Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Richard Zhu | 2296 | 42.20% | 5 | 13.51% |
Csaba Kertesz | 881 | 16.19% | 1 | 2.70% |
Russell King | 757 | 13.91% | 3 | 8.11% |
Shawn Guo | 736 | 13.53% | 4 | 10.81% |
Hans de Goede | 414 | 7.61% | 2 | 5.41% |
Marek Vašut | 190 | 3.49% | 3 | 8.11% |
Anton Vorontsov | 40 | 0.74% | 3 | 8.11% |
Daniel Lezcano | 29 | 0.53% | 1 | 2.70% |
Linus Walleij | 27 | 0.50% | 1 | 2.70% |
Tejun Heo | 19 | 0.35% | 2 | 5.41% |
Kristen Carlson Accardi | 11 | 0.20% | 1 | 2.70% |
Akinobu Mita | 8 | 0.15% | 1 | 2.70% |
Brian Norris | 8 | 0.15% | 1 | 2.70% |
Arnd Bergmann | 5 | 0.09% | 1 | 2.70% |
Wei Yongjun | 4 | 0.07% | 1 | 2.70% |
Geert Uytterhoeven | 4 | 0.07% | 1 | 2.70% |
Jeff Garzik | 3 | 0.06% | 1 | 2.70% |
Thomas Gleixner | 2 | 0.04% | 1 | 2.70% |
Alexander Stein | 2 | 0.04% | 1 | 2.70% |
Damien Le Moal | 2 | 0.04% | 1 | 2.70% |
Kunihiko Hayashi | 2 | 0.04% | 1 | 2.70% |
Egor Starkov | 1 | 0.02% | 1 | 2.70% |
Total | 5441 | 37 |
// SPDX-License-Identifier: GPL-2.0-only /* * copyright (c) 2013 Freescale Semiconductor, Inc. * Freescale IMX AHCI SATA platform driver * * based on the AHCI SATA platform driver by Jeff Garzik and Anton Vorontsov */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/ahci_platform.h> #include <linux/gpio/consumer.h> #include <linux/of_device.h> #include <linux/mfd/syscon.h> #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h> #include <linux/libata.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/thermal.h> #include "ahci.h" #define DRV_NAME "ahci-imx" enum { /* Timer 1-ms Register */ IMX_TIMER1MS = 0x00e0, /* Port0 PHY Control Register */ IMX_P0PHYCR = 0x0178, IMX_P0PHYCR_TEST_PDDQ = 1 << 20, IMX_P0PHYCR_CR_READ = 1 << 19, IMX_P0PHYCR_CR_WRITE = 1 << 18, IMX_P0PHYCR_CR_CAP_DATA = 1 << 17, IMX_P0PHYCR_CR_CAP_ADDR = 1 << 16, /* Port0 PHY Status Register */ IMX_P0PHYSR = 0x017c, IMX_P0PHYSR_CR_ACK = 1 << 18, IMX_P0PHYSR_CR_DATA_OUT = 0xffff << 0, /* Lane0 Output Status Register */ IMX_LANE0_OUT_STAT = 0x2003, IMX_LANE0_OUT_STAT_RX_PLL_STATE = 1 << 1, /* Clock Reset Register */ IMX_CLOCK_RESET = 0x7f3f, IMX_CLOCK_RESET_RESET = 1 << 0, /* IMX8QM HSIO AHCI definitions */ IMX8QM_SATA_PHY_RX_IMPED_RATIO_OFFSET = 0x03, IMX8QM_SATA_PHY_TX_IMPED_RATIO_OFFSET = 0x09, IMX8QM_SATA_PHY_IMPED_RATIO_85OHM = 0x6c, IMX8QM_LPCG_PHYX2_OFFSET = 0x00000, IMX8QM_CSR_PHYX2_OFFSET = 0x90000, IMX8QM_CSR_PHYX1_OFFSET = 0xa0000, IMX8QM_CSR_PHYX_STTS0_OFFSET = 0x4, IMX8QM_CSR_PCIEA_OFFSET = 0xb0000, IMX8QM_CSR_PCIEB_OFFSET = 0xc0000, IMX8QM_CSR_SATA_OFFSET = 0xd0000, IMX8QM_CSR_PCIE_CTRL2_OFFSET = 0x8, IMX8QM_CSR_MISC_OFFSET = 0xe0000, IMX8QM_LPCG_PHYX2_PCLK0_MASK = (0x3 << 16), IMX8QM_LPCG_PHYX2_PCLK1_MASK = (0x3 << 20), IMX8QM_PHY_APB_RSTN_0 = BIT(0), IMX8QM_PHY_MODE_SATA = BIT(19), IMX8QM_PHY_MODE_MASK = (0xf << 17), IMX8QM_PHY_PIPE_RSTN_0 = BIT(24), IMX8QM_PHY_PIPE_RSTN_OVERRIDE_0 = BIT(25), IMX8QM_PHY_PIPE_RSTN_1 = BIT(26), IMX8QM_PHY_PIPE_RSTN_OVERRIDE_1 = BIT(27), IMX8QM_STTS0_LANE0_TX_PLL_LOCK = BIT(4), IMX8QM_MISC_IOB_RXENA = BIT(0), IMX8QM_MISC_IOB_TXENA = BIT(1), IMX8QM_MISC_PHYX1_EPCS_SEL = BIT(12), IMX8QM_MISC_CLKREQN_OUT_OVERRIDE_1 = BIT(24), IMX8QM_MISC_CLKREQN_OUT_OVERRIDE_0 = BIT(25), IMX8QM_MISC_CLKREQN_IN_OVERRIDE_1 = BIT(28), IMX8QM_MISC_CLKREQN_IN_OVERRIDE_0 = BIT(29), IMX8QM_SATA_CTRL_RESET_N = BIT(12), IMX8QM_SATA_CTRL_EPCS_PHYRESET_N = BIT(7), IMX8QM_CTRL_BUTTON_RST_N = BIT(21), IMX8QM_CTRL_POWER_UP_RST_N = BIT(23), IMX8QM_CTRL_LTSSM_ENABLE = BIT(4), }; enum ahci_imx_type { AHCI_IMX53, AHCI_IMX6Q, AHCI_IMX6QP, AHCI_IMX8QM, }; struct imx_ahci_priv { struct platform_device *ahci_pdev; enum ahci_imx_type type; struct clk *sata_clk; struct clk *sata_ref_clk; struct clk *ahb_clk; struct clk *epcs_tx_clk; struct clk *epcs_rx_clk; struct clk *phy_apbclk; struct clk *phy_pclk0; struct clk *phy_pclk1; void __iomem *phy_base; struct gpio_desc *clkreq_gpiod; struct regmap *gpr; bool no_device; bool first_time; u32 phy_params; u32 imped_ratio; }; static int ahci_imx_hotplug; module_param_named(hotplug, ahci_imx_hotplug, int, 0644); MODULE_PARM_DESC(hotplug, "AHCI IMX hot-plug support (0=Don't support, 1=support)"); static void ahci_imx_host_stop(struct ata_host *host); static int imx_phy_crbit_assert(void __iomem *mmio, u32 bit, bool assert) { int timeout = 10; u32 crval; u32 srval; /* Assert or deassert the bit */ crval = readl(mmio + IMX_P0PHYCR); if (assert) crval |= bit; else crval &= ~bit; writel(crval, mmio + IMX_P0PHYCR); /* Wait for the cr_ack signal */ do { srval = readl(mmio + IMX_P0PHYSR); if ((assert ? srval : ~srval) & IMX_P0PHYSR_CR_ACK) break; usleep_range(100, 200); } while (--timeout); return timeout ? 0 : -ETIMEDOUT; } static int imx_phy_reg_addressing(u16 addr, void __iomem *mmio) { u32 crval = addr; int ret; /* Supply the address on cr_data_in */ writel(crval, mmio + IMX_P0PHYCR); /* Assert the cr_cap_addr signal */ ret = imx_phy_crbit_assert(mmio, IMX_P0PHYCR_CR_CAP_ADDR, true); if (ret) return ret; /* Deassert cr_cap_addr */ ret = imx_phy_crbit_assert(mmio, IMX_P0PHYCR_CR_CAP_ADDR, false); if (ret) return ret; return 0; } static int imx_phy_reg_write(u16 val, void __iomem *mmio) { u32 crval = val; int ret; /* Supply the data on cr_data_in */ writel(crval, mmio + IMX_P0PHYCR); /* Assert the cr_cap_data signal */ ret = imx_phy_crbit_assert(mmio, IMX_P0PHYCR_CR_CAP_DATA, true); if (ret) return ret; /* Deassert cr_cap_data */ ret = imx_phy_crbit_assert(mmio, IMX_P0PHYCR_CR_CAP_DATA, false); if (ret) return ret; if (val & IMX_CLOCK_RESET_RESET) { /* * In case we're resetting the phy, it's unable to acknowledge, * so we return immediately here. */ crval |= IMX_P0PHYCR_CR_WRITE; writel(crval, mmio + IMX_P0PHYCR); goto out; } /* Assert the cr_write signal */ ret = imx_phy_crbit_assert(mmio, IMX_P0PHYCR_CR_WRITE, true); if (ret) return ret; /* Deassert cr_write */ ret = imx_phy_crbit_assert(mmio, IMX_P0PHYCR_CR_WRITE, false); if (ret) return ret; out: return 0; } static int imx_phy_reg_read(u16 *val, void __iomem *mmio) { int ret; /* Assert the cr_read signal */ ret = imx_phy_crbit_assert(mmio, IMX_P0PHYCR_CR_READ, true); if (ret) return ret; /* Capture the data from cr_data_out[] */ *val = readl(mmio + IMX_P0PHYSR) & IMX_P0PHYSR_CR_DATA_OUT; /* Deassert cr_read */ ret = imx_phy_crbit_assert(mmio, IMX_P0PHYCR_CR_READ, false); if (ret) return ret; return 0; } static int imx_sata_phy_reset(struct ahci_host_priv *hpriv) { struct imx_ahci_priv *imxpriv = hpriv->plat_data; void __iomem *mmio = hpriv->mmio; int timeout = 10; u16 val; int ret; if (imxpriv->type == AHCI_IMX6QP) { /* 6qp adds the sata reset mechanism, use it for 6qp sata */ regmap_update_bits(imxpriv->gpr, IOMUXC_GPR5, IMX6Q_GPR5_SATA_SW_PD, 0); regmap_update_bits(imxpriv->gpr, IOMUXC_GPR5, IMX6Q_GPR5_SATA_SW_RST, 0); udelay(50); regmap_update_bits(imxpriv->gpr, IOMUXC_GPR5, IMX6Q_GPR5_SATA_SW_RST, IMX6Q_GPR5_SATA_SW_RST); return 0; } /* Reset SATA PHY by setting RESET bit of PHY register CLOCK_RESET */ ret = imx_phy_reg_addressing(IMX_CLOCK_RESET, mmio); if (ret) return ret; ret = imx_phy_reg_write(IMX_CLOCK_RESET_RESET, mmio); if (ret) return ret; /* Wait for PHY RX_PLL to be stable */ do { usleep_range(100, 200); ret = imx_phy_reg_addressing(IMX_LANE0_OUT_STAT, mmio); if (ret) return ret; ret = imx_phy_reg_read(&val, mmio); if (ret) return ret; if (val & IMX_LANE0_OUT_STAT_RX_PLL_STATE) break; } while (--timeout); return timeout ? 0 : -ETIMEDOUT; } enum { /* SATA PHY Register */ SATA_PHY_CR_CLOCK_CRCMP_LT_LIMIT = 0x0001, SATA_PHY_CR_CLOCK_DAC_CTL = 0x0008, SATA_PHY_CR_CLOCK_RTUNE_CTL = 0x0009, SATA_PHY_CR_CLOCK_ADC_OUT = 0x000A, SATA_PHY_CR_CLOCK_MPLL_TST = 0x0017, }; static int read_adc_sum(void *dev, u16 rtune_ctl_reg, void __iomem * mmio) { u16 adc_out_reg, read_sum; u32 index, read_attempt; const u32 attempt_limit = 200; imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_RTUNE_CTL, mmio); imx_phy_reg_write(rtune_ctl_reg, mmio); /* two dummy read */ index = 0; read_attempt = 0; adc_out_reg = 0; imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_ADC_OUT, mmio); while (index < 2) { imx_phy_reg_read(&adc_out_reg, mmio); /* check if valid */ if (adc_out_reg & 0x400) index++; read_attempt++; if (read_attempt > attempt_limit) { dev_err(dev, "Read REG more than %d times!\n", attempt_limit); break; } } index = 0; read_attempt = 0; read_sum = 0; while (index < 80) { imx_phy_reg_read(&adc_out_reg, mmio); if (adc_out_reg & 0x400) { read_sum = read_sum + (adc_out_reg & 0x3FF); index++; } read_attempt++; if (read_attempt > attempt_limit) { dev_err(dev, "Read REG more than %d times!\n", attempt_limit); break; } } /* Use the U32 to make 1000 precision */ return (read_sum * 1000) / 80; } /* SATA AHCI temperature monitor */ static int __sata_ahci_read_temperature(void *dev, int *temp) { u16 mpll_test_reg, rtune_ctl_reg, dac_ctl_reg, read_sum; u32 str1, str2, str3, str4; int m1, m2, a; struct ahci_host_priv *hpriv = dev_get_drvdata(dev); void __iomem *mmio = hpriv->mmio; /* check rd-wr to reg */ read_sum = 0; imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_CRCMP_LT_LIMIT, mmio); imx_phy_reg_write(read_sum, mmio); imx_phy_reg_read(&read_sum, mmio); if ((read_sum & 0xffff) != 0) dev_err(dev, "Read/Write REG error, 0x%x!\n", read_sum); imx_phy_reg_write(0x5A5A, mmio); imx_phy_reg_read(&read_sum, mmio); if ((read_sum & 0xffff) != 0x5A5A) dev_err(dev, "Read/Write REG error, 0x%x!\n", read_sum); imx_phy_reg_write(0x1234, mmio); imx_phy_reg_read(&read_sum, mmio); if ((read_sum & 0xffff) != 0x1234) dev_err(dev, "Read/Write REG error, 0x%x!\n", read_sum); /* start temperature test */ imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_MPLL_TST, mmio); imx_phy_reg_read(&mpll_test_reg, mmio); imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_RTUNE_CTL, mmio); imx_phy_reg_read(&rtune_ctl_reg, mmio); imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_DAC_CTL, mmio); imx_phy_reg_read(&dac_ctl_reg, mmio); /* mpll_tst.meas_iv ([12:2]) */ str1 = (mpll_test_reg >> 2) & 0x7FF; /* rtune_ctl.mode ([1:0]) */ str2 = (rtune_ctl_reg) & 0x3; /* dac_ctl.dac_mode ([14:12]) */ str3 = (dac_ctl_reg >> 12) & 0x7; /* rtune_ctl.sel_atbp ([4]) */ str4 = (rtune_ctl_reg >> 4); /* Calculate the m1 */ /* mpll_tst.meas_iv */ mpll_test_reg = (mpll_test_reg & 0xE03) | (512) << 2; /* rtune_ctl.mode */ rtune_ctl_reg = (rtune_ctl_reg & 0xFFC) | (1); /* dac_ctl.dac_mode */ dac_ctl_reg = (dac_ctl_reg & 0x8FF) | (4) << 12; /* rtune_ctl.sel_atbp */ rtune_ctl_reg = (rtune_ctl_reg & 0xFEF) | (0) << 4; imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_MPLL_TST, mmio); imx_phy_reg_write(mpll_test_reg, mmio); imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_DAC_CTL, mmio); imx_phy_reg_write(dac_ctl_reg, mmio); m1 = read_adc_sum(dev, rtune_ctl_reg, mmio); /* Calculate the m2 */ /* rtune_ctl.sel_atbp */ rtune_ctl_reg = (rtune_ctl_reg & 0xFEF) | (1) << 4; m2 = read_adc_sum(dev, rtune_ctl_reg, mmio); /* restore the status */ /* mpll_tst.meas_iv */ mpll_test_reg = (mpll_test_reg & 0xE03) | (str1) << 2; /* rtune_ctl.mode */ rtune_ctl_reg = (rtune_ctl_reg & 0xFFC) | (str2); /* dac_ctl.dac_mode */ dac_ctl_reg = (dac_ctl_reg & 0x8FF) | (str3) << 12; /* rtune_ctl.sel_atbp */ rtune_ctl_reg = (rtune_ctl_reg & 0xFEF) | (str4) << 4; imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_MPLL_TST, mmio); imx_phy_reg_write(mpll_test_reg, mmio); imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_DAC_CTL, mmio); imx_phy_reg_write(dac_ctl_reg, mmio); imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_RTUNE_CTL, mmio); imx_phy_reg_write(rtune_ctl_reg, mmio); /* Compute temperature */ if (!(m2 / 1000)) m2 = 1000; a = (m2 - m1) / (m2/1000); *temp = ((-559) * a * a) / 1000 + (1379) * a + (-458000); return 0; } static int sata_ahci_read_temperature(struct thermal_zone_device *tz, int *temp) { return __sata_ahci_read_temperature(tz->devdata, temp); } static ssize_t sata_ahci_show_temp(struct device *dev, struct device_attribute *da, char *buf) { unsigned int temp = 0; int err; err = __sata_ahci_read_temperature(dev, &temp); if (err < 0) return err; return sprintf(buf, "%u\n", temp); } static const struct thermal_zone_device_ops fsl_sata_ahci_of_thermal_ops = { .get_temp = sata_ahci_read_temperature, }; static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, sata_ahci_show_temp, NULL, 0); static struct attribute *fsl_sata_ahci_attrs[] = { &sensor_dev_attr_temp1_input.dev_attr.attr, NULL }; ATTRIBUTE_GROUPS(fsl_sata_ahci); static int imx8_sata_enable(struct ahci_host_priv *hpriv) { u32 val, reg; int i, ret; struct imx_ahci_priv *imxpriv = hpriv->plat_data; struct device *dev = &imxpriv->ahci_pdev->dev; /* configure the hsio for sata */ ret = clk_prepare_enable(imxpriv->phy_pclk0); if (ret < 0) { dev_err(dev, "can't enable phy_pclk0.\n"); return ret; } ret = clk_prepare_enable(imxpriv->phy_pclk1); if (ret < 0) { dev_err(dev, "can't enable phy_pclk1.\n"); goto disable_phy_pclk0; } ret = clk_prepare_enable(imxpriv->epcs_tx_clk); if (ret < 0) { dev_err(dev, "can't enable epcs_tx_clk.\n"); goto disable_phy_pclk1; } ret = clk_prepare_enable(imxpriv->epcs_rx_clk); if (ret < 0) { dev_err(dev, "can't enable epcs_rx_clk.\n"); goto disable_epcs_tx_clk; } ret = clk_prepare_enable(imxpriv->phy_apbclk); if (ret < 0) { dev_err(dev, "can't enable phy_apbclk.\n"); goto disable_epcs_rx_clk; } /* Configure PHYx2 PIPE_RSTN */ regmap_read(imxpriv->gpr, IMX8QM_CSR_PCIEA_OFFSET + IMX8QM_CSR_PCIE_CTRL2_OFFSET, &val); if ((val & IMX8QM_CTRL_LTSSM_ENABLE) == 0) { /* The link of the PCIEA of HSIO is down */ regmap_update_bits(imxpriv->gpr, IMX8QM_CSR_PHYX2_OFFSET, IMX8QM_PHY_PIPE_RSTN_0 | IMX8QM_PHY_PIPE_RSTN_OVERRIDE_0, IMX8QM_PHY_PIPE_RSTN_0 | IMX8QM_PHY_PIPE_RSTN_OVERRIDE_0); } regmap_read(imxpriv->gpr, IMX8QM_CSR_PCIEB_OFFSET + IMX8QM_CSR_PCIE_CTRL2_OFFSET, ®); if ((reg & IMX8QM_CTRL_LTSSM_ENABLE) == 0) { /* The link of the PCIEB of HSIO is down */ regmap_update_bits(imxpriv->gpr, IMX8QM_CSR_PHYX2_OFFSET, IMX8QM_PHY_PIPE_RSTN_1 | IMX8QM_PHY_PIPE_RSTN_OVERRIDE_1, IMX8QM_PHY_PIPE_RSTN_1 | IMX8QM_PHY_PIPE_RSTN_OVERRIDE_1); } if (((reg | val) & IMX8QM_CTRL_LTSSM_ENABLE) == 0) { /* The links of both PCIA and PCIEB of HSIO are down */ regmap_update_bits(imxpriv->gpr, IMX8QM_LPCG_PHYX2_OFFSET, IMX8QM_LPCG_PHYX2_PCLK0_MASK | IMX8QM_LPCG_PHYX2_PCLK1_MASK, 0); } /* set PWR_RST and BT_RST of csr_pciea */ val = IMX8QM_CSR_PCIEA_OFFSET + IMX8QM_CSR_PCIE_CTRL2_OFFSET; regmap_update_bits(imxpriv->gpr, val, IMX8QM_CTRL_BUTTON_RST_N, IMX8QM_CTRL_BUTTON_RST_N); regmap_update_bits(imxpriv->gpr, val, IMX8QM_CTRL_POWER_UP_RST_N, IMX8QM_CTRL_POWER_UP_RST_N); /* PHYX1_MODE to SATA */ regmap_update_bits(imxpriv->gpr, IMX8QM_CSR_PHYX1_OFFSET, IMX8QM_PHY_MODE_MASK, IMX8QM_PHY_MODE_SATA); /* * BIT0 RXENA 1, BIT1 TXENA 0 * BIT12 PHY_X1_EPCS_SEL 1. */ regmap_update_bits(imxpriv->gpr, IMX8QM_CSR_MISC_OFFSET, IMX8QM_MISC_IOB_RXENA, IMX8QM_MISC_IOB_RXENA); regmap_update_bits(imxpriv->gpr, IMX8QM_CSR_MISC_OFFSET, IMX8QM_MISC_IOB_TXENA, 0); regmap_update_bits(imxpriv->gpr, IMX8QM_CSR_MISC_OFFSET, IMX8QM_MISC_PHYX1_EPCS_SEL, IMX8QM_MISC_PHYX1_EPCS_SEL); /* * It is possible, for PCIe and SATA are sharing * the same clock source, HPLL or external oscillator. * When PCIe is in low power modes (L1.X or L2 etc), * the clock source can be turned off. In this case, * if this clock source is required to be toggling by * SATA, then SATA functions will be abnormal. * Set the override here to avoid it. */ regmap_update_bits(imxpriv->gpr, IMX8QM_CSR_MISC_OFFSET, IMX8QM_MISC_CLKREQN_OUT_OVERRIDE_1 | IMX8QM_MISC_CLKREQN_OUT_OVERRIDE_0 | IMX8QM_MISC_CLKREQN_IN_OVERRIDE_1 | IMX8QM_MISC_CLKREQN_IN_OVERRIDE_0, IMX8QM_MISC_CLKREQN_OUT_OVERRIDE_1 | IMX8QM_MISC_CLKREQN_OUT_OVERRIDE_0 | IMX8QM_MISC_CLKREQN_IN_OVERRIDE_1 | IMX8QM_MISC_CLKREQN_IN_OVERRIDE_0); /* clear PHY RST, then set it */ regmap_update_bits(imxpriv->gpr, IMX8QM_CSR_SATA_OFFSET, IMX8QM_SATA_CTRL_EPCS_PHYRESET_N, 0); regmap_update_bits(imxpriv->gpr, IMX8QM_CSR_SATA_OFFSET, IMX8QM_SATA_CTRL_EPCS_PHYRESET_N, IMX8QM_SATA_CTRL_EPCS_PHYRESET_N); /* CTRL RST: SET -> delay 1 us -> CLEAR -> SET */ regmap_update_bits(imxpriv->gpr, IMX8QM_CSR_SATA_OFFSET, IMX8QM_SATA_CTRL_RESET_N, IMX8QM_SATA_CTRL_RESET_N); udelay(1); regmap_update_bits(imxpriv->gpr, IMX8QM_CSR_SATA_OFFSET, IMX8QM_SATA_CTRL_RESET_N, 0); regmap_update_bits(imxpriv->gpr, IMX8QM_CSR_SATA_OFFSET, IMX8QM_SATA_CTRL_RESET_N, IMX8QM_SATA_CTRL_RESET_N); /* APB reset */ regmap_update_bits(imxpriv->gpr, IMX8QM_CSR_PHYX1_OFFSET, IMX8QM_PHY_APB_RSTN_0, IMX8QM_PHY_APB_RSTN_0); for (i = 0; i < 100; i++) { reg = IMX8QM_CSR_PHYX1_OFFSET + IMX8QM_CSR_PHYX_STTS0_OFFSET; regmap_read(imxpriv->gpr, reg, &val); val &= IMX8QM_STTS0_LANE0_TX_PLL_LOCK; if (val == IMX8QM_STTS0_LANE0_TX_PLL_LOCK) break; udelay(1); } if (val != IMX8QM_STTS0_LANE0_TX_PLL_LOCK) { dev_err(dev, "TX PLL of the PHY is not locked\n"); ret = -ENODEV; } else { writeb(imxpriv->imped_ratio, imxpriv->phy_base + IMX8QM_SATA_PHY_RX_IMPED_RATIO_OFFSET); writeb(imxpriv->imped_ratio, imxpriv->phy_base + IMX8QM_SATA_PHY_TX_IMPED_RATIO_OFFSET); reg = readb(imxpriv->phy_base + IMX8QM_SATA_PHY_RX_IMPED_RATIO_OFFSET); if (unlikely(reg != imxpriv->imped_ratio)) dev_info(dev, "Can't set PHY RX impedance ratio.\n"); reg = readb(imxpriv->phy_base + IMX8QM_SATA_PHY_TX_IMPED_RATIO_OFFSET); if (unlikely(reg != imxpriv->imped_ratio)) dev_info(dev, "Can't set PHY TX impedance ratio.\n"); usleep_range(50, 100); /* * To reduce the power consumption, gate off * the PHY clks */ clk_disable_unprepare(imxpriv->phy_apbclk); clk_disable_unprepare(imxpriv->phy_pclk1); clk_disable_unprepare(imxpriv->phy_pclk0); return ret; } clk_disable_unprepare(imxpriv->phy_apbclk); disable_epcs_rx_clk: clk_disable_unprepare(imxpriv->epcs_rx_clk); disable_epcs_tx_clk: clk_disable_unprepare(imxpriv->epcs_tx_clk); disable_phy_pclk1: clk_disable_unprepare(imxpriv->phy_pclk1); disable_phy_pclk0: clk_disable_unprepare(imxpriv->phy_pclk0); return ret; } static int imx_sata_enable(struct ahci_host_priv *hpriv) { struct imx_ahci_priv *imxpriv = hpriv->plat_data; struct device *dev = &imxpriv->ahci_pdev->dev; int ret; if (imxpriv->no_device) return 0; ret = ahci_platform_enable_regulators(hpriv); if (ret) return ret; ret = clk_prepare_enable(imxpriv->sata_ref_clk); if (ret < 0) goto disable_regulator; if (imxpriv->type == AHCI_IMX6Q || imxpriv->type == AHCI_IMX6QP) { /* * set PHY Paremeters, two steps to configure the GPR13, * one write for rest of parameters, mask of first write * is 0x07ffffff, and the other one write for setting * the mpll_clk_en. */ regmap_update_bits(imxpriv->gpr, IOMUXC_GPR13, IMX6Q_GPR13_SATA_RX_EQ_VAL_MASK | IMX6Q_GPR13_SATA_RX_LOS_LVL_MASK | IMX6Q_GPR13_SATA_RX_DPLL_MODE_MASK | IMX6Q_GPR13_SATA_SPD_MODE_MASK | IMX6Q_GPR13_SATA_MPLL_SS_EN | IMX6Q_GPR13_SATA_TX_ATTEN_MASK | IMX6Q_GPR13_SATA_TX_BOOST_MASK | IMX6Q_GPR13_SATA_TX_LVL_MASK | IMX6Q_GPR13_SATA_MPLL_CLK_EN | IMX6Q_GPR13_SATA_TX_EDGE_RATE, imxpriv->phy_params); regmap_update_bits(imxpriv->gpr, IOMUXC_GPR13, IMX6Q_GPR13_SATA_MPLL_CLK_EN, IMX6Q_GPR13_SATA_MPLL_CLK_EN); usleep_range(100, 200); ret = imx_sata_phy_reset(hpriv); if (ret) { dev_err(dev, "failed to reset phy: %d\n", ret); goto disable_clk; } } else if (imxpriv->type == AHCI_IMX8QM) { ret = imx8_sata_enable(hpriv); } usleep_range(1000, 2000); return 0; disable_clk: clk_disable_unprepare(imxpriv->sata_ref_clk); disable_regulator: ahci_platform_disable_regulators(hpriv); return ret; } static void imx_sata_disable(struct ahci_host_priv *hpriv) { struct imx_ahci_priv *imxpriv = hpriv->plat_data; if (imxpriv->no_device) return; switch (imxpriv->type) { case AHCI_IMX6QP: regmap_update_bits(imxpriv->gpr, IOMUXC_GPR5, IMX6Q_GPR5_SATA_SW_PD, IMX6Q_GPR5_SATA_SW_PD); regmap_update_bits(imxpriv->gpr, IOMUXC_GPR13, IMX6Q_GPR13_SATA_MPLL_CLK_EN, !IMX6Q_GPR13_SATA_MPLL_CLK_EN); break; case AHCI_IMX6Q: regmap_update_bits(imxpriv->gpr, IOMUXC_GPR13, IMX6Q_GPR13_SATA_MPLL_CLK_EN, !IMX6Q_GPR13_SATA_MPLL_CLK_EN); break; case AHCI_IMX8QM: clk_disable_unprepare(imxpriv->epcs_rx_clk); clk_disable_unprepare(imxpriv->epcs_tx_clk); break; default: break; } clk_disable_unprepare(imxpriv->sata_ref_clk); ahci_platform_disable_regulators(hpriv); } static void ahci_imx_error_handler(struct ata_port *ap) { u32 reg_val; struct ata_device *dev; struct ata_host *host = dev_get_drvdata(ap->dev); struct ahci_host_priv *hpriv = host->private_data; void __iomem *mmio = hpriv->mmio; struct imx_ahci_priv *imxpriv = hpriv->plat_data; ahci_error_handler(ap); if (!(imxpriv->first_time) || ahci_imx_hotplug) return; imxpriv->first_time = false; ata_for_each_dev(dev, &ap->link, ENABLED) return; /* * Disable link to save power. An imx ahci port can't be recovered * without full reset once the pddq mode is enabled making it * impossible to use as part of libata LPM. */ reg_val = readl(mmio + IMX_P0PHYCR); writel(reg_val | IMX_P0PHYCR_TEST_PDDQ, mmio + IMX_P0PHYCR); imx_sata_disable(hpriv); imxpriv->no_device = true; dev_info(ap->dev, "no device found, disabling link.\n"); dev_info(ap->dev, "pass " MODULE_PARAM_PREFIX ".hotplug=1 to enable hotplug\n"); } static int ahci_imx_softreset(struct ata_link *link, unsigned int *class, unsigned long deadline) { struct ata_port *ap = link->ap; struct ata_host *host = dev_get_drvdata(ap->dev); struct ahci_host_priv *hpriv = host->private_data; struct imx_ahci_priv *imxpriv = hpriv->plat_data; int ret; if (imxpriv->type == AHCI_IMX53) ret = ahci_pmp_retry_srst_ops.softreset(link, class, deadline); else ret = ahci_ops.softreset(link, class, deadline); return ret; } static struct ata_port_operations ahci_imx_ops = { .inherits = &ahci_ops, .host_stop = ahci_imx_host_stop, .error_handler = ahci_imx_error_handler, .softreset = ahci_imx_softreset, }; static const struct ata_port_info ahci_imx_port_info = { .flags = AHCI_FLAG_COMMON, .pio_mask = ATA_PIO4, .udma_mask = ATA_UDMA6, .port_ops = &ahci_imx_ops, }; static const struct of_device_id imx_ahci_of_match[] = { { .compatible = "fsl,imx53-ahci", .data = (void *)AHCI_IMX53 }, { .compatible = "fsl,imx6q-ahci", .data = (void *)AHCI_IMX6Q }, { .compatible = "fsl,imx6qp-ahci", .data = (void *)AHCI_IMX6QP }, { .compatible = "fsl,imx8qm-ahci", .data = (void *)AHCI_IMX8QM }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, imx_ahci_of_match); struct reg_value { u32 of_value; u32 reg_value; }; struct reg_property { const char *name; const struct reg_value *values; size_t num_values; u32 def_value; u32 set_value; }; static const struct reg_value gpr13_tx_level[] = { { 937, IMX6Q_GPR13_SATA_TX_LVL_0_937_V }, { 947, IMX6Q_GPR13_SATA_TX_LVL_0_947_V }, { 957, IMX6Q_GPR13_SATA_TX_LVL_0_957_V }, { 966, IMX6Q_GPR13_SATA_TX_LVL_0_966_V }, { 976, IMX6Q_GPR13_SATA_TX_LVL_0_976_V }, { 986, IMX6Q_GPR13_SATA_TX_LVL_0_986_V }, { 996, IMX6Q_GPR13_SATA_TX_LVL_0_996_V }, { 1005, IMX6Q_GPR13_SATA_TX_LVL_1_005_V }, { 1015, IMX6Q_GPR13_SATA_TX_LVL_1_015_V }, { 1025, IMX6Q_GPR13_SATA_TX_LVL_1_025_V }, { 1035, IMX6Q_GPR13_SATA_TX_LVL_1_035_V }, { 1045, IMX6Q_GPR13_SATA_TX_LVL_1_045_V }, { 1054, IMX6Q_GPR13_SATA_TX_LVL_1_054_V }, { 1064, IMX6Q_GPR13_SATA_TX_LVL_1_064_V }, { 1074, IMX6Q_GPR13_SATA_TX_LVL_1_074_V }, { 1084, IMX6Q_GPR13_SATA_TX_LVL_1_084_V }, { 1094, IMX6Q_GPR13_SATA_TX_LVL_1_094_V }, { 1104, IMX6Q_GPR13_SATA_TX_LVL_1_104_V }, { 1113, IMX6Q_GPR13_SATA_TX_LVL_1_113_V }, { 1123, IMX6Q_GPR13_SATA_TX_LVL_1_123_V }, { 1133, IMX6Q_GPR13_SATA_TX_LVL_1_133_V }, { 1143, IMX6Q_GPR13_SATA_TX_LVL_1_143_V }, { 1152, IMX6Q_GPR13_SATA_TX_LVL_1_152_V }, { 1162, IMX6Q_GPR13_SATA_TX_LVL_1_162_V }, { 1172, IMX6Q_GPR13_SATA_TX_LVL_1_172_V }, { 1182, IMX6Q_GPR13_SATA_TX_LVL_1_182_V }, { 1191, IMX6Q_GPR13_SATA_TX_LVL_1_191_V }, { 1201, IMX6Q_GPR13_SATA_TX_LVL_1_201_V }, { 1211, IMX6Q_GPR13_SATA_TX_LVL_1_211_V }, { 1221, IMX6Q_GPR13_SATA_TX_LVL_1_221_V }, { 1230, IMX6Q_GPR13_SATA_TX_LVL_1_230_V }, { 1240, IMX6Q_GPR13_SATA_TX_LVL_1_240_V } }; static const struct reg_value gpr13_tx_boost[] = { { 0, IMX6Q_GPR13_SATA_TX_BOOST_0_00_DB }, { 370, IMX6Q_GPR13_SATA_TX_BOOST_0_37_DB }, { 740, IMX6Q_GPR13_SATA_TX_BOOST_0_74_DB }, { 1110, IMX6Q_GPR13_SATA_TX_BOOST_1_11_DB }, { 1480, IMX6Q_GPR13_SATA_TX_BOOST_1_48_DB }, { 1850, IMX6Q_GPR13_SATA_TX_BOOST_1_85_DB }, { 2220, IMX6Q_GPR13_SATA_TX_BOOST_2_22_DB }, { 2590, IMX6Q_GPR13_SATA_TX_BOOST_2_59_DB }, { 2960, IMX6Q_GPR13_SATA_TX_BOOST_2_96_DB }, { 3330, IMX6Q_GPR13_SATA_TX_BOOST_3_33_DB }, { 3700, IMX6Q_GPR13_SATA_TX_BOOST_3_70_DB }, { 4070, IMX6Q_GPR13_SATA_TX_BOOST_4_07_DB }, { 4440, IMX6Q_GPR13_SATA_TX_BOOST_4_44_DB }, { 4810, IMX6Q_GPR13_SATA_TX_BOOST_4_81_DB }, { 5280, IMX6Q_GPR13_SATA_TX_BOOST_5_28_DB }, { 5750, IMX6Q_GPR13_SATA_TX_BOOST_5_75_DB } }; static const struct reg_value gpr13_tx_atten[] = { { 8, IMX6Q_GPR13_SATA_TX_ATTEN_8_16 }, { 9, IMX6Q_GPR13_SATA_TX_ATTEN_9_16 }, { 10, IMX6Q_GPR13_SATA_TX_ATTEN_10_16 }, { 12, IMX6Q_GPR13_SATA_TX_ATTEN_12_16 }, { 14, IMX6Q_GPR13_SATA_TX_ATTEN_14_16 }, { 16, IMX6Q_GPR13_SATA_TX_ATTEN_16_16 }, }; static const struct reg_value gpr13_rx_eq[] = { { 500, IMX6Q_GPR13_SATA_RX_EQ_VAL_0_5_DB }, { 1000, IMX6Q_GPR13_SATA_RX_EQ_VAL_1_0_DB }, { 1500, IMX6Q_GPR13_SATA_RX_EQ_VAL_1_5_DB }, { 2000, IMX6Q_GPR13_SATA_RX_EQ_VAL_2_0_DB }, { 2500, IMX6Q_GPR13_SATA_RX_EQ_VAL_2_5_DB }, { 3000, IMX6Q_GPR13_SATA_RX_EQ_VAL_3_0_DB }, { 3500, IMX6Q_GPR13_SATA_RX_EQ_VAL_3_5_DB }, { 4000, IMX6Q_GPR13_SATA_RX_EQ_VAL_4_0_DB }, }; static const struct reg_property gpr13_props[] = { { .name = "fsl,transmit-level-mV", .values = gpr13_tx_level, .num_values = ARRAY_SIZE(gpr13_tx_level), .def_value = IMX6Q_GPR13_SATA_TX_LVL_1_025_V, }, { .name = "fsl,transmit-boost-mdB", .values = gpr13_tx_boost, .num_values = ARRAY_SIZE(gpr13_tx_boost), .def_value = IMX6Q_GPR13_SATA_TX_BOOST_3_33_DB, }, { .name = "fsl,transmit-atten-16ths", .values = gpr13_tx_atten, .num_values = ARRAY_SIZE(gpr13_tx_atten), .def_value = IMX6Q_GPR13_SATA_TX_ATTEN_9_16, }, { .name = "fsl,receive-eq-mdB", .values = gpr13_rx_eq, .num_values = ARRAY_SIZE(gpr13_rx_eq), .def_value = IMX6Q_GPR13_SATA_RX_EQ_VAL_3_0_DB, }, { .name = "fsl,no-spread-spectrum", .def_value = IMX6Q_GPR13_SATA_MPLL_SS_EN, .set_value = 0, }, }; static u32 imx_ahci_parse_props(struct device *dev, const struct reg_property *prop, size_t num) { struct device_node *np = dev->of_node; u32 reg_value = 0; int i, j; for (i = 0; i < num; i++, prop++) { u32 of_val; if (prop->num_values == 0) { if (of_property_read_bool(np, prop->name)) reg_value |= prop->set_value; else reg_value |= prop->def_value; continue; } if (of_property_read_u32(np, prop->name, &of_val)) { dev_info(dev, "%s not specified, using %08x\n", prop->name, prop->def_value); reg_value |= prop->def_value; continue; } for (j = 0; j < prop->num_values; j++) { if (prop->values[j].of_value == of_val) { dev_info(dev, "%s value %u, using %08x\n", prop->name, of_val, prop->values[j].reg_value); reg_value |= prop->values[j].reg_value; break; } } if (j == prop->num_values) { dev_err(dev, "DT property %s is not a valid value\n", prop->name); reg_value |= prop->def_value; } } return reg_value; } static struct scsi_host_template ahci_platform_sht = { AHCI_SHT(DRV_NAME), }; static int imx8_sata_probe(struct device *dev, struct imx_ahci_priv *imxpriv) { struct resource *phy_res; struct platform_device *pdev = imxpriv->ahci_pdev; struct device_node *np = dev->of_node; if (of_property_read_u32(np, "fsl,phy-imp", &imxpriv->imped_ratio)) imxpriv->imped_ratio = IMX8QM_SATA_PHY_IMPED_RATIO_85OHM; phy_res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "phy"); if (phy_res) { imxpriv->phy_base = devm_ioremap(dev, phy_res->start, resource_size(phy_res)); if (!imxpriv->phy_base) { dev_err(dev, "error with ioremap\n"); return -ENOMEM; } } else { dev_err(dev, "missing *phy* reg region.\n"); return -ENOMEM; } imxpriv->gpr = syscon_regmap_lookup_by_phandle(np, "hsio"); if (IS_ERR(imxpriv->gpr)) { dev_err(dev, "unable to find gpr registers\n"); return PTR_ERR(imxpriv->gpr); } imxpriv->epcs_tx_clk = devm_clk_get(dev, "epcs_tx"); if (IS_ERR(imxpriv->epcs_tx_clk)) { dev_err(dev, "can't get epcs_tx_clk clock.\n"); return PTR_ERR(imxpriv->epcs_tx_clk); } imxpriv->epcs_rx_clk = devm_clk_get(dev, "epcs_rx"); if (IS_ERR(imxpriv->epcs_rx_clk)) { dev_err(dev, "can't get epcs_rx_clk clock.\n"); return PTR_ERR(imxpriv->epcs_rx_clk); } imxpriv->phy_pclk0 = devm_clk_get(dev, "phy_pclk0"); if (IS_ERR(imxpriv->phy_pclk0)) { dev_err(dev, "can't get phy_pclk0 clock.\n"); return PTR_ERR(imxpriv->phy_pclk0); } imxpriv->phy_pclk1 = devm_clk_get(dev, "phy_pclk1"); if (IS_ERR(imxpriv->phy_pclk1)) { dev_err(dev, "can't get phy_pclk1 clock.\n"); return PTR_ERR(imxpriv->phy_pclk1); } imxpriv->phy_apbclk = devm_clk_get(dev, "phy_apbclk"); if (IS_ERR(imxpriv->phy_apbclk)) { dev_err(dev, "can't get phy_apbclk clock.\n"); return PTR_ERR(imxpriv->phy_apbclk); } /* Fetch GPIO, then enable the external OSC */ imxpriv->clkreq_gpiod = devm_gpiod_get_optional(dev, "clkreq", GPIOD_OUT_LOW | GPIOD_FLAGS_BIT_NONEXCLUSIVE); if (IS_ERR(imxpriv->clkreq_gpiod)) return PTR_ERR(imxpriv->clkreq_gpiod); if (imxpriv->clkreq_gpiod) gpiod_set_consumer_name(imxpriv->clkreq_gpiod, "SATA CLKREQ"); return 0; } static int imx_ahci_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; const struct of_device_id *of_id; struct ahci_host_priv *hpriv; struct imx_ahci_priv *imxpriv; unsigned int reg_val; int ret; of_id = of_match_device(imx_ahci_of_match, dev); if (!of_id) return -EINVAL; imxpriv = devm_kzalloc(dev, sizeof(*imxpriv), GFP_KERNEL); if (!imxpriv) return -ENOMEM; imxpriv->ahci_pdev = pdev; imxpriv->no_device = false; imxpriv->first_time = true; imxpriv->type = (unsigned long)of_id->data; imxpriv->sata_clk = devm_clk_get(dev, "sata"); if (IS_ERR(imxpriv->sata_clk)) { dev_err(dev, "can't get sata clock.\n"); return PTR_ERR(imxpriv->sata_clk); } imxpriv->sata_ref_clk = devm_clk_get(dev, "sata_ref"); if (IS_ERR(imxpriv->sata_ref_clk)) { dev_err(dev, "can't get sata_ref clock.\n"); return PTR_ERR(imxpriv->sata_ref_clk); } imxpriv->ahb_clk = devm_clk_get(dev, "ahb"); if (IS_ERR(imxpriv->ahb_clk)) { dev_err(dev, "can't get ahb clock.\n"); return PTR_ERR(imxpriv->ahb_clk); } if (imxpriv->type == AHCI_IMX6Q || imxpriv->type == AHCI_IMX6QP) { u32 reg_value; imxpriv->gpr = syscon_regmap_lookup_by_compatible( "fsl,imx6q-iomuxc-gpr"); if (IS_ERR(imxpriv->gpr)) { dev_err(dev, "failed to find fsl,imx6q-iomux-gpr regmap\n"); return PTR_ERR(imxpriv->gpr); } reg_value = imx_ahci_parse_props(dev, gpr13_props, ARRAY_SIZE(gpr13_props)); imxpriv->phy_params = IMX6Q_GPR13_SATA_RX_LOS_LVL_SATA2M | IMX6Q_GPR13_SATA_RX_DPLL_MODE_2P_4F | IMX6Q_GPR13_SATA_SPD_MODE_3P0G | reg_value; } else if (imxpriv->type == AHCI_IMX8QM) { ret = imx8_sata_probe(dev, imxpriv); if (ret) return ret; } hpriv = ahci_platform_get_resources(pdev, 0); if (IS_ERR(hpriv)) return PTR_ERR(hpriv); hpriv->plat_data = imxpriv; ret = clk_prepare_enable(imxpriv->sata_clk); if (ret) return ret; if (imxpriv->type == AHCI_IMX53 && IS_ENABLED(CONFIG_HWMON)) { /* Add the temperature monitor */ struct device *hwmon_dev; hwmon_dev = devm_hwmon_device_register_with_groups(dev, "sata_ahci", hpriv, fsl_sata_ahci_groups); if (IS_ERR(hwmon_dev)) { ret = PTR_ERR(hwmon_dev); goto disable_clk; } devm_thermal_of_zone_register(hwmon_dev, 0, hwmon_dev, &fsl_sata_ahci_of_thermal_ops); dev_info(dev, "%s: sensor 'sata_ahci'\n", dev_name(hwmon_dev)); } ret = imx_sata_enable(hpriv); if (ret) goto disable_clk; /* * Configure the HWINIT bits of the HOST_CAP and HOST_PORTS_IMPL, * and IP vendor specific register IMX_TIMER1MS. * Configure CAP_SSS (support stagered spin up). * Implement the port0. * Get the ahb clock rate, and configure the TIMER1MS register. */ reg_val = readl(hpriv->mmio + HOST_CAP); if (!(reg_val & HOST_CAP_SSS)) { reg_val |= HOST_CAP_SSS; writel(reg_val, hpriv->mmio + HOST_CAP); } reg_val = readl(hpriv->mmio + HOST_PORTS_IMPL); if (!(reg_val & 0x1)) { reg_val |= 0x1; writel(reg_val, hpriv->mmio + HOST_PORTS_IMPL); } reg_val = clk_get_rate(imxpriv->ahb_clk) / 1000; writel(reg_val, hpriv->mmio + IMX_TIMER1MS); ret = ahci_platform_init_host(pdev, hpriv, &ahci_imx_port_info, &ahci_platform_sht); if (ret) goto disable_sata; return 0; disable_sata: imx_sata_disable(hpriv); disable_clk: clk_disable_unprepare(imxpriv->sata_clk); return ret; } static void ahci_imx_host_stop(struct ata_host *host) { struct ahci_host_priv *hpriv = host->private_data; struct imx_ahci_priv *imxpriv = hpriv->plat_data; imx_sata_disable(hpriv); clk_disable_unprepare(imxpriv->sata_clk); } #ifdef CONFIG_PM_SLEEP static int imx_ahci_suspend(struct device *dev) { struct ata_host *host = dev_get_drvdata(dev); struct ahci_host_priv *hpriv = host->private_data; int ret; ret = ahci_platform_suspend_host(dev); if (ret) return ret; imx_sata_disable(hpriv); return 0; } static int imx_ahci_resume(struct device *dev) { struct ata_host *host = dev_get_drvdata(dev); struct ahci_host_priv *hpriv = host->private_data; int ret; ret = imx_sata_enable(hpriv); if (ret) return ret; return ahci_platform_resume_host(dev); } #endif static SIMPLE_DEV_PM_OPS(ahci_imx_pm_ops, imx_ahci_suspend, imx_ahci_resume); static struct platform_driver imx_ahci_driver = { .probe = imx_ahci_probe, .remove = ata_platform_remove_one, .driver = { .name = DRV_NAME, .of_match_table = imx_ahci_of_match, .pm = &ahci_imx_pm_ops, }, }; module_platform_driver(imx_ahci_driver); MODULE_DESCRIPTION("Freescale i.MX AHCI SATA platform driver"); MODULE_AUTHOR("Richard Zhu <Hong-Xing.Zhu@freescale.com>"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:" DRV_NAME);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1