Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Torvalds (pre-git) | 1682 | 99.53% | 10 | 76.92% |
Ingo Molnar | 4 | 0.24% | 1 | 7.69% |
Linus Torvalds | 3 | 0.18% | 1 | 7.69% |
Greg Kroah-Hartman | 1 | 0.06% | 1 | 7.69% |
Total | 1690 | 13 |
// SPDX-License-Identifier: GPL-2.0 /*---------------------------------------------------------------------------+ | poly_sin.c | | | | Computation of an approximation of the sin function and the cosine | | function by a polynomial. | | | | Copyright (C) 1992,1993,1994,1997,1999 | | W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia | | E-mail billm@melbpc.org.au | | | | | +---------------------------------------------------------------------------*/ #include "exception.h" #include "reg_constant.h" #include "fpu_emu.h" #include "fpu_system.h" #include "control_w.h" #include "poly.h" #define N_COEFF_P 4 #define N_COEFF_N 4 static const unsigned long long pos_terms_l[N_COEFF_P] = { 0xaaaaaaaaaaaaaaabLL, 0x00d00d00d00cf906LL, 0x000006b99159a8bbLL, 0x000000000d7392e6LL }; static const unsigned long long neg_terms_l[N_COEFF_N] = { 0x2222222222222167LL, 0x0002e3bc74aab624LL, 0x0000000b09229062LL, 0x00000000000c7973LL }; #define N_COEFF_PH 4 #define N_COEFF_NH 4 static const unsigned long long pos_terms_h[N_COEFF_PH] = { 0x0000000000000000LL, 0x05b05b05b05b0406LL, 0x000049f93edd91a9LL, 0x00000000c9c9ed62LL }; static const unsigned long long neg_terms_h[N_COEFF_NH] = { 0xaaaaaaaaaaaaaa98LL, 0x001a01a01a019064LL, 0x0000008f76c68a77LL, 0x0000000000d58f5eLL }; /*--- poly_sine() -----------------------------------------------------------+ | | +---------------------------------------------------------------------------*/ void poly_sine(FPU_REG *st0_ptr) { int exponent, echange; Xsig accumulator, argSqrd, argTo4; unsigned long fix_up, adj; unsigned long long fixed_arg; FPU_REG result; exponent = exponent(st0_ptr); accumulator.lsw = accumulator.midw = accumulator.msw = 0; /* Split into two ranges, for arguments below and above 1.0 */ /* The boundary between upper and lower is approx 0.88309101259 */ if ((exponent < -1) || ((exponent == -1) && (st0_ptr->sigh <= 0xe21240aa))) { /* The argument is <= 0.88309101259 */ argSqrd.msw = st0_ptr->sigh; argSqrd.midw = st0_ptr->sigl; argSqrd.lsw = 0; mul64_Xsig(&argSqrd, &significand(st0_ptr)); shr_Xsig(&argSqrd, 2 * (-1 - exponent)); argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw; argTo4.lsw = argSqrd.lsw; mul_Xsig_Xsig(&argTo4, &argTo4); polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l, N_COEFF_N - 1); mul_Xsig_Xsig(&accumulator, &argSqrd); negate_Xsig(&accumulator); polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l, N_COEFF_P - 1); shr_Xsig(&accumulator, 2); /* Divide by four */ accumulator.msw |= 0x80000000; /* Add 1.0 */ mul64_Xsig(&accumulator, &significand(st0_ptr)); mul64_Xsig(&accumulator, &significand(st0_ptr)); mul64_Xsig(&accumulator, &significand(st0_ptr)); /* Divide by four, FPU_REG compatible, etc */ exponent = 3 * exponent; /* The minimum exponent difference is 3 */ shr_Xsig(&accumulator, exponent(st0_ptr) - exponent); negate_Xsig(&accumulator); XSIG_LL(accumulator) += significand(st0_ptr); echange = round_Xsig(&accumulator); setexponentpos(&result, exponent(st0_ptr) + echange); } else { /* The argument is > 0.88309101259 */ /* We use sin(st(0)) = cos(pi/2-st(0)) */ fixed_arg = significand(st0_ptr); if (exponent == 0) { /* The argument is >= 1.0 */ /* Put the binary point at the left. */ fixed_arg <<= 1; } /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */ fixed_arg = 0x921fb54442d18469LL - fixed_arg; /* There is a special case which arises due to rounding, to fix here. */ if (fixed_arg == 0xffffffffffffffffLL) fixed_arg = 0; XSIG_LL(argSqrd) = fixed_arg; argSqrd.lsw = 0; mul64_Xsig(&argSqrd, &fixed_arg); XSIG_LL(argTo4) = XSIG_LL(argSqrd); argTo4.lsw = argSqrd.lsw; mul_Xsig_Xsig(&argTo4, &argTo4); polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h, N_COEFF_NH - 1); mul_Xsig_Xsig(&accumulator, &argSqrd); negate_Xsig(&accumulator); polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h, N_COEFF_PH - 1); negate_Xsig(&accumulator); mul64_Xsig(&accumulator, &fixed_arg); mul64_Xsig(&accumulator, &fixed_arg); shr_Xsig(&accumulator, 3); negate_Xsig(&accumulator); add_Xsig_Xsig(&accumulator, &argSqrd); shr_Xsig(&accumulator, 1); accumulator.lsw |= 1; /* A zero accumulator here would cause problems */ negate_Xsig(&accumulator); /* The basic computation is complete. Now fix the answer to compensate for the error due to the approximation used for pi/2 */ /* This has an exponent of -65 */ fix_up = 0x898cc517; /* The fix-up needs to be improved for larger args */ if (argSqrd.msw & 0xffc00000) { /* Get about 32 bit precision in these: */ fix_up -= mul_32_32(0x898cc517, argSqrd.msw) / 6; } fix_up = mul_32_32(fix_up, LL_MSW(fixed_arg)); adj = accumulator.lsw; /* temp save */ accumulator.lsw -= fix_up; if (accumulator.lsw > adj) XSIG_LL(accumulator)--; echange = round_Xsig(&accumulator); setexponentpos(&result, echange - 1); } significand(&result) = XSIG_LL(accumulator); setsign(&result, getsign(st0_ptr)); FPU_copy_to_reg0(&result, TAG_Valid); #ifdef PARANOID if ((exponent(&result) >= 0) && (significand(&result) > 0x8000000000000000LL)) { EXCEPTION(EX_INTERNAL | 0x150); } #endif /* PARANOID */ } /*--- poly_cos() ------------------------------------------------------------+ | | +---------------------------------------------------------------------------*/ void poly_cos(FPU_REG *st0_ptr) { FPU_REG result; long int exponent, exp2, echange; Xsig accumulator, argSqrd, fix_up, argTo4; unsigned long long fixed_arg; #ifdef PARANOID if ((exponent(st0_ptr) > 0) || ((exponent(st0_ptr) == 0) && (significand(st0_ptr) > 0xc90fdaa22168c234LL))) { EXCEPTION(EX_Invalid); FPU_copy_to_reg0(&CONST_QNaN, TAG_Special); return; } #endif /* PARANOID */ exponent = exponent(st0_ptr); accumulator.lsw = accumulator.midw = accumulator.msw = 0; if ((exponent < -1) || ((exponent == -1) && (st0_ptr->sigh <= 0xb00d6f54))) { /* arg is < 0.687705 */ argSqrd.msw = st0_ptr->sigh; argSqrd.midw = st0_ptr->sigl; argSqrd.lsw = 0; mul64_Xsig(&argSqrd, &significand(st0_ptr)); if (exponent < -1) { /* shift the argument right by the required places */ shr_Xsig(&argSqrd, 2 * (-1 - exponent)); } argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw; argTo4.lsw = argSqrd.lsw; mul_Xsig_Xsig(&argTo4, &argTo4); polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h, N_COEFF_NH - 1); mul_Xsig_Xsig(&accumulator, &argSqrd); negate_Xsig(&accumulator); polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h, N_COEFF_PH - 1); negate_Xsig(&accumulator); mul64_Xsig(&accumulator, &significand(st0_ptr)); mul64_Xsig(&accumulator, &significand(st0_ptr)); shr_Xsig(&accumulator, -2 * (1 + exponent)); shr_Xsig(&accumulator, 3); negate_Xsig(&accumulator); add_Xsig_Xsig(&accumulator, &argSqrd); shr_Xsig(&accumulator, 1); /* It doesn't matter if accumulator is all zero here, the following code will work ok */ negate_Xsig(&accumulator); if (accumulator.lsw & 0x80000000) XSIG_LL(accumulator)++; if (accumulator.msw == 0) { /* The result is 1.0 */ FPU_copy_to_reg0(&CONST_1, TAG_Valid); return; } else { significand(&result) = XSIG_LL(accumulator); /* will be a valid positive nr with expon = -1 */ setexponentpos(&result, -1); } } else { fixed_arg = significand(st0_ptr); if (exponent == 0) { /* The argument is >= 1.0 */ /* Put the binary point at the left. */ fixed_arg <<= 1; } /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */ fixed_arg = 0x921fb54442d18469LL - fixed_arg; /* There is a special case which arises due to rounding, to fix here. */ if (fixed_arg == 0xffffffffffffffffLL) fixed_arg = 0; exponent = -1; exp2 = -1; /* A shift is needed here only for a narrow range of arguments, i.e. for fixed_arg approx 2^-32, but we pick up more... */ if (!(LL_MSW(fixed_arg) & 0xffff0000)) { fixed_arg <<= 16; exponent -= 16; exp2 -= 16; } XSIG_LL(argSqrd) = fixed_arg; argSqrd.lsw = 0; mul64_Xsig(&argSqrd, &fixed_arg); if (exponent < -1) { /* shift the argument right by the required places */ shr_Xsig(&argSqrd, 2 * (-1 - exponent)); } argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw; argTo4.lsw = argSqrd.lsw; mul_Xsig_Xsig(&argTo4, &argTo4); polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l, N_COEFF_N - 1); mul_Xsig_Xsig(&accumulator, &argSqrd); negate_Xsig(&accumulator); polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l, N_COEFF_P - 1); shr_Xsig(&accumulator, 2); /* Divide by four */ accumulator.msw |= 0x80000000; /* Add 1.0 */ mul64_Xsig(&accumulator, &fixed_arg); mul64_Xsig(&accumulator, &fixed_arg); mul64_Xsig(&accumulator, &fixed_arg); /* Divide by four, FPU_REG compatible, etc */ exponent = 3 * exponent; /* The minimum exponent difference is 3 */ shr_Xsig(&accumulator, exp2 - exponent); negate_Xsig(&accumulator); XSIG_LL(accumulator) += fixed_arg; /* The basic computation is complete. Now fix the answer to compensate for the error due to the approximation used for pi/2 */ /* This has an exponent of -65 */ XSIG_LL(fix_up) = 0x898cc51701b839a2ll; fix_up.lsw = 0; /* The fix-up needs to be improved for larger args */ if (argSqrd.msw & 0xffc00000) { /* Get about 32 bit precision in these: */ fix_up.msw -= mul_32_32(0x898cc517, argSqrd.msw) / 2; fix_up.msw += mul_32_32(0x898cc517, argTo4.msw) / 24; } exp2 += norm_Xsig(&accumulator); shr_Xsig(&accumulator, 1); /* Prevent overflow */ exp2++; shr_Xsig(&fix_up, 65 + exp2); add_Xsig_Xsig(&accumulator, &fix_up); echange = round_Xsig(&accumulator); setexponentpos(&result, exp2 + echange); significand(&result) = XSIG_LL(accumulator); } FPU_copy_to_reg0(&result, TAG_Valid); #ifdef PARANOID if ((exponent(&result) >= 0) && (significand(&result) > 0x8000000000000000LL)) { EXCEPTION(EX_INTERNAL | 0x151); } #endif /* PARANOID */ }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1