Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dan J Williams | 792 | 95.77% | 16 | 66.67% |
Christopher Leech | 8 | 0.97% | 1 | 4.17% |
Bartlomiej Zolnierkiewicz | 6 | 0.73% | 1 | 4.17% |
Linus Torvalds (pre-git) | 6 | 0.73% | 1 | 4.17% |
Linus Torvalds | 5 | 0.60% | 1 | 4.17% |
Paul Gortmaker | 3 | 0.36% | 1 | 4.17% |
Franck Bui-Huu | 3 | 0.36% | 1 | 4.17% |
Vinod Koul | 2 | 0.24% | 1 | 4.17% |
Thomas Gleixner | 2 | 0.24% | 1 | 4.17% |
Total | 827 | 24 |
// SPDX-License-Identifier: GPL-2.0-only /* * core routines for the asynchronous memory transfer/transform api * * Copyright © 2006, Intel Corporation. * * Dan Williams <dan.j.williams@intel.com> * * with architecture considerations by: * Neil Brown <neilb@suse.de> * Jeff Garzik <jeff@garzik.org> */ #include <linux/rculist.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/async_tx.h> #ifdef CONFIG_DMA_ENGINE static int __init async_tx_init(void) { async_dmaengine_get(); printk(KERN_INFO "async_tx: api initialized (async)\n"); return 0; } static void __exit async_tx_exit(void) { async_dmaengine_put(); } module_init(async_tx_init); module_exit(async_tx_exit); /** * __async_tx_find_channel - find a channel to carry out the operation or let * the transaction execute synchronously * @submit: transaction dependency and submission modifiers * @tx_type: transaction type */ struct dma_chan * __async_tx_find_channel(struct async_submit_ctl *submit, enum dma_transaction_type tx_type) { struct dma_async_tx_descriptor *depend_tx = submit->depend_tx; /* see if we can keep the chain on one channel */ if (depend_tx && dma_has_cap(tx_type, depend_tx->chan->device->cap_mask)) return depend_tx->chan; return async_dma_find_channel(tx_type); } EXPORT_SYMBOL_GPL(__async_tx_find_channel); #endif /** * async_tx_channel_switch - queue an interrupt descriptor with a dependency * pre-attached. * @depend_tx: the operation that must finish before the new operation runs * @tx: the new operation */ static void async_tx_channel_switch(struct dma_async_tx_descriptor *depend_tx, struct dma_async_tx_descriptor *tx) { struct dma_chan *chan = depend_tx->chan; struct dma_device *device = chan->device; struct dma_async_tx_descriptor *intr_tx = (void *) ~0; /* first check to see if we can still append to depend_tx */ txd_lock(depend_tx); if (txd_parent(depend_tx) && depend_tx->chan == tx->chan) { txd_chain(depend_tx, tx); intr_tx = NULL; } txd_unlock(depend_tx); /* attached dependency, flush the parent channel */ if (!intr_tx) { device->device_issue_pending(chan); return; } /* see if we can schedule an interrupt * otherwise poll for completion */ if (dma_has_cap(DMA_INTERRUPT, device->cap_mask)) intr_tx = device->device_prep_dma_interrupt(chan, 0); else intr_tx = NULL; if (intr_tx) { intr_tx->callback = NULL; intr_tx->callback_param = NULL; /* safe to chain outside the lock since we know we are * not submitted yet */ txd_chain(intr_tx, tx); /* check if we need to append */ txd_lock(depend_tx); if (txd_parent(depend_tx)) { txd_chain(depend_tx, intr_tx); async_tx_ack(intr_tx); intr_tx = NULL; } txd_unlock(depend_tx); if (intr_tx) { txd_clear_parent(intr_tx); intr_tx->tx_submit(intr_tx); async_tx_ack(intr_tx); } device->device_issue_pending(chan); } else { if (dma_wait_for_async_tx(depend_tx) != DMA_COMPLETE) panic("%s: DMA error waiting for depend_tx\n", __func__); tx->tx_submit(tx); } } /** * submit_disposition - flags for routing an incoming operation * @ASYNC_TX_SUBMITTED: we were able to append the new operation under the lock * @ASYNC_TX_CHANNEL_SWITCH: when the lock is dropped schedule a channel switch * @ASYNC_TX_DIRECT_SUBMIT: when the lock is dropped submit directly * * while holding depend_tx->lock we must avoid submitting new operations * to prevent a circular locking dependency with drivers that already * hold a channel lock when calling async_tx_run_dependencies. */ enum submit_disposition { ASYNC_TX_SUBMITTED, ASYNC_TX_CHANNEL_SWITCH, ASYNC_TX_DIRECT_SUBMIT, }; void async_tx_submit(struct dma_chan *chan, struct dma_async_tx_descriptor *tx, struct async_submit_ctl *submit) { struct dma_async_tx_descriptor *depend_tx = submit->depend_tx; tx->callback = submit->cb_fn; tx->callback_param = submit->cb_param; if (depend_tx) { enum submit_disposition s; /* sanity check the dependency chain: * 1/ if ack is already set then we cannot be sure * we are referring to the correct operation * 2/ dependencies are 1:1 i.e. two transactions can * not depend on the same parent */ BUG_ON(async_tx_test_ack(depend_tx) || txd_next(depend_tx) || txd_parent(tx)); /* the lock prevents async_tx_run_dependencies from missing * the setting of ->next when ->parent != NULL */ txd_lock(depend_tx); if (txd_parent(depend_tx)) { /* we have a parent so we can not submit directly * if we are staying on the same channel: append * else: channel switch */ if (depend_tx->chan == chan) { txd_chain(depend_tx, tx); s = ASYNC_TX_SUBMITTED; } else s = ASYNC_TX_CHANNEL_SWITCH; } else { /* we do not have a parent so we may be able to submit * directly if we are staying on the same channel */ if (depend_tx->chan == chan) s = ASYNC_TX_DIRECT_SUBMIT; else s = ASYNC_TX_CHANNEL_SWITCH; } txd_unlock(depend_tx); switch (s) { case ASYNC_TX_SUBMITTED: break; case ASYNC_TX_CHANNEL_SWITCH: async_tx_channel_switch(depend_tx, tx); break; case ASYNC_TX_DIRECT_SUBMIT: txd_clear_parent(tx); tx->tx_submit(tx); break; } } else { txd_clear_parent(tx); tx->tx_submit(tx); } if (submit->flags & ASYNC_TX_ACK) async_tx_ack(tx); if (depend_tx) async_tx_ack(depend_tx); } EXPORT_SYMBOL_GPL(async_tx_submit); /** * async_trigger_callback - schedules the callback function to be run * @submit: submission and completion parameters * * honored flags: ASYNC_TX_ACK * * The callback is run after any dependent operations have completed. */ struct dma_async_tx_descriptor * async_trigger_callback(struct async_submit_ctl *submit) { struct dma_chan *chan; struct dma_device *device; struct dma_async_tx_descriptor *tx; struct dma_async_tx_descriptor *depend_tx = submit->depend_tx; if (depend_tx) { chan = depend_tx->chan; device = chan->device; /* see if we can schedule an interrupt * otherwise poll for completion */ if (device && !dma_has_cap(DMA_INTERRUPT, device->cap_mask)) device = NULL; tx = device ? device->device_prep_dma_interrupt(chan, 0) : NULL; } else tx = NULL; if (tx) { pr_debug("%s: (async)\n", __func__); async_tx_submit(chan, tx, submit); } else { pr_debug("%s: (sync)\n", __func__); /* wait for any prerequisite operations */ async_tx_quiesce(&submit->depend_tx); async_tx_sync_epilog(submit); } return tx; } EXPORT_SYMBOL_GPL(async_trigger_callback); /** * async_tx_quiesce - ensure tx is complete and freeable upon return * @tx - transaction to quiesce */ void async_tx_quiesce(struct dma_async_tx_descriptor **tx) { if (*tx) { /* if ack is already set then we cannot be sure * we are referring to the correct operation */ BUG_ON(async_tx_test_ack(*tx)); if (dma_wait_for_async_tx(*tx) != DMA_COMPLETE) panic("%s: DMA error waiting for transaction\n", __func__); async_tx_ack(*tx); *tx = NULL; } } EXPORT_SYMBOL_GPL(async_tx_quiesce); MODULE_AUTHOR("Intel Corporation"); MODULE_DESCRIPTION("Asynchronous Bulk Memory Transactions API"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1