Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Max Filippov | 2087 | 88.92% | 12 | 37.50% |
Chris Zankel | 212 | 9.03% | 6 | 18.75% |
Afzal Mohammed | 17 | 0.72% | 1 | 3.12% |
Ingo Molnar | 9 | 0.38% | 3 | 9.38% |
Pranith Kumar | 5 | 0.21% | 1 | 3.12% |
Johannes Weiner | 3 | 0.13% | 1 | 3.12% |
Nishanth Aravamudan | 3 | 0.13% | 1 | 3.12% |
Thomas Gleixner | 3 | 0.13% | 2 | 6.25% |
Kirill V Tkhai | 3 | 0.13% | 1 | 3.12% |
Alexey Dobriyan | 2 | 0.09% | 1 | 3.12% |
Vegard Nossum | 2 | 0.09% | 2 | 6.25% |
Sinan Kaya | 1 | 0.04% | 1 | 3.12% |
Total | 2347 | 32 |
/* * Xtensa SMP support functions. * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2008 - 2013 Tensilica Inc. * * Chris Zankel <chris@zankel.net> * Joe Taylor <joe@tensilica.com> * Pete Delaney <piet@tensilica.com */ #include <linux/cpu.h> #include <linux/cpumask.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/irqdomain.h> #include <linux/irq.h> #include <linux/kdebug.h> #include <linux/module.h> #include <linux/sched/mm.h> #include <linux/sched/hotplug.h> #include <linux/sched/task_stack.h> #include <linux/reboot.h> #include <linux/seq_file.h> #include <linux/smp.h> #include <linux/thread_info.h> #include <asm/cacheflush.h> #include <asm/coprocessor.h> #include <asm/kdebug.h> #include <asm/mmu_context.h> #include <asm/mxregs.h> #include <asm/platform.h> #include <asm/tlbflush.h> #include <asm/traps.h> #ifdef CONFIG_SMP # if XCHAL_HAVE_S32C1I == 0 # error "The S32C1I option is required for SMP." # endif #endif static void system_invalidate_dcache_range(unsigned long start, unsigned long size); static void system_flush_invalidate_dcache_range(unsigned long start, unsigned long size); /* IPI (Inter Process Interrupt) */ #define IPI_IRQ 0 static irqreturn_t ipi_interrupt(int irq, void *dev_id); void ipi_init(void) { unsigned irq = irq_create_mapping(NULL, IPI_IRQ); if (request_irq(irq, ipi_interrupt, IRQF_PERCPU, "ipi", NULL)) pr_err("Failed to request irq %u (ipi)\n", irq); } static inline unsigned int get_core_count(void) { /* Bits 18..21 of SYSCFGID contain the core count minus 1. */ unsigned int syscfgid = get_er(SYSCFGID); return ((syscfgid >> 18) & 0xf) + 1; } static inline int get_core_id(void) { /* Bits 0...18 of SYSCFGID contain the core id */ unsigned int core_id = get_er(SYSCFGID); return core_id & 0x3fff; } void __init smp_prepare_cpus(unsigned int max_cpus) { unsigned i; for_each_possible_cpu(i) set_cpu_present(i, true); } void __init smp_init_cpus(void) { unsigned i; unsigned int ncpus = get_core_count(); unsigned int core_id = get_core_id(); pr_info("%s: Core Count = %d\n", __func__, ncpus); pr_info("%s: Core Id = %d\n", __func__, core_id); if (ncpus > NR_CPUS) { ncpus = NR_CPUS; pr_info("%s: limiting core count by %d\n", __func__, ncpus); } for (i = 0; i < ncpus; ++i) set_cpu_possible(i, true); } void __init smp_prepare_boot_cpu(void) { unsigned int cpu = smp_processor_id(); BUG_ON(cpu != 0); cpu_asid_cache(cpu) = ASID_USER_FIRST; } void __init smp_cpus_done(unsigned int max_cpus) { } static int boot_secondary_processors = 1; /* Set with xt-gdb via .xt-gdb */ static DECLARE_COMPLETION(cpu_running); void secondary_start_kernel(void) { struct mm_struct *mm = &init_mm; unsigned int cpu = smp_processor_id(); init_mmu(); #ifdef CONFIG_DEBUG_MISC if (boot_secondary_processors == 0) { pr_debug("%s: boot_secondary_processors:%d; Hanging cpu:%d\n", __func__, boot_secondary_processors, cpu); for (;;) __asm__ __volatile__ ("waiti " __stringify(LOCKLEVEL)); } pr_debug("%s: boot_secondary_processors:%d; Booting cpu:%d\n", __func__, boot_secondary_processors, cpu); #endif /* Init EXCSAVE1 */ secondary_trap_init(); /* All kernel threads share the same mm context. */ mmget(mm); mmgrab(mm); current->active_mm = mm; cpumask_set_cpu(cpu, mm_cpumask(mm)); enter_lazy_tlb(mm, current); trace_hardirqs_off(); calibrate_delay(); notify_cpu_starting(cpu); secondary_init_irq(); local_timer_setup(cpu); set_cpu_online(cpu, true); local_irq_enable(); complete(&cpu_running); cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); } static void mx_cpu_start(void *p) { unsigned cpu = (unsigned)p; unsigned long run_stall_mask = get_er(MPSCORE); set_er(run_stall_mask & ~(1u << cpu), MPSCORE); pr_debug("%s: cpu: %d, run_stall_mask: %lx ---> %lx\n", __func__, cpu, run_stall_mask, get_er(MPSCORE)); } static void mx_cpu_stop(void *p) { unsigned cpu = (unsigned)p; unsigned long run_stall_mask = get_er(MPSCORE); set_er(run_stall_mask | (1u << cpu), MPSCORE); pr_debug("%s: cpu: %d, run_stall_mask: %lx ---> %lx\n", __func__, cpu, run_stall_mask, get_er(MPSCORE)); } #ifdef CONFIG_HOTPLUG_CPU unsigned long cpu_start_id __cacheline_aligned; #endif unsigned long cpu_start_ccount; static int boot_secondary(unsigned int cpu, struct task_struct *ts) { unsigned long timeout = jiffies + msecs_to_jiffies(1000); unsigned long ccount; int i; #ifdef CONFIG_HOTPLUG_CPU WRITE_ONCE(cpu_start_id, cpu); /* Pairs with the third memw in the cpu_restart */ mb(); system_flush_invalidate_dcache_range((unsigned long)&cpu_start_id, sizeof(cpu_start_id)); #endif smp_call_function_single(0, mx_cpu_start, (void *)cpu, 1); for (i = 0; i < 2; ++i) { do ccount = get_ccount(); while (!ccount); WRITE_ONCE(cpu_start_ccount, ccount); do { /* * Pairs with the first two memws in the * .Lboot_secondary. */ mb(); ccount = READ_ONCE(cpu_start_ccount); } while (ccount && time_before(jiffies, timeout)); if (ccount) { smp_call_function_single(0, mx_cpu_stop, (void *)cpu, 1); WRITE_ONCE(cpu_start_ccount, 0); return -EIO; } } return 0; } int __cpu_up(unsigned int cpu, struct task_struct *idle) { int ret = 0; if (cpu_asid_cache(cpu) == 0) cpu_asid_cache(cpu) = ASID_USER_FIRST; start_info.stack = (unsigned long)task_pt_regs(idle); wmb(); pr_debug("%s: Calling wakeup_secondary(cpu:%d, idle:%p, sp: %08lx)\n", __func__, cpu, idle, start_info.stack); init_completion(&cpu_running); ret = boot_secondary(cpu, idle); if (ret == 0) { wait_for_completion_timeout(&cpu_running, msecs_to_jiffies(1000)); if (!cpu_online(cpu)) ret = -EIO; } if (ret) pr_err("CPU %u failed to boot\n", cpu); return ret; } #ifdef CONFIG_HOTPLUG_CPU /* * __cpu_disable runs on the processor to be shutdown. */ int __cpu_disable(void) { unsigned int cpu = smp_processor_id(); /* * Take this CPU offline. Once we clear this, we can't return, * and we must not schedule until we're ready to give up the cpu. */ set_cpu_online(cpu, false); #if XTENSA_HAVE_COPROCESSORS /* * Flush coprocessor contexts that are active on the current CPU. */ local_coprocessors_flush_release_all(); #endif /* * OK - migrate IRQs away from this CPU */ migrate_irqs(); /* * Flush user cache and TLB mappings, and then remove this CPU * from the vm mask set of all processes. */ local_flush_cache_all(); local_flush_tlb_all(); invalidate_page_directory(); clear_tasks_mm_cpumask(cpu); return 0; } static void platform_cpu_kill(unsigned int cpu) { smp_call_function_single(0, mx_cpu_stop, (void *)cpu, true); } /* * called on the thread which is asking for a CPU to be shutdown - * waits until shutdown has completed, or it is timed out. */ void __cpu_die(unsigned int cpu) { unsigned long timeout = jiffies + msecs_to_jiffies(1000); while (time_before(jiffies, timeout)) { system_invalidate_dcache_range((unsigned long)&cpu_start_id, sizeof(cpu_start_id)); /* Pairs with the second memw in the cpu_restart */ mb(); if (READ_ONCE(cpu_start_id) == -cpu) { platform_cpu_kill(cpu); return; } } pr_err("CPU%u: unable to kill\n", cpu); } void arch_cpu_idle_dead(void) { cpu_die(); } /* * Called from the idle thread for the CPU which has been shutdown. * * Note that we disable IRQs here, but do not re-enable them * before returning to the caller. This is also the behaviour * of the other hotplug-cpu capable cores, so presumably coming * out of idle fixes this. */ void __ref cpu_die(void) { idle_task_exit(); local_irq_disable(); __asm__ __volatile__( " movi a2, cpu_restart\n" " jx a2\n"); } #endif /* CONFIG_HOTPLUG_CPU */ enum ipi_msg_type { IPI_RESCHEDULE = 0, IPI_CALL_FUNC, IPI_CPU_STOP, IPI_MAX }; static const struct { const char *short_text; const char *long_text; } ipi_text[] = { { .short_text = "RES", .long_text = "Rescheduling interrupts" }, { .short_text = "CAL", .long_text = "Function call interrupts" }, { .short_text = "DIE", .long_text = "CPU shutdown interrupts" }, }; struct ipi_data { unsigned long ipi_count[IPI_MAX]; }; static DEFINE_PER_CPU(struct ipi_data, ipi_data); static void send_ipi_message(const struct cpumask *callmask, enum ipi_msg_type msg_id) { int index; unsigned long mask = 0; for_each_cpu(index, callmask) mask |= 1 << index; set_er(mask, MIPISET(msg_id)); } void arch_send_call_function_ipi_mask(const struct cpumask *mask) { send_ipi_message(mask, IPI_CALL_FUNC); } void arch_send_call_function_single_ipi(int cpu) { send_ipi_message(cpumask_of(cpu), IPI_CALL_FUNC); } void smp_send_reschedule(int cpu) { send_ipi_message(cpumask_of(cpu), IPI_RESCHEDULE); } void smp_send_stop(void) { struct cpumask targets; cpumask_copy(&targets, cpu_online_mask); cpumask_clear_cpu(smp_processor_id(), &targets); send_ipi_message(&targets, IPI_CPU_STOP); } static void ipi_cpu_stop(unsigned int cpu) { set_cpu_online(cpu, false); machine_halt(); } irqreturn_t ipi_interrupt(int irq, void *dev_id) { unsigned int cpu = smp_processor_id(); struct ipi_data *ipi = &per_cpu(ipi_data, cpu); for (;;) { unsigned int msg; msg = get_er(MIPICAUSE(cpu)); set_er(msg, MIPICAUSE(cpu)); if (!msg) break; if (msg & (1 << IPI_CALL_FUNC)) { ++ipi->ipi_count[IPI_CALL_FUNC]; generic_smp_call_function_interrupt(); } if (msg & (1 << IPI_RESCHEDULE)) { ++ipi->ipi_count[IPI_RESCHEDULE]; scheduler_ipi(); } if (msg & (1 << IPI_CPU_STOP)) { ++ipi->ipi_count[IPI_CPU_STOP]; ipi_cpu_stop(cpu); } } return IRQ_HANDLED; } void show_ipi_list(struct seq_file *p, int prec) { unsigned int cpu; unsigned i; for (i = 0; i < IPI_MAX; ++i) { seq_printf(p, "%*s:", prec, ipi_text[i].short_text); for_each_online_cpu(cpu) seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count[i]); seq_printf(p, " %s\n", ipi_text[i].long_text); } } int setup_profiling_timer(unsigned int multiplier) { pr_debug("setup_profiling_timer %d\n", multiplier); return 0; } /* TLB flush functions */ struct flush_data { struct vm_area_struct *vma; unsigned long addr1; unsigned long addr2; }; static void ipi_flush_tlb_all(void *arg) { local_flush_tlb_all(); } void flush_tlb_all(void) { on_each_cpu(ipi_flush_tlb_all, NULL, 1); } static void ipi_flush_tlb_mm(void *arg) { local_flush_tlb_mm(arg); } void flush_tlb_mm(struct mm_struct *mm) { on_each_cpu(ipi_flush_tlb_mm, mm, 1); } static void ipi_flush_tlb_page(void *arg) { struct flush_data *fd = arg; local_flush_tlb_page(fd->vma, fd->addr1); } void flush_tlb_page(struct vm_area_struct *vma, unsigned long addr) { struct flush_data fd = { .vma = vma, .addr1 = addr, }; on_each_cpu(ipi_flush_tlb_page, &fd, 1); } static void ipi_flush_tlb_range(void *arg) { struct flush_data *fd = arg; local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); } void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { struct flush_data fd = { .vma = vma, .addr1 = start, .addr2 = end, }; on_each_cpu(ipi_flush_tlb_range, &fd, 1); } static void ipi_flush_tlb_kernel_range(void *arg) { struct flush_data *fd = arg; local_flush_tlb_kernel_range(fd->addr1, fd->addr2); } void flush_tlb_kernel_range(unsigned long start, unsigned long end) { struct flush_data fd = { .addr1 = start, .addr2 = end, }; on_each_cpu(ipi_flush_tlb_kernel_range, &fd, 1); } /* Cache flush functions */ static void ipi_flush_cache_all(void *arg) { local_flush_cache_all(); } void flush_cache_all(void) { on_each_cpu(ipi_flush_cache_all, NULL, 1); } static void ipi_flush_cache_page(void *arg) { struct flush_data *fd = arg; local_flush_cache_page(fd->vma, fd->addr1, fd->addr2); } void flush_cache_page(struct vm_area_struct *vma, unsigned long address, unsigned long pfn) { struct flush_data fd = { .vma = vma, .addr1 = address, .addr2 = pfn, }; on_each_cpu(ipi_flush_cache_page, &fd, 1); } static void ipi_flush_cache_range(void *arg) { struct flush_data *fd = arg; local_flush_cache_range(fd->vma, fd->addr1, fd->addr2); } void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { struct flush_data fd = { .vma = vma, .addr1 = start, .addr2 = end, }; on_each_cpu(ipi_flush_cache_range, &fd, 1); } static void ipi_flush_icache_range(void *arg) { struct flush_data *fd = arg; local_flush_icache_range(fd->addr1, fd->addr2); } void flush_icache_range(unsigned long start, unsigned long end) { struct flush_data fd = { .addr1 = start, .addr2 = end, }; on_each_cpu(ipi_flush_icache_range, &fd, 1); } EXPORT_SYMBOL(flush_icache_range); /* ------------------------------------------------------------------------- */ static void ipi_invalidate_dcache_range(void *arg) { struct flush_data *fd = arg; __invalidate_dcache_range(fd->addr1, fd->addr2); } static void system_invalidate_dcache_range(unsigned long start, unsigned long size) { struct flush_data fd = { .addr1 = start, .addr2 = size, }; on_each_cpu(ipi_invalidate_dcache_range, &fd, 1); } static void ipi_flush_invalidate_dcache_range(void *arg) { struct flush_data *fd = arg; __flush_invalidate_dcache_range(fd->addr1, fd->addr2); } static void system_flush_invalidate_dcache_range(unsigned long start, unsigned long size) { struct flush_data fd = { .addr1 = start, .addr2 = size, }; on_each_cpu(ipi_flush_invalidate_dcache_range, &fd, 1); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1