Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mark Lord | 2554 | 85.25% | 6 | 10.71% |
Tejun Heo | 293 | 9.78% | 19 | 33.93% |
Jeff Garzik | 76 | 2.54% | 11 | 19.64% |
Christoph Hellwig | 10 | 0.33% | 1 | 1.79% |
Jiri Slaby | 10 | 0.33% | 1 | 1.79% |
Albert Lee | 8 | 0.27% | 2 | 3.57% |
Jeremy Higdon | 8 | 0.27% | 1 | 1.79% |
Hannes Reinecke | 6 | 0.20% | 1 | 1.79% |
Yang Hongyang | 5 | 0.17% | 2 | 3.57% |
Alan Cox | 5 | 0.17% | 1 | 1.79% |
Al Viro | 4 | 0.13% | 1 | 1.79% |
Avi Kivity | 3 | 0.10% | 1 | 1.79% |
Brett M Russ | 3 | 0.10% | 1 | 1.79% |
Quentin Lambert | 3 | 0.10% | 1 | 1.79% |
Thomas Gleixner | 2 | 0.07% | 1 | 1.79% |
Joe Perches | 2 | 0.07% | 2 | 3.57% |
Erik Inge Bolsö | 1 | 0.03% | 1 | 1.79% |
Arjan van de Ven | 1 | 0.03% | 1 | 1.79% |
Dan J Williams | 1 | 0.03% | 1 | 1.79% |
Axel Lin | 1 | 0.03% | 1 | 1.79% |
Total | 2996 | 56 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * sata_qstor.c - Pacific Digital Corporation QStor SATA * * Maintained by: Mark Lord <mlord@pobox.com> * * Copyright 2005 Pacific Digital Corporation. * (OSL/GPL code release authorized by Jalil Fadavi). * * libata documentation is available via 'make {ps|pdf}docs', * as Documentation/driver-api/libata.rst */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/gfp.h> #include <linux/pci.h> #include <linux/blkdev.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/device.h> #include <scsi/scsi_host.h> #include <linux/libata.h> #define DRV_NAME "sata_qstor" #define DRV_VERSION "0.09" enum { QS_MMIO_BAR = 4, QS_PORTS = 4, QS_MAX_PRD = LIBATA_MAX_PRD, QS_CPB_ORDER = 6, QS_CPB_BYTES = (1 << QS_CPB_ORDER), QS_PRD_BYTES = QS_MAX_PRD * 16, QS_PKT_BYTES = QS_CPB_BYTES + QS_PRD_BYTES, /* global register offsets */ QS_HCF_CNFG3 = 0x0003, /* host configuration offset */ QS_HID_HPHY = 0x0004, /* host physical interface info */ QS_HCT_CTRL = 0x00e4, /* global interrupt mask offset */ QS_HST_SFF = 0x0100, /* host status fifo offset */ QS_HVS_SERD3 = 0x0393, /* PHY enable offset */ /* global control bits */ QS_HPHY_64BIT = (1 << 1), /* 64-bit bus detected */ QS_CNFG3_GSRST = 0x01, /* global chip reset */ QS_SERD3_PHY_ENA = 0xf0, /* PHY detection ENAble*/ /* per-channel register offsets */ QS_CCF_CPBA = 0x0710, /* chan CPB base address */ QS_CCF_CSEP = 0x0718, /* chan CPB separation factor */ QS_CFC_HUFT = 0x0800, /* host upstream fifo threshold */ QS_CFC_HDFT = 0x0804, /* host downstream fifo threshold */ QS_CFC_DUFT = 0x0808, /* dev upstream fifo threshold */ QS_CFC_DDFT = 0x080c, /* dev downstream fifo threshold */ QS_CCT_CTR0 = 0x0900, /* chan control-0 offset */ QS_CCT_CTR1 = 0x0901, /* chan control-1 offset */ QS_CCT_CFF = 0x0a00, /* chan command fifo offset */ /* channel control bits */ QS_CTR0_REG = (1 << 1), /* register mode (vs. pkt mode) */ QS_CTR0_CLER = (1 << 2), /* clear channel errors */ QS_CTR1_RDEV = (1 << 1), /* sata phy/comms reset */ QS_CTR1_RCHN = (1 << 4), /* reset channel logic */ QS_CCF_RUN_PKT = 0x107, /* RUN a new dma PKT */ /* pkt sub-field headers */ QS_HCB_HDR = 0x01, /* Host Control Block header */ QS_DCB_HDR = 0x02, /* Device Control Block header */ /* pkt HCB flag bits */ QS_HF_DIRO = (1 << 0), /* data DIRection Out */ QS_HF_DAT = (1 << 3), /* DATa pkt */ QS_HF_IEN = (1 << 4), /* Interrupt ENable */ QS_HF_VLD = (1 << 5), /* VaLiD pkt */ /* pkt DCB flag bits */ QS_DF_PORD = (1 << 2), /* Pio OR Dma */ QS_DF_ELBA = (1 << 3), /* Extended LBA (lba48) */ /* PCI device IDs */ board_2068_idx = 0, /* QStor 4-port SATA/RAID */ }; enum { QS_DMA_BOUNDARY = ~0UL }; typedef enum { qs_state_mmio, qs_state_pkt } qs_state_t; struct qs_port_priv { u8 *pkt; dma_addr_t pkt_dma; qs_state_t state; }; static int qs_scr_read(struct ata_link *link, unsigned int sc_reg, u32 *val); static int qs_scr_write(struct ata_link *link, unsigned int sc_reg, u32 val); static int qs_ata_init_one(struct pci_dev *pdev, const struct pci_device_id *ent); static int qs_port_start(struct ata_port *ap); static void qs_host_stop(struct ata_host *host); static enum ata_completion_errors qs_qc_prep(struct ata_queued_cmd *qc); static unsigned int qs_qc_issue(struct ata_queued_cmd *qc); static int qs_check_atapi_dma(struct ata_queued_cmd *qc); static void qs_freeze(struct ata_port *ap); static void qs_thaw(struct ata_port *ap); static int qs_prereset(struct ata_link *link, unsigned long deadline); static void qs_error_handler(struct ata_port *ap); static struct scsi_host_template qs_ata_sht = { ATA_BASE_SHT(DRV_NAME), .sg_tablesize = QS_MAX_PRD, .dma_boundary = QS_DMA_BOUNDARY, }; static struct ata_port_operations qs_ata_ops = { .inherits = &ata_sff_port_ops, .check_atapi_dma = qs_check_atapi_dma, .qc_prep = qs_qc_prep, .qc_issue = qs_qc_issue, .freeze = qs_freeze, .thaw = qs_thaw, .prereset = qs_prereset, .softreset = ATA_OP_NULL, .error_handler = qs_error_handler, .lost_interrupt = ATA_OP_NULL, .scr_read = qs_scr_read, .scr_write = qs_scr_write, .port_start = qs_port_start, .host_stop = qs_host_stop, }; static const struct ata_port_info qs_port_info[] = { /* board_2068_idx */ { .flags = ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING, .pio_mask = ATA_PIO4_ONLY, .udma_mask = ATA_UDMA6, .port_ops = &qs_ata_ops, }, }; static const struct pci_device_id qs_ata_pci_tbl[] = { { PCI_VDEVICE(PDC, 0x2068), board_2068_idx }, { } /* terminate list */ }; static struct pci_driver qs_ata_pci_driver = { .name = DRV_NAME, .id_table = qs_ata_pci_tbl, .probe = qs_ata_init_one, .remove = ata_pci_remove_one, }; static void __iomem *qs_mmio_base(struct ata_host *host) { return host->iomap[QS_MMIO_BAR]; } static int qs_check_atapi_dma(struct ata_queued_cmd *qc) { return 1; /* ATAPI DMA not supported */ } static inline void qs_enter_reg_mode(struct ata_port *ap) { u8 __iomem *chan = qs_mmio_base(ap->host) + (ap->port_no * 0x4000); struct qs_port_priv *pp = ap->private_data; pp->state = qs_state_mmio; writeb(QS_CTR0_REG, chan + QS_CCT_CTR0); readb(chan + QS_CCT_CTR0); /* flush */ } static inline void qs_reset_channel_logic(struct ata_port *ap) { u8 __iomem *chan = qs_mmio_base(ap->host) + (ap->port_no * 0x4000); writeb(QS_CTR1_RCHN, chan + QS_CCT_CTR1); readb(chan + QS_CCT_CTR0); /* flush */ qs_enter_reg_mode(ap); } static void qs_freeze(struct ata_port *ap) { u8 __iomem *mmio_base = qs_mmio_base(ap->host); writeb(0, mmio_base + QS_HCT_CTRL); /* disable host interrupts */ qs_enter_reg_mode(ap); } static void qs_thaw(struct ata_port *ap) { u8 __iomem *mmio_base = qs_mmio_base(ap->host); qs_enter_reg_mode(ap); writeb(1, mmio_base + QS_HCT_CTRL); /* enable host interrupts */ } static int qs_prereset(struct ata_link *link, unsigned long deadline) { struct ata_port *ap = link->ap; qs_reset_channel_logic(ap); return ata_sff_prereset(link, deadline); } static int qs_scr_read(struct ata_link *link, unsigned int sc_reg, u32 *val) { if (sc_reg > SCR_CONTROL) return -EINVAL; *val = readl(link->ap->ioaddr.scr_addr + (sc_reg * 8)); return 0; } static void qs_error_handler(struct ata_port *ap) { qs_enter_reg_mode(ap); ata_sff_error_handler(ap); } static int qs_scr_write(struct ata_link *link, unsigned int sc_reg, u32 val) { if (sc_reg > SCR_CONTROL) return -EINVAL; writel(val, link->ap->ioaddr.scr_addr + (sc_reg * 8)); return 0; } static unsigned int qs_fill_sg(struct ata_queued_cmd *qc) { struct scatterlist *sg; struct ata_port *ap = qc->ap; struct qs_port_priv *pp = ap->private_data; u8 *prd = pp->pkt + QS_CPB_BYTES; unsigned int si; for_each_sg(qc->sg, sg, qc->n_elem, si) { u64 addr; u32 len; addr = sg_dma_address(sg); *(__le64 *)prd = cpu_to_le64(addr); prd += sizeof(u64); len = sg_dma_len(sg); *(__le32 *)prd = cpu_to_le32(len); prd += sizeof(u64); } return si; } static enum ata_completion_errors qs_qc_prep(struct ata_queued_cmd *qc) { struct qs_port_priv *pp = qc->ap->private_data; u8 dflags = QS_DF_PORD, *buf = pp->pkt; u8 hflags = QS_HF_DAT | QS_HF_IEN | QS_HF_VLD; u64 addr; unsigned int nelem; qs_enter_reg_mode(qc->ap); if (qc->tf.protocol != ATA_PROT_DMA) return AC_ERR_OK; nelem = qs_fill_sg(qc); if ((qc->tf.flags & ATA_TFLAG_WRITE)) hflags |= QS_HF_DIRO; if ((qc->tf.flags & ATA_TFLAG_LBA48)) dflags |= QS_DF_ELBA; /* host control block (HCB) */ buf[ 0] = QS_HCB_HDR; buf[ 1] = hflags; *(__le32 *)(&buf[ 4]) = cpu_to_le32(qc->nbytes); *(__le32 *)(&buf[ 8]) = cpu_to_le32(nelem); addr = ((u64)pp->pkt_dma) + QS_CPB_BYTES; *(__le64 *)(&buf[16]) = cpu_to_le64(addr); /* device control block (DCB) */ buf[24] = QS_DCB_HDR; buf[28] = dflags; /* frame information structure (FIS) */ ata_tf_to_fis(&qc->tf, 0, 1, &buf[32]); return AC_ERR_OK; } static inline void qs_packet_start(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; u8 __iomem *chan = qs_mmio_base(ap->host) + (ap->port_no * 0x4000); writeb(QS_CTR0_CLER, chan + QS_CCT_CTR0); wmb(); /* flush PRDs and pkt to memory */ writel(QS_CCF_RUN_PKT, chan + QS_CCT_CFF); readl(chan + QS_CCT_CFF); /* flush */ } static unsigned int qs_qc_issue(struct ata_queued_cmd *qc) { struct qs_port_priv *pp = qc->ap->private_data; switch (qc->tf.protocol) { case ATA_PROT_DMA: pp->state = qs_state_pkt; qs_packet_start(qc); return 0; case ATAPI_PROT_DMA: BUG(); break; default: break; } pp->state = qs_state_mmio; return ata_sff_qc_issue(qc); } static void qs_do_or_die(struct ata_queued_cmd *qc, u8 status) { qc->err_mask |= ac_err_mask(status); if (!qc->err_mask) { ata_qc_complete(qc); } else { struct ata_port *ap = qc->ap; struct ata_eh_info *ehi = &ap->link.eh_info; ata_ehi_clear_desc(ehi); ata_ehi_push_desc(ehi, "status 0x%02X", status); if (qc->err_mask == AC_ERR_DEV) ata_port_abort(ap); else ata_port_freeze(ap); } } static inline unsigned int qs_intr_pkt(struct ata_host *host) { unsigned int handled = 0; u8 sFFE; u8 __iomem *mmio_base = qs_mmio_base(host); do { u32 sff0 = readl(mmio_base + QS_HST_SFF); u32 sff1 = readl(mmio_base + QS_HST_SFF + 4); u8 sEVLD = (sff1 >> 30) & 0x01; /* valid flag */ sFFE = sff1 >> 31; /* empty flag */ if (sEVLD) { u8 sDST = sff0 >> 16; /* dev status */ u8 sHST = sff1 & 0x3f; /* host status */ unsigned int port_no = (sff1 >> 8) & 0x03; struct ata_port *ap = host->ports[port_no]; struct qs_port_priv *pp = ap->private_data; struct ata_queued_cmd *qc; dev_dbg(host->dev, "SFF=%08x%08x: sHST=%d sDST=%02x\n", sff1, sff0, sHST, sDST); handled = 1; if (!pp || pp->state != qs_state_pkt) continue; qc = ata_qc_from_tag(ap, ap->link.active_tag); if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING))) { switch (sHST) { case 0: /* successful CPB */ case 3: /* device error */ qs_enter_reg_mode(qc->ap); qs_do_or_die(qc, sDST); break; default: break; } } } } while (!sFFE); return handled; } static inline unsigned int qs_intr_mmio(struct ata_host *host) { unsigned int handled = 0, port_no; for (port_no = 0; port_no < host->n_ports; ++port_no) { struct ata_port *ap = host->ports[port_no]; struct qs_port_priv *pp = ap->private_data; struct ata_queued_cmd *qc; qc = ata_qc_from_tag(ap, ap->link.active_tag); if (!qc) { /* * The qstor hardware generates spurious * interrupts from time to time when switching * in and out of packet mode. There's no * obvious way to know if we're here now due * to that, so just ack the irq and pretend we * knew it was ours.. (ugh). This does not * affect packet mode. */ ata_sff_check_status(ap); handled = 1; continue; } if (!pp || pp->state != qs_state_mmio) continue; if (!(qc->tf.flags & ATA_TFLAG_POLLING)) handled |= ata_sff_port_intr(ap, qc); } return handled; } static irqreturn_t qs_intr(int irq, void *dev_instance) { struct ata_host *host = dev_instance; unsigned int handled = 0; unsigned long flags; spin_lock_irqsave(&host->lock, flags); handled = qs_intr_pkt(host) | qs_intr_mmio(host); spin_unlock_irqrestore(&host->lock, flags); return IRQ_RETVAL(handled); } static void qs_ata_setup_port(struct ata_ioports *port, void __iomem *base) { port->cmd_addr = port->data_addr = base + 0x400; port->error_addr = port->feature_addr = base + 0x408; /* hob_feature = 0x409 */ port->nsect_addr = base + 0x410; /* hob_nsect = 0x411 */ port->lbal_addr = base + 0x418; /* hob_lbal = 0x419 */ port->lbam_addr = base + 0x420; /* hob_lbam = 0x421 */ port->lbah_addr = base + 0x428; /* hob_lbah = 0x429 */ port->device_addr = base + 0x430; port->status_addr = port->command_addr = base + 0x438; port->altstatus_addr = port->ctl_addr = base + 0x440; port->scr_addr = base + 0xc00; } static int qs_port_start(struct ata_port *ap) { struct device *dev = ap->host->dev; struct qs_port_priv *pp; void __iomem *mmio_base = qs_mmio_base(ap->host); void __iomem *chan = mmio_base + (ap->port_no * 0x4000); u64 addr; pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL); if (!pp) return -ENOMEM; pp->pkt = dmam_alloc_coherent(dev, QS_PKT_BYTES, &pp->pkt_dma, GFP_KERNEL); if (!pp->pkt) return -ENOMEM; ap->private_data = pp; qs_enter_reg_mode(ap); addr = (u64)pp->pkt_dma; writel((u32) addr, chan + QS_CCF_CPBA); writel((u32)(addr >> 32), chan + QS_CCF_CPBA + 4); return 0; } static void qs_host_stop(struct ata_host *host) { void __iomem *mmio_base = qs_mmio_base(host); writeb(0, mmio_base + QS_HCT_CTRL); /* disable host interrupts */ writeb(QS_CNFG3_GSRST, mmio_base + QS_HCF_CNFG3); /* global reset */ } static void qs_host_init(struct ata_host *host, unsigned int chip_id) { void __iomem *mmio_base = host->iomap[QS_MMIO_BAR]; unsigned int port_no; writeb(0, mmio_base + QS_HCT_CTRL); /* disable host interrupts */ writeb(QS_CNFG3_GSRST, mmio_base + QS_HCF_CNFG3); /* global reset */ /* reset each channel in turn */ for (port_no = 0; port_no < host->n_ports; ++port_no) { u8 __iomem *chan = mmio_base + (port_no * 0x4000); writeb(QS_CTR1_RDEV|QS_CTR1_RCHN, chan + QS_CCT_CTR1); writeb(QS_CTR0_REG, chan + QS_CCT_CTR0); readb(chan + QS_CCT_CTR0); /* flush */ } writeb(QS_SERD3_PHY_ENA, mmio_base + QS_HVS_SERD3); /* enable phy */ for (port_no = 0; port_no < host->n_ports; ++port_no) { u8 __iomem *chan = mmio_base + (port_no * 0x4000); /* set FIFO depths to same settings as Windows driver */ writew(32, chan + QS_CFC_HUFT); writew(32, chan + QS_CFC_HDFT); writew(10, chan + QS_CFC_DUFT); writew( 8, chan + QS_CFC_DDFT); /* set CPB size in bytes, as a power of two */ writeb(QS_CPB_ORDER, chan + QS_CCF_CSEP); } writeb(1, mmio_base + QS_HCT_CTRL); /* enable host interrupts */ } /* * The QStor understands 64-bit buses, and uses 64-bit fields * for DMA pointers regardless of bus width. We just have to * make sure our DMA masks are set appropriately for whatever * bridge lies between us and the QStor, and then the DMA mapping * code will ensure we only ever "see" appropriate buffer addresses. * If we're 32-bit limited somewhere, then our 64-bit fields will * just end up with zeros in the upper 32-bits, without any special * logic required outside of this routine (below). */ static int qs_set_dma_masks(struct pci_dev *pdev, void __iomem *mmio_base) { u32 bus_info = readl(mmio_base + QS_HID_HPHY); int dma_bits = (bus_info & QS_HPHY_64BIT) ? 64 : 32; int rc; rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(dma_bits)); if (rc) dev_err(&pdev->dev, "%d-bit DMA enable failed\n", dma_bits); return rc; } static int qs_ata_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { unsigned int board_idx = (unsigned int) ent->driver_data; const struct ata_port_info *ppi[] = { &qs_port_info[board_idx], NULL }; struct ata_host *host; int rc, port_no; ata_print_version_once(&pdev->dev, DRV_VERSION); /* alloc host */ host = ata_host_alloc_pinfo(&pdev->dev, ppi, QS_PORTS); if (!host) return -ENOMEM; /* acquire resources and fill host */ rc = pcim_enable_device(pdev); if (rc) return rc; if ((pci_resource_flags(pdev, QS_MMIO_BAR) & IORESOURCE_MEM) == 0) return -ENODEV; rc = pcim_iomap_regions(pdev, 1 << QS_MMIO_BAR, DRV_NAME); if (rc) return rc; host->iomap = pcim_iomap_table(pdev); rc = qs_set_dma_masks(pdev, host->iomap[QS_MMIO_BAR]); if (rc) return rc; for (port_no = 0; port_no < host->n_ports; ++port_no) { struct ata_port *ap = host->ports[port_no]; unsigned int offset = port_no * 0x4000; void __iomem *chan = host->iomap[QS_MMIO_BAR] + offset; qs_ata_setup_port(&ap->ioaddr, chan); ata_port_pbar_desc(ap, QS_MMIO_BAR, -1, "mmio"); ata_port_pbar_desc(ap, QS_MMIO_BAR, offset, "port"); } /* initialize adapter */ qs_host_init(host, board_idx); pci_set_master(pdev); return ata_host_activate(host, pdev->irq, qs_intr, IRQF_SHARED, &qs_ata_sht); } module_pci_driver(qs_ata_pci_driver); MODULE_AUTHOR("Mark Lord"); MODULE_DESCRIPTION("Pacific Digital Corporation QStor SATA low-level driver"); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE(pci, qs_ata_pci_tbl); MODULE_VERSION(DRV_VERSION);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1