expiration(stimer); } if ((stimer->config.enable) && stimer->count) { if (!stimer->msg_pending) stimer_start(stimer); } else stimer_cleanup(stimer); } } } void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu) { struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); int i; if (!hv_vcpu) return; for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++) stimer_cleanup(&hv_vcpu->stimer[i]); kfree(hv_vcpu); vcpu->arch.hyperv = NULL; } bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu) { struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); if (!hv_vcpu) return false; if (!(hv_vcpu->hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) return false; return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; } EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled); int kvm_hv_get_assist_page(struct kvm_vcpu *vcpu) { struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); if (!hv_vcpu || !kvm_hv_assist_page_enabled(vcpu)) return -EFAULT; return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &hv_vcpu->vp_assist_page, sizeof(struct hv_vp_assist_page)); } EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page); static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer) { struct hv_message *msg = &stimer->msg; struct hv_timer_message_payload *payload = (struct hv_timer_message_payload *)&msg->u.payload; memset(&msg->header, 0, sizeof(msg->header)); msg->header.message_type = HVMSG_TIMER_EXPIRED; msg->header.payload_size = sizeof(*payload); payload->timer_index = stimer->index; payload->expiration_time = 0; payload->delivery_time = 0; } static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index) { memset(stimer, 0, sizeof(*stimer)); stimer->index = timer_index; hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); stimer->timer.function = stimer_timer_callback; stimer_prepare_msg(stimer); } int kvm_hv_vcpu_init(struct kvm_vcpu *vcpu) { struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); int i; if (hv_vcpu) return 0; hv_vcpu = kzalloc(sizeof(struct kvm_vcpu_hv), GFP_KERNEL_ACCOUNT); if (!hv_vcpu) return -ENOMEM; vcpu->arch.hyperv = hv_vcpu; hv_vcpu->vcpu = vcpu; synic_init(&hv_vcpu->synic); bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++) stimer_init(&hv_vcpu->stimer[i], i); hv_vcpu->vp_index = vcpu->vcpu_idx; for (i = 0; i < HV_NR_TLB_FLUSH_FIFOS; i++) { INIT_KFIFO(hv_vcpu->tlb_flush_fifo[i].entries); spin_lock_init(&hv_vcpu->tlb_flush_fifo[i].write_lock); } return 0; } int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages) { struct kvm_vcpu_hv_synic *synic; int r; r = kvm_hv_vcpu_init(vcpu); if (r) return r; synic = to_hv_synic(vcpu); synic->active = true; synic->dont_zero_synic_pages = dont_zero_synic_pages; synic->control = HV_SYNIC_CONTROL_ENABLE; return 0; } static bool kvm_hv_msr_partition_wide(u32 msr) { bool r = false; switch (msr) { case HV_X64_MSR_GUEST_OS_ID: case HV_X64_MSR_HYPERCALL: case HV_X64_MSR_REFERENCE_TSC: case HV_X64_MSR_TIME_REF_COUNT: case HV_X64_MSR_CRASH_CTL: case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: case HV_X64_MSR_RESET: case HV_X64_MSR_REENLIGHTENMENT_CONTROL: case HV_X64_MSR_TSC_EMULATION_CONTROL: case HV_X64_MSR_TSC_EMULATION_STATUS: case HV_X64_MSR_SYNDBG_OPTIONS: case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: r = true; break; } return r; } static int kvm_hv_msr_get_crash_data(struct kvm *kvm, u32 index, u64 *pdata) { struct kvm_hv *hv = to_kvm_hv(kvm); size_t size = ARRAY_SIZE(hv->hv_crash_param); if (WARN_ON_ONCE(index >= size)) return -EINVAL; *pdata = hv->hv_crash_param[array_index_nospec(index, size)]; return 0; } static int kvm_hv_msr_get_crash_ctl(struct kvm *kvm, u64 *pdata) { struct kvm_hv *hv = to_kvm_hv(kvm); *pdata = hv->hv_crash_ctl; return 0; } static int kvm_hv_msr_set_crash_ctl(struct kvm *kvm, u64 data) { struct kvm_hv *hv = to_kvm_hv(kvm); hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY; return 0; } static int kvm_hv_msr_set_crash_data(struct kvm *kvm, u32 index, u64 data) { struct kvm_hv *hv = to_kvm_hv(kvm); size_t size = ARRAY_SIZE(hv->hv_crash_param); if (WARN_ON_ONCE(index >= size)) return -EINVAL; hv->hv_crash_param[array_index_nospec(index, size)] = data; return 0; } /* * The kvmclock and Hyper-V TSC page use similar formulas, and converting * between them is possible: * * kvmclock formula: * nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32) * + system_time * * Hyper-V formula: * nsec/100 = ticks * scale / 2^64 + offset * * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula. * By dividing the kvmclock formula by 100 and equating what's left we get: * ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100 * scale / 2^64 = tsc_to_system_mul * 2^(tsc_shift-32) / 100 * scale = tsc_to_system_mul * 2^(32+tsc_shift) / 100 * * Now expand the kvmclock formula and divide by 100: * nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32) * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) * + system_time * nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100 * + system_time / 100 * * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64: * nsec/100 = ticks * scale / 2^64 * - tsc_timestamp * scale / 2^64 * + system_time / 100 * * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out: * offset = system_time / 100 - tsc_timestamp * scale / 2^64 * * These two equivalencies are implemented in this function. */ static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock, struct ms_hyperv_tsc_page *tsc_ref) { u64 max_mul; if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT)) return false; /* * check if scale would overflow, if so we use the time ref counter * tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64 * tsc_to_system_mul / 100 >= 2^(32-tsc_shift) * tsc_to_system_mul >= 100 * 2^(32-tsc_shift) */ max_mul = 100ull << (32 - hv_clock->tsc_shift); if (hv_clock->tsc_to_system_mul >= max_mul) return false; /* * Otherwise compute the scale and offset according to the formulas * derived above. */ tsc_ref->tsc_scale = mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift), hv_clock->tsc_to_system_mul, 100); tsc_ref->tsc_offset = hv_clock->system_time; do_div(tsc_ref->tsc_offset, 100); tsc_ref->tsc_offset -= mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64); return true; } /* * Don't touch TSC page values if the guest has opted for TSC emulation after * migration. KVM doesn't fully support reenlightenment notifications and TSC * access emulation and Hyper-V is known to expect the values in TSC page to * stay constant before TSC access emulation is disabled from guest side * (HV_X64_MSR_TSC_EMULATION_STATUS). KVM userspace is expected to preserve TSC * frequency and guest visible TSC value across migration (and prevent it when * TSC scaling is unsupported). */ static inline bool tsc_page_update_unsafe(struct kvm_hv *hv) { return (hv->hv_tsc_page_status != HV_TSC_PAGE_GUEST_CHANGED) && hv->hv_tsc_emulation_control; } void kvm_hv_setup_tsc_page(struct kvm *kvm, struct pvclock_vcpu_time_info *hv_clock) { struct kvm_hv *hv = to_kvm_hv(kvm); u32 tsc_seq; u64 gfn; BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence)); BUILD_BUG_ON(offsetof(struct ms_hyperv_tsc_page, tsc_sequence) != 0); mutex_lock(&hv->hv_lock); if (hv->hv_tsc_page_status == HV_TSC_PAGE_BROKEN || hv->hv_tsc_page_status == HV_TSC_PAGE_SET || hv->hv_tsc_page_status == HV_TSC_PAGE_UNSET) goto out_unlock; if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE)) goto out_unlock; gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT; /* * Because the TSC parameters only vary when there is a * change in the master clock, do not bother with caching. */ if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn), &tsc_seq, sizeof(tsc_seq)))) goto out_err; if (tsc_seq && tsc_page_update_unsafe(hv)) { if (kvm_read_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref))) goto out_err; hv->hv_tsc_page_status = HV_TSC_PAGE_SET; goto out_unlock; } /* * While we're computing and writing the parameters, force the * guest to use the time reference count MSR. */ hv->tsc_ref.tsc_sequence = 0; if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence))) goto out_err; if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref)) goto out_err; /* Ensure sequence is zero before writing the rest of the struct. */ smp_wmb(); if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref))) goto out_err; /* * Now switch to the TSC page mechanism by writing the sequence. */ tsc_seq++; if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0) tsc_seq = 1; /* Write the struct entirely before the non-zero sequence. */ smp_wmb(); hv->tsc_ref.tsc_sequence = tsc_seq; if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence))) goto out_err; hv->hv_tsc_page_status = HV_TSC_PAGE_SET; goto out_unlock; out_err: hv->hv_tsc_page_status = HV_TSC_PAGE_BROKEN; out_unlock: mutex_unlock(&hv->hv_lock); } void kvm_hv_request_tsc_page_update(struct kvm *kvm) { struct kvm_hv *hv = to_kvm_hv(kvm); mutex_lock(&hv->hv_lock); if (hv->hv_tsc_page_status == HV_TSC_PAGE_SET && !tsc_page_update_unsafe(hv)) hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED; mutex_unlock(&hv->hv_lock); } static bool hv_check_msr_access(struct kvm_vcpu_hv *hv_vcpu, u32 msr) { if (!hv_vcpu->enforce_cpuid) return true; switch (msr) { case HV_X64_MSR_GUEST_OS_ID: case HV_X64_MSR_HYPERCALL: return hv_vcpu->cpuid_cache.features_eax & HV_MSR_HYPERCALL_AVAILABLE; case HV_X64_MSR_VP_RUNTIME: return hv_vcpu->cpuid_cache.features_eax & HV_MSR_VP_RUNTIME_AVAILABLE; case HV_X64_MSR_TIME_REF_COUNT: return hv_vcpu->cpuid_cache.features_eax & HV_MSR_TIME_REF_COUNT_AVAILABLE; case HV_X64_MSR_VP_INDEX: return hv_vcpu->cpuid_cache.features_eax & HV_MSR_VP_INDEX_AVAILABLE; case HV_X64_MSR_RESET: return hv_vcpu->cpuid_cache.features_eax & HV_MSR_RESET_AVAILABLE; case HV_X64_MSR_REFERENCE_TSC: return hv_vcpu->cpuid_cache.features_eax & HV_MSR_REFERENCE_TSC_AVAILABLE; case HV_X64_MSR_SCONTROL: case HV_X64_MSR_SVERSION: case HV_X64_MSR_SIEFP: case HV_X64_MSR_SIMP: case HV_X64_MSR_EOM: case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: return hv_vcpu->cpuid_cache.features_eax & HV_MSR_SYNIC_AVAILABLE; case HV_X64_MSR_STIMER0_CONFIG: case HV_X64_MSR_STIMER1_CONFIG: case HV_X64_MSR_STIMER2_CONFIG: case HV_X64_MSR_STIMER3_CONFIG: case HV_X64_MSR_STIMER0_COUNT: case HV_X64_MSR_STIMER1_COUNT: case HV_X64_MSR_STIMER2_COUNT: case HV_X64_MSR_STIMER3_COUNT: return hv_vcpu->cpuid_cache.features_eax & HV_MSR_SYNTIMER_AVAILABLE; case HV_X64_MSR_EOI: case HV_X64_MSR_ICR: case HV_X64_MSR_TPR: case HV_X64_MSR_VP_ASSIST_PAGE: return hv_vcpu->cpuid_cache.features_eax & HV_MSR_APIC_ACCESS_AVAILABLE; break; case HV_X64_MSR_TSC_FREQUENCY: case HV_X64_MSR_APIC_FREQUENCY: return hv_vcpu->cpuid_cache.features_eax & HV_ACCESS_FREQUENCY_MSRS; case HV_X64_MSR_REENLIGHTENMENT_CONTROL: case HV_X64_MSR_TSC_EMULATION_CONTROL: case HV_X64_MSR_TSC_EMULATION_STATUS: return hv_vcpu->cpuid_cache.features_eax & HV_ACCESS_REENLIGHTENMENT; case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: case HV_X64_MSR_CRASH_CTL: return hv_vcpu->cpuid_cache.features_edx & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE; case HV_X64_MSR_SYNDBG_OPTIONS: case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: return hv_vcpu->cpuid_cache.features_edx & HV_FEATURE_DEBUG_MSRS_AVAILABLE; default: break; } return false; } static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host) { struct kvm *kvm = vcpu->kvm; struct kvm_hv *hv = to_kvm_hv(kvm); if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr))) return 1; switch (msr) { case HV_X64_MSR_GUEST_OS_ID: hv->hv_guest_os_id = data; /* setting guest os id to zero disables hypercall page */ if (!hv->hv_guest_os_id) hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; break; case HV_X64_MSR_HYPERCALL: { u8 instructions[9]; int i = 0; u64 addr; /* if guest os id is not set hypercall should remain disabled */ if (!hv->hv_guest_os_id) break; if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { hv->hv_hypercall = data; break; } /* * If Xen and Hyper-V hypercalls are both enabled, disambiguate * the same way Xen itself does, by setting the bit 31 of EAX * which is RsvdZ in the 32-bit Hyper-V hypercall ABI and just * going to be clobbered on 64-bit. */ if (kvm_xen_hypercall_enabled(kvm)) { /* orl $0x80000000, %eax */ instructions[i++] = 0x0d; instructions[i++] = 0x00; instructions[i++] = 0x00; instructions[i++] = 0x00; instructions[i++] = 0x80; } /* vmcall/vmmcall */ static_call(kvm_x86_patch_hypercall)(vcpu, instructions + i); i += 3; /* ret */ ((unsigned char *)instructions)[i++] = 0xc3; addr = data & HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_MASK; if (kvm_vcpu_write_guest(vcpu, addr, instructions, i)) return 1; hv->hv_hypercall = data; break; } case HV_X64_MSR_REFERENCE_TSC: hv->hv_tsc_page = data; if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE) { if (!host) hv->hv_tsc_page_status = HV_TSC_PAGE_GUEST_CHANGED; else hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED; kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); } else { hv->hv_tsc_page_status = HV_TSC_PAGE_UNSET; } break; case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: return kvm_hv_msr_set_crash_data(kvm, msr - HV_X64_MSR_CRASH_P0, data); case HV_X64_MSR_CRASH_CTL: if (host) return kvm_hv_msr_set_crash_ctl(kvm, data); if (data & HV_CRASH_CTL_CRASH_NOTIFY) { vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n", hv->hv_crash_param[0], hv->hv_crash_param[1], hv->hv_crash_param[2], hv->hv_crash_param[3], hv->hv_crash_param[4]); /* Send notification about crash to user space */ kvm_make_request(KVM_REQ_HV_CRASH, vcpu); } break; case HV_X64_MSR_RESET: if (data == 1) { vcpu_debug(vcpu, "hyper-v reset requested\n"); kvm_make_request(KVM_REQ_HV_RESET, vcpu); } break; case HV_X64_MSR_REENLIGHTENMENT_CONTROL: hv->hv_reenlightenment_control = data; break; case HV_X64_MSR_TSC_EMULATION_CONTROL: hv->hv_tsc_emulation_control = data; break; case HV_X64_MSR_TSC_EMULATION_STATUS: if (data && !host) return 1; hv->hv_tsc_emulation_status = data; break; case HV_X64_MSR_TIME_REF_COUNT: /* read-only, but still ignore it if host-initiated */ if (!host) return 1; break; case HV_X64_MSR_SYNDBG_OPTIONS: case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: return syndbg_set_msr(vcpu, msr, data, host); default: vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n", msr, data); return 1; } return 0; } /* Calculate cpu time spent by current task in 100ns units */ static u64 current_task_runtime_100ns(void) { u64 utime, stime; task_cputime_adjusted(current, &utime, &stime); return div_u64(utime + stime, 100); } static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host) { struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr))) return 1; switch (msr) { case HV_X64_MSR_VP_INDEX: { struct kvm_hv *hv = to_kvm_hv(vcpu->kvm); u32 new_vp_index = (u32)data; if (!host || new_vp_index >= KVM_MAX_VCPUS) return 1; if (new_vp_index == hv_vcpu->vp_index) return 0; /* * The VP index is initialized to vcpu_index by * kvm_hv_vcpu_postcreate so they initially match. Now the * VP index is changing, adjust num_mismatched_vp_indexes if * it now matches or no longer matches vcpu_idx. */ if (hv_vcpu->vp_index == vcpu->vcpu_idx) atomic_inc(&hv->num_mismatched_vp_indexes); else if (new_vp_index == vcpu->vcpu_idx) atomic_dec(&hv->num_mismatched_vp_indexes); hv_vcpu->vp_index = new_vp_index; break; } case HV_X64_MSR_VP_ASSIST_PAGE: { u64 gfn; unsigned long addr; if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) { hv_vcpu->hv_vapic = data; if (kvm_lapic_set_pv_eoi(vcpu, 0, 0)) return 1; break; } gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT; addr = kvm_vcpu_gfn_to_hva(vcpu, gfn); if (kvm_is_error_hva(addr)) return 1; /* * Clear apic_assist portion of struct hv_vp_assist_page * only, there can be valuable data in the rest which needs * to be preserved e.g. on migration. */ if (__put_user(0, (u32 __user *)addr)) return 1; hv_vcpu->hv_vapic = data; kvm_vcpu_mark_page_dirty(vcpu, gfn); if (kvm_lapic_set_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED, sizeof(struct hv_vp_assist_page))) return 1; break; } case HV_X64_MSR_EOI: return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); case HV_X64_MSR_ICR: return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); case HV_X64_MSR_TPR: return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); case HV_X64_MSR_VP_RUNTIME: if (!host) return 1; hv_vcpu->runtime_offset = data - current_task_runtime_100ns(); break; case HV_X64_MSR_SCONTROL: case HV_X64_MSR_SVERSION: case HV_X64_MSR_SIEFP: case HV_X64_MSR_SIMP: case HV_X64_MSR_EOM: case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: return synic_set_msr(to_hv_synic(vcpu), msr, data, host); case HV_X64_MSR_STIMER0_CONFIG: case HV_X64_MSR_STIMER1_CONFIG: case HV_X64_MSR_STIMER2_CONFIG: case HV_X64_MSR_STIMER3_CONFIG: { int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2; return stimer_set_config(to_hv_stimer(vcpu, timer_index), data, host); } case HV_X64_MSR_STIMER0_COUNT: case HV_X64_MSR_STIMER1_COUNT: case HV_X64_MSR_STIMER2_COUNT: case HV_X64_MSR_STIMER3_COUNT: { int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2; return stimer_set_count(to_hv_stimer(vcpu, timer_index), data, host); } case HV_X64_MSR_TSC_FREQUENCY: case HV_X64_MSR_APIC_FREQUENCY: /* read-only, but still ignore it if host-initiated */ if (!host) return 1; break; default: vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n", msr, data); return 1; } return 0; } static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) { u64 data = 0; struct kvm *kvm = vcpu->kvm; struct kvm_hv *hv = to_kvm_hv(kvm); if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr))) return 1; switch (msr) { case HV_X64_MSR_GUEST_OS_ID: data = hv->hv_guest_os_id; break; case HV_X64_MSR_HYPERCALL: data = hv->hv_hypercall; break; case HV_X64_MSR_TIME_REF_COUNT: data = get_time_ref_counter(kvm); break; case HV_X64_MSR_REFERENCE_TSC: data = hv->hv_tsc_page; break; case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: return kvm_hv_msr_get_crash_data(kvm, msr - HV_X64_MSR_CRASH_P0, pdata); case HV_X64_MSR_CRASH_CTL: return kvm_hv_msr_get_crash_ctl(kvm, pdata); case HV_X64_MSR_RESET: data = 0; break; case HV_X64_MSR_REENLIGHTENMENT_CONTROL: data = hv->hv_reenlightenment_control; break; case HV_X64_MSR_TSC_EMULATION_CONTROL: data = hv->hv_tsc_emulation_control; break; case HV_X64_MSR_TSC_EMULATION_STATUS: data = hv->hv_tsc_emulation_status; break; case HV_X64_MSR_SYNDBG_OPTIONS: case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: return syndbg_get_msr(vcpu, msr, pdata, host); default: vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); return 1; } *pdata = data; return 0; } static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) { u64 data = 0; struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr))) return 1; switch (msr) { case HV_X64_MSR_VP_INDEX: data = hv_vcpu->vp_index; break; case HV_X64_MSR_EOI: return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); case HV_X64_MSR_ICR: return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); case HV_X64_MSR_TPR: return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); case HV_X64_MSR_VP_ASSIST_PAGE: data = hv_vcpu->hv_vapic; break; case HV_X64_MSR_VP_RUNTIME: data = current_task_runtime_100ns() + hv_vcpu->runtime_offset; break; case HV_X64_MSR_SCONTROL: case HV_X64_MSR_SVERSION: case HV_X64_MSR_SIEFP: case HV_X64_MSR_SIMP: case HV_X64_MSR_EOM: case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: return synic_get_msr(to_hv_synic(vcpu), msr, pdata, host); case HV_X64_MSR_STIMER0_CONFIG: case HV_X64_MSR_STIMER1_CONFIG: case HV_X64_MSR_STIMER2_CONFIG: case HV_X64_MSR_STIMER3_CONFIG: { int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2; return stimer_get_config(to_hv_stimer(vcpu, timer_index), pdata); } case HV_X64_MSR_STIMER0_COUNT: case HV_X64_MSR_STIMER1_COUNT: case HV_X64_MSR_STIMER2_COUNT: case HV_X64_MSR_STIMER3_COUNT: { int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2; return stimer_get_count(to_hv_stimer(vcpu, timer_index), pdata); } case HV_X64_MSR_TSC_FREQUENCY: data = (u64)vcpu->arch.virtual_tsc_khz * 1000; break; case HV_X64_MSR_APIC_FREQUENCY: data = APIC_BUS_FREQUENCY; break; default: vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); return 1; } *pdata = data; return 0; } int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host) { struct kvm_hv *hv = to_kvm_hv(vcpu->kvm); if (!host && !vcpu->arch.hyperv_enabled) return 1; if (kvm_hv_vcpu_init(vcpu)) return 1; if (kvm_hv_msr_partition_wide(msr)) { int r; mutex_lock(&hv->hv_lock); r = kvm_hv_set_msr_pw(vcpu, msr, data, host); mutex_unlock(&hv->hv_lock); return r; } else return kvm_hv_set_msr(vcpu, msr, data, host); } int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) { struct kvm_hv *hv = to_kvm_hv(vcpu->kvm); if (!host && !vcpu->arch.hyperv_enabled) return 1; if (kvm_hv_vcpu_init(vcpu)) return 1; if (kvm_hv_msr_partition_wide(msr)) { int r; mutex_lock(&hv->hv_lock); r = kvm_hv_get_msr_pw(vcpu, msr, pdata, host); mutex_unlock(&hv->hv_lock); return r; } else return kvm_hv_get_msr(vcpu, msr, pdata, host); } static void sparse_set_to_vcpu_mask(struct kvm *kvm, u64 *sparse_banks, u64 valid_bank_mask, unsigned long *vcpu_mask) { struct kvm_hv *hv = to_kvm_hv(kvm); bool has_mismatch = atomic_read(&hv->num_mismatched_vp_indexes); u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS]; struct kvm_vcpu *vcpu; int bank, sbank = 0; unsigned long i; u64 *bitmap; BUILD_BUG_ON(sizeof(vp_bitmap) > sizeof(*vcpu_mask) * BITS_TO_LONGS(KVM_MAX_VCPUS)); /* * If vp_index == vcpu_idx for all vCPUs, fill vcpu_mask directly, else * fill a temporary buffer and manually test each vCPU's VP index. */ if (likely(!has_mismatch)) bitmap = (u64 *)vcpu_mask; else bitmap = vp_bitmap; /* * Each set of 64 VPs is packed into sparse_banks, with valid_bank_mask * having a '1' for each bank that exists in sparse_banks. Sets must * be in ascending order, i.e. bank0..bankN. */ memset(bitmap, 0, sizeof(vp_bitmap)); for_each_set_bit(bank, (unsigned long *)&valid_bank_mask, KVM_HV_MAX_SPARSE_VCPU_SET_BITS) bitmap[bank] = sparse_banks[sbank++]; if (likely(!has_mismatch)) return; bitmap_zero(vcpu_mask, KVM_MAX_VCPUS); kvm_for_each_vcpu(i, vcpu, kvm) { if (test_bit(kvm_hv_get_vpindex(vcpu), (unsigned long *)vp_bitmap)) __set_bit(i, vcpu_mask); } } static bool hv_is_vp_in_sparse_set(u32 vp_id, u64 valid_bank_mask, u64 sparse_banks[]) { int valid_bit_nr = vp_id / HV_VCPUS_PER_SPARSE_BANK; unsigned long sbank; if (!test_bit(valid_bit_nr, (unsigned long *)&valid_bank_mask)) return false; /* * The index into the sparse bank is the number of preceding bits in * the valid mask. Optimize for VMs with <64 vCPUs by skipping the * fancy math if there can't possibly be preceding bits. */ if (valid_bit_nr) sbank = hweight64(valid_bank_mask & GENMASK_ULL(valid_bit_nr - 1, 0)); else sbank = 0; return test_bit(vp_id % HV_VCPUS_PER_SPARSE_BANK, (unsigned long *)&sparse_banks[sbank]); } struct kvm_hv_hcall { /* Hypercall input data */ u64 param; u64 ingpa; u64 outgpa; u16 code; u16 var_cnt; u16 rep_cnt; u16 rep_idx; bool fast; bool rep; sse128_t xmm[HV_HYPERCALL_MAX_XMM_REGISTERS]; /* * Current read offset when KVM reads hypercall input data gradually, * either offset in bytes from 'ingpa' for regular hypercalls or the * number of already consumed 'XMM halves' for 'fast' hypercalls. */ union { gpa_t data_offset; int consumed_xmm_halves; }; }; static int kvm_hv_get_hc_data(struct kvm *kvm, struct kvm_hv_hcall *hc, u16 orig_cnt, u16 cnt_cap, u64 *data) { /* * Preserve the original count when ignoring entries via a "cap", KVM * still needs to validate the guest input (though the non-XMM path * punts on the checks). */ u16 cnt = min(orig_cnt, cnt_cap); int i, j; if (hc->fast) { /* * Each XMM holds two sparse banks, but do not count halves that * have already been consumed for hypercall parameters. */ if (orig_cnt > 2 * HV_HYPERCALL_MAX_XMM_REGISTERS - hc->consumed_xmm_halves) return HV_STATUS_INVALID_HYPERCALL_INPUT; for (i = 0; i < cnt; i++) { j = i + hc->consumed_xmm_halves; if (j % 2) data[i] = sse128_hi(hc->xmm[j / 2]); else data[i] = sse128_lo(hc->xmm[j / 2]); } return 0; } return kvm_read_guest(kvm, hc->ingpa + hc->data_offset, data, cnt * sizeof(*data)); } static u64 kvm_get_sparse_vp_set(struct kvm *kvm, struct kvm_hv_hcall *hc, u64 *sparse_banks) { if (hc->var_cnt > HV_MAX_SPARSE_VCPU_BANKS) return -EINVAL; /* Cap var_cnt to ignore banks that cannot contain a legal VP index. */ return kvm_hv_get_hc_data(kvm, hc, hc->var_cnt, KVM_HV_MAX_SPARSE_VCPU_SET_BITS, sparse_banks); } static int kvm_hv_get_tlb_flush_entries(struct kvm *kvm, struct kvm_hv_hcall *hc, u64 entries[]) { return kvm_hv_get_hc_data(kvm, hc, hc->rep_cnt, hc->rep_cnt, entries); } static void hv_tlb_flush_enqueue(struct kvm_vcpu *vcpu, struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo, u64 *entries, int count) { struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); u64 flush_all_entry = KVM_HV_TLB_FLUSHALL_ENTRY; if (!hv_vcpu) return; spin_lock(&tlb_flush_fifo->write_lock); /* * All entries should fit on the fifo leaving one free for 'flush all' * entry in case another request comes in. In case there's not enough * space, just put 'flush all' entry there. */ if (count && entries && count < kfifo_avail(&tlb_flush_fifo->entries)) { WARN_ON(kfifo_in(&tlb_flush_fifo->entries, entries, count) != count); goto out_unlock; } /* * Note: full fifo always contains 'flush all' entry, no need to check the * return value. */ kfifo_in(&tlb_flush_fifo->entries, &flush_all_entry, 1); out_unlock: spin_unlock(&tlb_flush_fifo->write_lock); } int kvm_hv_vcpu_flush_tlb(struct kvm_vcpu *vcpu) { struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo; struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); u64 entries[KVM_HV_TLB_FLUSH_FIFO_SIZE]; int i, j, count; gva_t gva; if (!tdp_enabled || !hv_vcpu) return -EINVAL; tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(vcpu, is_guest_mode(vcpu)); count = kfifo_out(&tlb_flush_fifo->entries, entries, KVM_HV_TLB_FLUSH_FIFO_SIZE); for (i = 0; i < count; i++) { if (entries[i] == KVM_HV_TLB_FLUSHALL_ENTRY) goto out_flush_all; /* * Lower 12 bits of 'address' encode the number of additional * pages to flush. */ gva = entries[i] & PAGE_MASK; for (j = 0; j < (entries[i] & ~PAGE_MASK) + 1; j++) static_call(kvm_x86_flush_tlb_gva)(vcpu, gva + j * PAGE_SIZE); ++vcpu->stat.tlb_flush; } return 0; out_flush_all: kfifo_reset_out(&tlb_flush_fifo->entries); /* Fall back to full flush. */ return -ENOSPC; } static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc) { struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); u64 *sparse_banks = hv_vcpu->sparse_banks; struct kvm *kvm = vcpu->kvm; struct hv_tlb_flush_ex flush_ex; struct hv_tlb_flush flush; DECLARE_BITMAP(vcpu_mask, KVM_MAX_VCPUS); struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo; /* * Normally, there can be no more than 'KVM_HV_TLB_FLUSH_FIFO_SIZE' * entries on the TLB flush fifo. The last entry, however, needs to be * always left free for 'flush all' entry which gets placed when * there is not enough space to put all the requested entries. */ u64 __tlb_flush_entries[KVM_HV_TLB_FLUSH_FIFO_SIZE - 1]; u64 *tlb_flush_entries; u64 valid_bank_mask; struct kvm_vcpu *v; unsigned long i; bool all_cpus; /* * The Hyper-V TLFS doesn't allow more than HV_MAX_SPARSE_VCPU_BANKS * sparse banks. Fail the build if KVM's max allowed number of * vCPUs (>4096) exceeds this limit. */ BUILD_BUG_ON(KVM_HV_MAX_SPARSE_VCPU_SET_BITS > HV_MAX_SPARSE_VCPU_BANKS); /* * 'Slow' hypercall's first parameter is the address in guest's memory * where hypercall parameters are placed. This is either a GPA or a * nested GPA when KVM is handling the call from L2 ('direct' TLB * flush). Translate the address here so the memory can be uniformly * read with kvm_read_guest(). */ if (!hc->fast && is_guest_mode(vcpu)) { hc->ingpa = translate_nested_gpa(vcpu, hc->ingpa, 0, NULL); if (unlikely(hc->ingpa == INVALID_GPA)) return HV_STATUS_INVALID_HYPERCALL_INPUT; } if (hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST || hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE) { if (hc->fast) { flush.address_space = hc->ingpa; flush.flags = hc->outgpa; flush.processor_mask = sse128_lo(hc->xmm[0]); hc->consumed_xmm_halves = 1; } else { if (unlikely(kvm_read_guest(kvm, hc->ingpa, &flush, sizeof(flush)))) return HV_STATUS_INVALID_HYPERCALL_INPUT; hc->data_offset = sizeof(flush); } trace_kvm_hv_flush_tlb(flush.processor_mask, flush.address_space, flush.flags, is_guest_mode(vcpu)); valid_bank_mask = BIT_ULL(0); sparse_banks[0] = flush.processor_mask; /* * Work around possible WS2012 bug: it sends hypercalls * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear, * while also expecting us to flush something and crashing if * we don't. Let's treat processor_mask == 0 same as * HV_FLUSH_ALL_PROCESSORS. */ all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) || flush.processor_mask == 0; } else { if (hc->fast) { flush_ex.address_space = hc->ingpa; flush_ex.flags = hc->outgpa; memcpy(&flush_ex.hv_vp_set, &hc->xmm[0], sizeof(hc->xmm[0])); hc->consumed_xmm_halves = 2; } else { if (unlikely(kvm_read_guest(kvm, hc->ingpa, &flush_ex, sizeof(flush_ex)))) return HV_STATUS_INVALID_HYPERCALL_INPUT; hc->data_offset = sizeof(flush_ex); } trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask, flush_ex.hv_vp_set.format, flush_ex.address_space, flush_ex.flags, is_guest_mode(vcpu)); valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask; all_cpus = flush_ex.hv_vp_set.format != HV_GENERIC_SET_SPARSE_4K; if (hc->var_cnt != hweight64(valid_bank_mask)) return HV_STATUS_INVALID_HYPERCALL_INPUT; if (!all_cpus) { if (!hc->var_cnt) goto ret_success; if (kvm_get_sparse_vp_set(kvm, hc, sparse_banks)) return HV_STATUS_INVALID_HYPERCALL_INPUT; } /* * Hyper-V TLFS doesn't explicitly forbid non-empty sparse vCPU * banks (and, thus, non-zero 'var_cnt') for the 'all vCPUs' * case (HV_GENERIC_SET_ALL). Always adjust data_offset and * consumed_xmm_halves to make sure TLB flush entries are read * from the correct offset. */ if (hc->fast) hc->consumed_xmm_halves += hc->var_cnt; else hc->data_offset += hc->var_cnt * sizeof(sparse_banks[0]); } if (hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE || hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX || hc->rep_cnt > ARRAY_SIZE(__tlb_flush_entries)) { tlb_flush_entries = NULL; } else { if (kvm_hv_get_tlb_flush_entries(kvm, hc, __tlb_flush_entries)) return HV_STATUS_INVALID_HYPERCALL_INPUT; tlb_flush_entries = __tlb_flush_entries; } /* * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't * analyze it here, flush TLB regardless of the specified address space. */ if (all_cpus && !is_guest_mode(vcpu)) { kvm_for_each_vcpu(i, v, kvm) { tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, false); hv_tlb_flush_enqueue(v, tlb_flush_fifo, tlb_flush_entries, hc->rep_cnt); } kvm_make_all_cpus_request(kvm, KVM_REQ_HV_TLB_FLUSH); } else if (!is_guest_mode(vcpu)) { sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask, vcpu_mask); for_each_set_bit(i, vcpu_mask, KVM_MAX_VCPUS) { v = kvm_get_vcpu(kvm, i); if (!v) continue; tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, false); hv_tlb_flush_enqueue(v, tlb_flush_fifo, tlb_flush_entries, hc->rep_cnt); } kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH, vcpu_mask); } else { struct kvm_vcpu_hv *hv_v; bitmap_zero(vcpu_mask, KVM_MAX_VCPUS); kvm_for_each_vcpu(i, v, kvm) { hv_v = to_hv_vcpu(v); /* * The following check races with nested vCPUs entering/exiting * and/or migrating between L1's vCPUs, however the only case when * KVM *must* flush the TLB is when the target L2 vCPU keeps * running on the same L1 vCPU from the moment of the request until * kvm_hv_flush_tlb() returns. TLB is fully flushed in all other * cases, e.g. when the target L2 vCPU migrates to a different L1 * vCPU or when the corresponding L1 vCPU temporary switches to a * different L2 vCPU while the request is being processed. */ if (!hv_v || hv_v->nested.vm_id != hv_vcpu->nested.vm_id) continue; if (!all_cpus && !hv_is_vp_in_sparse_set(hv_v->nested.vp_id, valid_bank_mask, sparse_banks)) continue; __set_bit(i, vcpu_mask); tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, true); hv_tlb_flush_enqueue(v, tlb_flush_fifo, tlb_flush_entries, hc->rep_cnt); } kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH, vcpu_mask); } ret_success: /* We always do full TLB flush, set 'Reps completed' = 'Rep Count' */ return (u64)HV_STATUS_SUCCESS | ((u64)hc->rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET); } static void kvm_hv_send_ipi_to_many(struct kvm *kvm, u32 vector, u64 *sparse_banks, u64 valid_bank_mask) { struct kvm_lapic_irq irq = { .delivery_mode = APIC_DM_FIXED, .vector = vector }; struct kvm_vcpu *vcpu; unsigned long i; kvm_for_each_vcpu(i, vcpu, kvm) { if (sparse_banks && !hv_is_vp_in_sparse_set(kvm_hv_get_vpindex(vcpu), valid_bank_mask, sparse_banks)) continue; /* We fail only when APIC is disabled */ kvm_apic_set_irq(vcpu, &irq, NULL); } } static u64 kvm_hv_send_ipi(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc) { struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); u64 *sparse_banks = hv_vcpu->sparse_banks; struct kvm *kvm = vcpu->kvm; struct hv_send_ipi_ex send_ipi_ex; struct hv_send_ipi send_ipi; u64 valid_bank_mask; u32 vector; bool all_cpus; if (hc->code == HVCALL_SEND_IPI) { if (!hc->fast) { if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi, sizeof(send_ipi)))) return HV_STATUS_INVALID_HYPERCALL_INPUT; sparse_banks[0] = send_ipi.cpu_mask; vector = send_ipi.vector; } else { /* 'reserved' part of hv_send_ipi should be 0 */ if (unlikely(hc->ingpa >> 32 != 0)) return HV_STATUS_INVALID_HYPERCALL_INPUT; sparse_banks[0] = hc->outgpa; vector = (u32)hc->ingpa; } all_cpus = false; valid_bank_mask = BIT_ULL(0); trace_kvm_hv_send_ipi(vector, sparse_banks[0]); } else { if (!hc->fast) { if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi_ex, sizeof(send_ipi_ex)))) return HV_STATUS_INVALID_HYPERCALL_INPUT; } else { send_ipi_ex.vector = (u32)hc->ingpa; send_ipi_ex.vp_set.format = hc->outgpa; send_ipi_ex.vp_set.valid_bank_mask = sse128_lo(hc->xmm[0]); } trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector, send_ipi_ex.vp_set.format, send_ipi_ex.vp_set.valid_bank_mask); vector = send_ipi_ex.vector; valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask; all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL; if (hc->var_cnt != hweight64(valid_bank_mask)) return HV_STATUS_INVALID_HYPERCALL_INPUT; if (all_cpus) goto check_and_send_ipi; if (!hc->var_cnt) goto ret_success; if (!hc->fast) hc->data_offset = offsetof(struct hv_send_ipi_ex, vp_set.bank_contents); else hc->consumed_xmm_halves = 1; if (kvm_get_sparse_vp_set(kvm, hc, sparse_banks)) return HV_STATUS_INVALID_HYPERCALL_INPUT; } check_and_send_ipi: if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR)) return HV_STATUS_INVALID_HYPERCALL_INPUT; if (all_cpus) kvm_hv_send_ipi_to_many(kvm, vector, NULL, 0); else kvm_hv_send_ipi_to_many(kvm, vector, sparse_banks, valid_bank_mask); ret_success: return HV_STATUS_SUCCESS; } void kvm_hv_set_cpuid(struct kvm_vcpu *vcpu, bool hyperv_enabled) { struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); struct kvm_cpuid_entry2 *entry; vcpu->arch.hyperv_enabled = hyperv_enabled; if (!hv_vcpu) { /* * KVM should have already allocated kvm_vcpu_hv if Hyper-V is * enabled in CPUID. */ WARN_ON_ONCE(vcpu->arch.hyperv_enabled); return; } memset(&hv_vcpu->cpuid_cache, 0, sizeof(hv_vcpu->cpuid_cache)); if (!vcpu->arch.hyperv_enabled) return; entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_FEATURES); if (entry) { hv_vcpu->cpuid_cache.features_eax = entry->eax; hv_vcpu->cpuid_cache.features_ebx = entry->ebx; hv_vcpu->cpuid_cache.features_edx = entry->edx; } entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_ENLIGHTMENT_INFO); if (entry) { hv_vcpu->cpuid_cache.enlightenments_eax = entry->eax; hv_vcpu->cpuid_cache.enlightenments_ebx = entry->ebx; } entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES); if (entry) hv_vcpu->cpuid_cache.syndbg_cap_eax = entry->eax; entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_NESTED_FEATURES); if (entry) { hv_vcpu->cpuid_cache.nested_eax = entry->eax; hv_vcpu->cpuid_cache.nested_ebx = entry->ebx; } } int kvm_hv_set_enforce_cpuid(struct kvm_vcpu *vcpu, bool enforce) { struct kvm_vcpu_hv *hv_vcpu; int ret = 0; if (!to_hv_vcpu(vcpu)) { if (enforce) { ret = kvm_hv_vcpu_init(vcpu); if (ret) return ret; } else { return 0; } } hv_vcpu = to_hv_vcpu(vcpu); hv_vcpu->enforce_cpuid = enforce; return ret; } static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result) { bool longmode; longmode = is_64_bit_hypercall(vcpu); if (longmode) kvm_rax_write(vcpu, result); else { kvm_rdx_write(vcpu, result >> 32); kvm_rax_write(vcpu, result & 0xffffffff); } } static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result) { u32 tlb_lock_count = 0; int ret; if (hv_result_success(result) && is_guest_mode(vcpu) && kvm_hv_is_tlb_flush_hcall(vcpu) && kvm_read_guest(vcpu->kvm, to_hv_vcpu(vcpu)->nested.pa_page_gpa, &tlb_lock_count, sizeof(tlb_lock_count))) result = HV_STATUS_INVALID_HYPERCALL_INPUT; trace_kvm_hv_hypercall_done(result); kvm_hv_hypercall_set_result(vcpu, result); ++vcpu->stat.hypercalls; ret = kvm_skip_emulated_instruction(vcpu); if (tlb_lock_count) kvm_x86_ops.nested_ops->hv_inject_synthetic_vmexit_post_tlb_flush(vcpu); return ret; } static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu) { return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result); } static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc) { struct kvm_hv *hv = to_kvm_hv(vcpu->kvm); struct eventfd_ctx *eventfd; if (unlikely(!hc->fast)) { int ret; gpa_t gpa = hc->ingpa; if ((gpa & (__alignof__(hc->ingpa) - 1)) || offset_in_page(gpa) + sizeof(hc->ingpa) > PAGE_SIZE) return HV_STATUS_INVALID_ALIGNMENT; ret = kvm_vcpu_read_guest(vcpu, gpa, &hc->ingpa, sizeof(hc->ingpa)); if (ret < 0) return HV_STATUS_INVALID_ALIGNMENT; } /* * Per spec, bits 32-47 contain the extra "flag number". However, we * have no use for it, and in all known usecases it is zero, so just * report lookup failure if it isn't. */ if (hc->ingpa & 0xffff00000000ULL) return HV_STATUS_INVALID_PORT_ID; /* remaining bits are reserved-zero */ if (hc->ingpa & ~KVM_HYPERV_CONN_ID_MASK) return HV_STATUS_INVALID_HYPERCALL_INPUT; /* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */ rcu_read_lock(); eventfd = idr_find(&hv->conn_to_evt, hc->ingpa); rcu_read_unlock(); if (!eventfd) return HV_STATUS_INVALID_PORT_ID; eventfd_signal(eventfd, 1); return HV_STATUS_SUCCESS; } static bool is_xmm_fast_hypercall(struct kvm_hv_hcall *hc) { switch (hc->code) { case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST: case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE: case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX: case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX: case HVCALL_SEND_IPI_EX: return true; } return false; } static void kvm_hv_hypercall_read_xmm(struct kvm_hv_hcall *hc) { int reg; kvm_fpu_get(); for (reg = 0; reg < HV_HYPERCALL_MAX_XMM_REGISTERS; reg++) _kvm_read_sse_reg(reg, &hc->xmm[reg]); kvm_fpu_put(); } static bool hv_check_hypercall_access(struct kvm_vcpu_hv *hv_vcpu, u16 code) { if (!hv_vcpu->enforce_cpuid) return true; switch (code) { case HVCALL_NOTIFY_LONG_SPIN_WAIT: return hv_vcpu->cpuid_cache.enlightenments_ebx && hv_vcpu->cpuid_cache.enlightenments_ebx != U32_MAX; case HVCALL_POST_MESSAGE: return hv_vcpu->cpuid_cache.features_ebx & HV_POST_MESSAGES; case HVCALL_SIGNAL_EVENT: return hv_vcpu->cpuid_cache.features_ebx & HV_SIGNAL_EVENTS; case HVCALL_POST_DEBUG_DATA: case HVCALL_RETRIEVE_DEBUG_DATA: case HVCALL_RESET_DEBUG_SESSION: /* * Return 'true' when SynDBG is disabled so the resulting code * will be HV_STATUS_INVALID_HYPERCALL_CODE. */ return !kvm_hv_is_syndbg_enabled(hv_vcpu->vcpu) || hv_vcpu->cpuid_cache.features_ebx & HV_DEBUGGING; case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX: case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX: if (!(hv_vcpu->cpuid_cache.enlightenments_eax & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED)) return false; fallthrough; case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST: case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE: return hv_vcpu->cpuid_cache.enlightenments_eax & HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED; case HVCALL_SEND_IPI_EX: if (!(hv_vcpu->cpuid_cache.enlightenments_eax & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED)) return false; fallthrough; case HVCALL_SEND_IPI: return hv_vcpu->cpuid_cache.enlightenments_eax & HV_X64_CLUSTER_IPI_RECOMMENDED; default: break; } return true; } int kvm_hv_hypercall(struct kvm_vcpu *vcpu) { struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); struct kvm_hv_hcall hc; u64 ret = HV_STATUS_SUCCESS; /* * hypercall generates UD from non zero cpl and real mode * per HYPER-V spec */ if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || !is_protmode(vcpu)) { kvm_queue_exception(vcpu, UD_VECTOR); return 1; } #ifdef CONFIG_X86_64 if (is_64_bit_hypercall(vcpu)) { hc.param = kvm_rcx_read(vcpu); hc.ingpa = kvm_rdx_read(vcpu); hc.outgpa = kvm_r8_read(vcpu); } else #endif { hc.param = ((u64)kvm_rdx_read(vcpu) << 32) | (kvm_rax_read(vcpu) & 0xffffffff); hc.ingpa = ((u64)kvm_rbx_read(vcpu) << 32) | (kvm_rcx_read(vcpu) & 0xffffffff); hc.outgpa = ((u64)kvm_rdi_read(vcpu) << 32) | (kvm_rsi_read(vcpu) & 0xffffffff); } hc.code = hc.param & 0xffff; hc.var_cnt = (hc.param & HV_HYPERCALL_VARHEAD_MASK) >> HV_HYPERCALL_VARHEAD_OFFSET; hc.fast = !!(hc.param & HV_HYPERCALL_FAST_BIT); hc.rep_cnt = (hc.param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff; hc.rep_idx = (hc.param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff; hc.rep = !!(hc.rep_cnt || hc.rep_idx); trace_kvm_hv_hypercall(hc.code, hc.fast, hc.var_cnt, hc.rep_cnt, hc.rep_idx, hc.ingpa, hc.outgpa); if (unlikely(!hv_check_hypercall_access(hv_vcpu, hc.code))) { ret = HV_STATUS_ACCESS_DENIED; goto hypercall_complete; } if (unlikely(hc.param & HV_HYPERCALL_RSVD_MASK)) { ret = HV_STATUS_INVALID_HYPERCALL_INPUT; goto hypercall_complete; } if (hc.fast && is_xmm_fast_hypercall(&hc)) { if (unlikely(hv_vcpu->enforce_cpuid && !(hv_vcpu->cpuid_cache.features_edx & HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE))) { kvm_queue_exception(vcpu, UD_VECTOR); return 1; } kvm_hv_hypercall_read_xmm(&hc); } switch (hc.code) { case HVCALL_NOTIFY_LONG_SPIN_WAIT: if (unlikely(hc.rep || hc.var_cnt)) { ret = HV_STATUS_INVALID_HYPERCALL_INPUT; break; } kvm_vcpu_on_spin(vcpu, true); break; case HVCALL_SIGNAL_EVENT: if (unlikely(hc.rep || hc.var_cnt)) { ret = HV_STATUS_INVALID_HYPERCALL_INPUT; break; } ret = kvm_hvcall_signal_event(vcpu, &hc); if (ret != HV_STATUS_INVALID_PORT_ID) break; fallthrough; /* maybe userspace knows this conn_id */ case HVCALL_POST_MESSAGE: /* don't bother userspace if it has no way to handle it */ if (unlikely(hc.rep || hc.var_cnt || !to_hv_synic(vcpu)->active)) { ret = HV_STATUS_INVALID_HYPERCALL_INPUT; break; } vcpu->run->exit_reason = KVM_EXIT_HYPERV; vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL; vcpu->run->hyperv.u.hcall.input = hc.param; vcpu->run->hyperv.u.hcall.params[0] = hc.ingpa; vcpu->run->hyperv.u.hcall.params[1] = hc.outgpa; vcpu->arch.complete_userspace_io = kvm_hv_hypercall_complete_userspace; return 0; case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST: if (unlikely(hc.var_cnt)) { ret = HV_STATUS_INVALID_HYPERCALL_INPUT; break; } fallthrough; case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX: if (unlikely(!hc.rep_cnt || hc.rep_idx)) { ret = HV_STATUS_INVALID_HYPERCALL_INPUT; break; } ret = kvm_hv_flush_tlb(vcpu, &hc); break; case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE: if (unlikely(hc.var_cnt)) { ret = HV_STATUS_INVALID_HYPERCALL_INPUT; break; } fallthrough; case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX: if (unlikely(hc.rep)) { ret = HV_STATUS_INVALID_HYPERCALL_INPUT; break; } ret = kvm_hv_flush_tlb(vcpu, &hc); break; case HVCALL_SEND_IPI: if (unlikely(hc.var_cnt)) { ret = HV_STATUS_INVALID_HYPERCALL_INPUT; break; } fallthrough; case HVCALL_SEND_IPI_EX: if (unlikely(hc.rep)) { ret = HV_STATUS_INVALID_HYPERCALL_INPUT; break; } ret = kvm_hv_send_ipi(vcpu, &hc); break; case HVCALL_POST_DEBUG_DATA: case HVCALL_RETRIEVE_DEBUG_DATA: if (unlikely(hc.fast)) { ret = HV_STATUS_INVALID_PARAMETER; break; } fallthrough; case HVCALL_RESET_DEBUG_SESSION: { struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu); if (!kvm_hv_is_syndbg_enabled(vcpu)) { ret = HV_STATUS_INVALID_HYPERCALL_CODE; break; } if (!(syndbg->options & HV_X64_SYNDBG_OPTION_USE_HCALLS)) { ret = HV_STATUS_OPERATION_DENIED; break; } vcpu->run->exit_reason = KVM_EXIT_HYPERV; vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL; vcpu->run->hyperv.u.hcall.input = hc.param; vcpu->run->hyperv.u.hcall.params[0] = hc.ingpa; vcpu->run->hyperv.u.hcall.params[1] = hc.outgpa; vcpu->arch.complete_userspace_io = kvm_hv_hypercall_complete_userspace; return 0; } default: ret = HV_STATUS_INVALID_HYPERCALL_CODE; break; } hypercall_complete: return kvm_hv_hypercall_complete(vcpu, ret); } void kvm_hv_init_vm(struct kvm *kvm) { struct kvm_hv *hv = to_kvm_hv(kvm); mutex_init(&hv->hv_lock); idr_init(&hv->conn_to_evt); } void kvm_hv_destroy_vm(struct kvm *kvm) { struct kvm_hv *hv = to_kvm_hv(kvm); struct eventfd_ctx *eventfd; int i; idr_for_each_entry(&hv->conn_to_evt, eventfd, i) eventfd_ctx_put(eventfd); idr_destroy(&hv->conn_to_evt); } static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd) { struct kvm_hv *hv = to_kvm_hv(kvm); struct eventfd_ctx *eventfd; int ret; eventfd = eventfd_ctx_fdget(fd); if (IS_ERR(eventfd)) return PTR_ERR(eventfd); mutex_lock(&hv->hv_lock); ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1, GFP_KERNEL_ACCOUNT); mutex_unlock(&hv->hv_lock); if (ret >= 0) return 0; if (ret == -ENOSPC) ret = -EEXIST; eventfd_ctx_put(eventfd); return ret; } static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id) { struct kvm_hv *hv = to_kvm_hv(kvm); struct eventfd_ctx *eventfd; mutex_lock(&hv->hv_lock); eventfd = idr_remove(&hv->conn_to_evt, conn_id); mutex_unlock(&hv->hv_lock); if (!eventfd) return -ENOENT; synchronize_srcu(&kvm->srcu); eventfd_ctx_put(eventfd); return 0; } int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args) { if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) || (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK)) return -EINVAL; if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN) return kvm_hv_eventfd_deassign(kvm, args->conn_id); return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd); } int kvm_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid, struct kvm_cpuid_entry2 __user *entries) { uint16_t evmcs_ver = 0; struct kvm_cpuid_entry2 cpuid_entries[] = { { .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS }, { .function = HYPERV_CPUID_INTERFACE }, { .function = HYPERV_CPUID_VERSION }, { .function = HYPERV_CPUID_FEATURES }, { .function = HYPERV_CPUID_ENLIGHTMENT_INFO }, { .function = HYPERV_CPUID_IMPLEMENT_LIMITS }, { .function = HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS }, { .function = HYPERV_CPUID_SYNDBG_INTERFACE }, { .function = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES }, { .function = HYPERV_CPUID_NESTED_FEATURES }, }; int i, nent = ARRAY_SIZE(cpuid_entries); if (kvm_x86_ops.nested_ops->get_evmcs_version) evmcs_ver = kvm_x86_ops.nested_ops->get_evmcs_version(vcpu); if (cpuid->nent < nent) return -E2BIG; if (cpuid->nent > nent) cpuid->nent = nent; for (i = 0; i < nent; i++) { struct kvm_cpuid_entry2 *ent = &cpuid_entries[i]; u32 signature[3]; switch (ent->function) { case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS: memcpy(signature, "Linux KVM Hv", 12); ent->eax = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES; ent->ebx = signature[0]; ent->ecx = signature[1]; ent->edx = signature[2]; break; case HYPERV_CPUID_INTERFACE: ent->eax = HYPERV_CPUID_SIGNATURE_EAX; break; case HYPERV_CPUID_VERSION: /* * We implement some Hyper-V 2016 functions so let's use * this version. */ ent->eax = 0x00003839; ent->ebx = 0x000A0000; break; case HYPERV_CPUID_FEATURES: ent->eax |= HV_MSR_VP_RUNTIME_AVAILABLE; ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE; ent->eax |= HV_MSR_SYNIC_AVAILABLE; ent->eax |= HV_MSR_SYNTIMER_AVAILABLE; ent->eax |= HV_MSR_APIC_ACCESS_AVAILABLE; ent->eax |= HV_MSR_HYPERCALL_AVAILABLE; ent->eax |= HV_MSR_VP_INDEX_AVAILABLE; ent->eax |= HV_MSR_RESET_AVAILABLE; ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE; ent->eax |= HV_ACCESS_FREQUENCY_MSRS; ent->eax |= HV_ACCESS_REENLIGHTENMENT; ent->ebx |= HV_POST_MESSAGES; ent->ebx |= HV_SIGNAL_EVENTS; ent->edx |= HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE; ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE; ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE; ent->ebx |= HV_DEBUGGING; ent->edx |= HV_X64_GUEST_DEBUGGING_AVAILABLE; ent->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE; ent->edx |= HV_FEATURE_EXT_GVA_RANGES_FLUSH; /* * Direct Synthetic timers only make sense with in-kernel * LAPIC */ if (!vcpu || lapic_in_kernel(vcpu)) ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE; break; case HYPERV_CPUID_ENLIGHTMENT_INFO: ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED; ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED; ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED; ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED; ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED; if (evmcs_ver) ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED; if (!cpu_smt_possible()) ent->eax |= HV_X64_NO_NONARCH_CORESHARING; ent->eax |= HV_DEPRECATING_AEOI_RECOMMENDED; /* * Default number of spinlock retry attempts, matches * HyperV 2016. */ ent->ebx = 0x00000FFF; break; case HYPERV_CPUID_IMPLEMENT_LIMITS: /* Maximum number of virtual processors */ ent->eax = KVM_MAX_VCPUS; /* * Maximum number of logical processors, matches * HyperV 2016. */ ent->ebx = 64; break; case HYPERV_CPUID_NESTED_FEATURES: ent->eax = evmcs_ver; ent->eax |= HV_X64_NESTED_DIRECT_FLUSH; ent->eax |= HV_X64_NESTED_MSR_BITMAP; ent->ebx |= HV_X64_NESTED_EVMCS1_PERF_GLOBAL_CTRL; break; case HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS: memcpy(signature, "Linux KVM Hv", 12); ent->eax = 0; ent->ebx = signature[0]; ent->ecx = signature[1]; ent->edx = signature[2]; break; case HYPERV_CPUID_SYNDBG_INTERFACE: memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12); ent->eax = signature[0]; break; case HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES: ent->eax |= HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING; break; default: break; } } if (copy_to_user(entries, cpuid_entries, nent * sizeof(struct kvm_cpuid_entry2))) return -EFAULT; return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1