Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Torvalds (pre-git) | 8481 | 82.03% | 59 | 45.04% |
Al Viro | 865 | 8.37% | 18 | 13.74% |
Christoph Hellwig | 262 | 2.53% | 9 | 6.87% |
Omar Sandoval | 234 | 2.26% | 3 | 2.29% |
Kees Cook | 115 | 1.11% | 1 | 0.76% |
Geert Uytterhoeven | 81 | 0.78% | 8 | 6.11% |
Arnd Bergmann | 73 | 0.71% | 3 | 2.29% |
Andreas Bombe | 51 | 0.49% | 1 | 0.76% |
Jens Axboe | 50 | 0.48% | 4 | 3.05% |
Tejun Heo | 32 | 0.31% | 3 | 2.29% |
Linus Torvalds | 18 | 0.17% | 5 | 3.82% |
Vivek Goyal | 16 | 0.15% | 1 | 0.76% |
Luis R. Rodriguez | 14 | 0.14% | 1 | 0.76% |
Martin Wilck | 6 | 0.06% | 1 | 0.76% |
Thomas Gleixner | 5 | 0.05% | 2 | 1.53% |
Paolo 'Blaisorblade' Giarrusso | 5 | 0.05% | 1 | 0.76% |
Kay Sievers | 5 | 0.05% | 1 | 0.76% |
Randy Dunlap | 5 | 0.05% | 1 | 0.76% |
Roman Zippel | 5 | 0.05% | 1 | 0.76% |
Boaz Harrosh | 3 | 0.03% | 1 | 0.76% |
Rusty Russell | 3 | 0.03% | 1 | 0.76% |
OGAWA Hirofumi | 3 | 0.03% | 1 | 0.76% |
Kai Mäkisara | 2 | 0.02% | 1 | 0.76% |
Wolfram Sang | 2 | 0.02% | 1 | 0.76% |
Alexey Dobriyan | 1 | 0.01% | 1 | 0.76% |
Tobias Klauser | 1 | 0.01% | 1 | 0.76% |
Arjan van de Ven | 1 | 0.01% | 1 | 0.76% |
Total | 10339 | 131 |
// SPDX-License-Identifier: GPL-2.0-only /* * linux/amiga/amiflop.c * * Copyright (C) 1993 Greg Harp * Portions of this driver are based on code contributed by Brad Pepers * * revised 28.5.95 by Joerg Dorchain * - now no bugs(?) any more for both HD & DD * - added support for 40 Track 5.25" drives, 80-track hopefully behaves * like 3.5" dd (no way to test - are there any 5.25" drives out there * that work on an A4000?) * - wrote formatting routine (maybe dirty, but works) * * june/july 1995 added ms-dos support by Joerg Dorchain * (portions based on messydos.device and various contributors) * - currently only 9 and 18 sector disks * * - fixed a bug with the internal trackbuffer when using multiple * disks the same time * - made formatting a bit safer * - added command line and machine based default for "silent" df0 * * december 1995 adapted for 1.2.13pl4 by Joerg Dorchain * - works but I think it's inefficient. (look in redo_fd_request) * But the changes were very efficient. (only three and a half lines) * * january 1996 added special ioctl for tracking down read/write problems * - usage ioctl(d, RAW_TRACK, ptr); the raw track buffer (MFM-encoded data * is copied to area. (area should be large enough since no checking is * done - 30K is currently sufficient). return the actual size of the * trackbuffer * - replaced udelays() by a timer (CIAA timer B) for the waits * needed for the disk mechanic. * * february 1996 fixed error recovery and multiple disk access * - both got broken the first time I tampered with the driver :-( * - still not safe, but better than before * * revised Marts 3rd, 1996 by Jes Sorensen for use in the 1.3.28 kernel. * - Minor changes to accept the kdev_t. * - Replaced some more udelays with ms_delays. Udelay is just a loop, * and so the delay will be different depending on the given * processor :-( * - The driver could use a major cleanup because of the new * major/minor handling that came with kdev_t. It seems to work for * the time being, but I can't guarantee that it will stay like * that when we start using 16 (24?) bit minors. * * restructured jan 1997 by Joerg Dorchain * - Fixed Bug accessing multiple disks * - some code cleanup * - added trackbuffer for each drive to speed things up * - fixed some race conditions (who finds the next may send it to me ;-) */ #include <linux/module.h> #include <linux/slab.h> #include <linux/fd.h> #include <linux/hdreg.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/major.h> #include <linux/mutex.h> #include <linux/fs.h> #include <linux/blk-mq.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <asm/setup.h> #include <linux/uaccess.h> #include <asm/amigahw.h> #include <asm/amigaints.h> #include <asm/irq.h> #undef DEBUG /* print _LOTS_ of infos */ #define RAW_IOCTL #ifdef RAW_IOCTL #define IOCTL_RAW_TRACK 0x5254524B /* 'RTRK' */ #endif /* * Defines */ /* * CIAAPRA bits (read only) */ #define DSKRDY (0x1<<5) /* disk ready when low */ #define DSKTRACK0 (0x1<<4) /* head at track zero when low */ #define DSKPROT (0x1<<3) /* disk protected when low */ #define DSKCHANGE (0x1<<2) /* low when disk removed */ /* * CIAAPRB bits (read/write) */ #define DSKMOTOR (0x1<<7) /* motor on when low */ #define DSKSEL3 (0x1<<6) /* select drive 3 when low */ #define DSKSEL2 (0x1<<5) /* select drive 2 when low */ #define DSKSEL1 (0x1<<4) /* select drive 1 when low */ #define DSKSEL0 (0x1<<3) /* select drive 0 when low */ #define DSKSIDE (0x1<<2) /* side selection: 0 = upper, 1 = lower */ #define DSKDIREC (0x1<<1) /* step direction: 0=in, 1=out (to trk 0) */ #define DSKSTEP (0x1) /* pulse low to step head 1 track */ /* * DSKBYTR bits (read only) */ #define DSKBYT (1<<15) /* register contains valid byte when set */ #define DMAON (1<<14) /* disk DMA enabled */ #define DISKWRITE (1<<13) /* disk write bit in DSKLEN enabled */ #define WORDEQUAL (1<<12) /* DSKSYNC register match when true */ /* bits 7-0 are data */ /* * ADKCON/ADKCONR bits */ #ifndef SETCLR #define ADK_SETCLR (1<<15) /* control bit */ #endif #define ADK_PRECOMP1 (1<<14) /* precompensation selection */ #define ADK_PRECOMP0 (1<<13) /* 00=none, 01=140ns, 10=280ns, 11=500ns */ #define ADK_MFMPREC (1<<12) /* 0=GCR precomp., 1=MFM precomp. */ #define ADK_WORDSYNC (1<<10) /* enable DSKSYNC auto DMA */ #define ADK_MSBSYNC (1<<9) /* when 1, enable sync on MSbit (for GCR) */ #define ADK_FAST (1<<8) /* bit cell: 0=2us (GCR), 1=1us (MFM) */ /* * DSKLEN bits */ #define DSKLEN_DMAEN (1<<15) #define DSKLEN_WRITE (1<<14) /* * INTENA/INTREQ bits */ #define DSKINDEX (0x1<<4) /* DSKINDEX bit */ /* * Misc */ #define MFM_SYNC 0x4489 /* standard MFM sync value */ /* Values for FD_COMMAND */ #define FD_RECALIBRATE 0x07 /* move to track 0 */ #define FD_SEEK 0x0F /* seek track */ #define FD_READ 0xE6 /* read with MT, MFM, SKip deleted */ #define FD_WRITE 0xC5 /* write with MT, MFM */ #define FD_SENSEI 0x08 /* Sense Interrupt Status */ #define FD_SPECIFY 0x03 /* specify HUT etc */ #define FD_FORMAT 0x4D /* format one track */ #define FD_VERSION 0x10 /* get version code */ #define FD_CONFIGURE 0x13 /* configure FIFO operation */ #define FD_PERPENDICULAR 0x12 /* perpendicular r/w mode */ #define FD_MAX_UNITS 4 /* Max. Number of drives */ #define FLOPPY_MAX_SECTORS 22 /* Max. Number of sectors per track */ struct fd_data_type { char *name; /* description of data type */ int sects; /* sectors per track */ int (*read_fkt)(int); /* read whole track */ void (*write_fkt)(int); /* write whole track */ }; struct fd_drive_type { unsigned long code; /* code returned from drive */ char *name; /* description of drive */ unsigned int tracks; /* number of tracks */ unsigned int heads; /* number of heads */ unsigned int read_size; /* raw read size for one track */ unsigned int write_size; /* raw write size for one track */ unsigned int sect_mult; /* sectors and gap multiplier (HD = 2) */ unsigned int precomp1; /* start track for precomp 1 */ unsigned int precomp2; /* start track for precomp 2 */ unsigned int step_delay; /* time (in ms) for delay after step */ unsigned int settle_time; /* time to settle after dir change */ unsigned int side_time; /* time needed to change sides */ }; struct amiga_floppy_struct { struct fd_drive_type *type; /* type of floppy for this unit */ struct fd_data_type *dtype; /* type of floppy for this unit */ int track; /* current track (-1 == unknown) */ unsigned char *trackbuf; /* current track (kmaloc()'d */ int blocks; /* total # blocks on disk */ int changed; /* true when not known */ int disk; /* disk in drive (-1 == unknown) */ int motor; /* true when motor is at speed */ int busy; /* true when drive is active */ int dirty; /* true when trackbuf is not on disk */ int status; /* current error code for unit */ struct gendisk *gendisk[2]; struct blk_mq_tag_set tag_set; }; /* * Error codes */ #define FD_OK 0 /* operation succeeded */ #define FD_ERROR -1 /* general error (seek, read, write, etc) */ #define FD_NOUNIT 1 /* unit does not exist */ #define FD_UNITBUSY 2 /* unit already active */ #define FD_NOTACTIVE 3 /* unit is not active */ #define FD_NOTREADY 4 /* unit is not ready (motor not on/no disk) */ #define MFM_NOSYNC 1 #define MFM_HEADER 2 #define MFM_DATA 3 #define MFM_TRACK 4 /* * Floppy ID values */ #define FD_NODRIVE 0x00000000 /* response when no unit is present */ #define FD_DD_3 0xffffffff /* double-density 3.5" (880K) drive */ #define FD_HD_3 0x55555555 /* high-density 3.5" (1760K) drive */ #define FD_DD_5 0xaaaaaaaa /* double-density 5.25" (440K) drive */ static DEFINE_MUTEX(amiflop_mutex); static unsigned long int fd_def_df0 = FD_DD_3; /* default for df0 if it doesn't identify */ module_param(fd_def_df0, ulong, 0); MODULE_LICENSE("GPL"); /* * Macros */ #define MOTOR_ON (ciab.prb &= ~DSKMOTOR) #define MOTOR_OFF (ciab.prb |= DSKMOTOR) #define SELECT(mask) (ciab.prb &= ~mask) #define DESELECT(mask) (ciab.prb |= mask) #define SELMASK(drive) (1 << (3 + (drive & 3))) static struct fd_drive_type drive_types[] = { /* code name tr he rdsz wrsz sm pc1 pc2 sd st st*/ /* warning: times are now in milliseconds (ms) */ { FD_DD_3, "DD 3.5", 80, 2, 14716, 13630, 1, 80,161, 3, 18, 1}, { FD_HD_3, "HD 3.5", 80, 2, 28344, 27258, 2, 80,161, 3, 18, 1}, { FD_DD_5, "DD 5.25", 40, 2, 14716, 13630, 1, 40, 81, 6, 30, 2}, { FD_NODRIVE, "No Drive", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} }; static int num_dr_types = ARRAY_SIZE(drive_types); static int amiga_read(int), dos_read(int); static void amiga_write(int), dos_write(int); static struct fd_data_type data_types[] = { { "Amiga", 11 , amiga_read, amiga_write}, { "MS-Dos", 9, dos_read, dos_write} }; /* current info on each unit */ static struct amiga_floppy_struct unit[FD_MAX_UNITS]; static struct timer_list flush_track_timer[FD_MAX_UNITS]; static struct timer_list post_write_timer; static unsigned long post_write_timer_drive; static struct timer_list motor_on_timer; static struct timer_list motor_off_timer[FD_MAX_UNITS]; static int on_attempts; /* Synchronization of FDC access */ /* request loop (trackbuffer) */ static volatile int fdc_busy = -1; static volatile int fdc_nested; static DECLARE_WAIT_QUEUE_HEAD(fdc_wait); static DECLARE_COMPLETION(motor_on_completion); static volatile int selected = -1; /* currently selected drive */ static int writepending; static int writefromint; static char *raw_buf; static DEFINE_SPINLOCK(amiflop_lock); #define RAW_BUF_SIZE 30000 /* size of raw disk data */ /* * These are global variables, as that's the easiest way to give * information to interrupts. They are the data used for the current * request. */ static volatile char block_flag; static DECLARE_WAIT_QUEUE_HEAD(wait_fd_block); /* MS-Dos MFM Coding tables (should go quick and easy) */ static unsigned char mfmencode[16]={ 0x2a, 0x29, 0x24, 0x25, 0x12, 0x11, 0x14, 0x15, 0x4a, 0x49, 0x44, 0x45, 0x52, 0x51, 0x54, 0x55 }; static unsigned char mfmdecode[128]; /* floppy internal millisecond timer stuff */ static DECLARE_COMPLETION(ms_wait_completion); #define MS_TICKS ((amiga_eclock+50)/1000) /* * Note that MAX_ERRORS=X doesn't imply that we retry every bad read * max X times - some types of errors increase the errorcount by 2 or * even 3, so we might actually retry only X/2 times before giving up. */ #define MAX_ERRORS 12 #define custom amiga_custom /* Prevent "aliased" accesses. */ static int fd_ref[4] = { 0,0,0,0 }; static int fd_device[4] = { 0, 0, 0, 0 }; /* * Here come the actual hardware access and helper functions. * They are not reentrant and single threaded because all drives * share the same hardware and the same trackbuffer. */ /* Milliseconds timer */ static irqreturn_t ms_isr(int irq, void *dummy) { complete(&ms_wait_completion); return IRQ_HANDLED; } /* all waits are queued up A more generic routine would do a schedule a la timer.device */ static void ms_delay(int ms) { int ticks; static DEFINE_MUTEX(mutex); if (ms > 0) { mutex_lock(&mutex); ticks = MS_TICKS*ms-1; ciaa.tblo=ticks%256; ciaa.tbhi=ticks/256; ciaa.crb=0x19; /*count eclock, force load, one-shoot, start */ wait_for_completion(&ms_wait_completion); mutex_unlock(&mutex); } } /* Hardware semaphore */ /* returns true when we would get the semaphore */ static inline int try_fdc(int drive) { drive &= 3; return ((fdc_busy < 0) || (fdc_busy == drive)); } static void get_fdc(int drive) { unsigned long flags; drive &= 3; #ifdef DEBUG printk("get_fdc: drive %d fdc_busy %d fdc_nested %d\n",drive,fdc_busy,fdc_nested); #endif local_irq_save(flags); wait_event(fdc_wait, try_fdc(drive)); fdc_busy = drive; fdc_nested++; local_irq_restore(flags); } static inline void rel_fdc(void) { #ifdef DEBUG if (fdc_nested == 0) printk("fd: unmatched rel_fdc\n"); printk("rel_fdc: fdc_busy %d fdc_nested %d\n",fdc_busy,fdc_nested); #endif fdc_nested--; if (fdc_nested == 0) { fdc_busy = -1; wake_up(&fdc_wait); } } static void fd_select (int drive) { unsigned char prb = ~0; drive&=3; #ifdef DEBUG printk("selecting %d\n",drive); #endif if (drive == selected) return; get_fdc(drive); selected = drive; if (unit[drive].track % 2 != 0) prb &= ~DSKSIDE; if (unit[drive].motor == 1) prb &= ~DSKMOTOR; ciab.prb |= (SELMASK(0)|SELMASK(1)|SELMASK(2)|SELMASK(3)); ciab.prb = prb; prb &= ~SELMASK(drive); ciab.prb = prb; rel_fdc(); } static void fd_deselect (int drive) { unsigned char prb; unsigned long flags; drive&=3; #ifdef DEBUG printk("deselecting %d\n",drive); #endif if (drive != selected) { printk(KERN_WARNING "Deselecting drive %d while %d was selected!\n",drive,selected); return; } get_fdc(drive); local_irq_save(flags); selected = -1; prb = ciab.prb; prb |= (SELMASK(0)|SELMASK(1)|SELMASK(2)|SELMASK(3)); ciab.prb = prb; local_irq_restore (flags); rel_fdc(); } static void motor_on_callback(struct timer_list *unused) { if (!(ciaa.pra & DSKRDY) || --on_attempts == 0) { complete_all(&motor_on_completion); } else { motor_on_timer.expires = jiffies + HZ/10; add_timer(&motor_on_timer); } } static int fd_motor_on(int nr) { nr &= 3; del_timer(motor_off_timer + nr); if (!unit[nr].motor) { unit[nr].motor = 1; fd_select(nr); reinit_completion(&motor_on_completion); mod_timer(&motor_on_timer, jiffies + HZ/2); on_attempts = 10; wait_for_completion(&motor_on_completion); fd_deselect(nr); } if (on_attempts == 0) { on_attempts = -1; #if 0 printk (KERN_ERR "motor_on failed, turning motor off\n"); fd_motor_off (motor_off_timer + nr); return 0; #else printk (KERN_WARNING "DSKRDY not set after 1.5 seconds - assuming drive is spinning notwithstanding\n"); #endif } return 1; } static void fd_motor_off(struct timer_list *timer) { unsigned long drive = ((unsigned long)timer - (unsigned long)&motor_off_timer[0]) / sizeof(motor_off_timer[0]); drive&=3; if (!try_fdc(drive)) { /* We would be blocked in an interrupt, so try again later */ timer->expires = jiffies + 1; add_timer(timer); return; } unit[drive].motor = 0; fd_select(drive); udelay (1); fd_deselect(drive); } static void floppy_off (unsigned int nr) { int drive; drive = nr & 3; mod_timer(motor_off_timer + drive, jiffies + 3*HZ); } static int fd_calibrate(int drive) { unsigned char prb; int n; drive &= 3; get_fdc(drive); if (!fd_motor_on (drive)) return 0; fd_select (drive); prb = ciab.prb; prb |= DSKSIDE; prb &= ~DSKDIREC; ciab.prb = prb; for (n = unit[drive].type->tracks/2; n != 0; --n) { if (ciaa.pra & DSKTRACK0) break; prb &= ~DSKSTEP; ciab.prb = prb; prb |= DSKSTEP; udelay (2); ciab.prb = prb; ms_delay(unit[drive].type->step_delay); } ms_delay (unit[drive].type->settle_time); prb |= DSKDIREC; n = unit[drive].type->tracks + 20; for (;;) { prb &= ~DSKSTEP; ciab.prb = prb; prb |= DSKSTEP; udelay (2); ciab.prb = prb; ms_delay(unit[drive].type->step_delay + 1); if ((ciaa.pra & DSKTRACK0) == 0) break; if (--n == 0) { printk (KERN_ERR "fd%d: calibrate failed, turning motor off\n", drive); fd_motor_off (motor_off_timer + drive); unit[drive].track = -1; rel_fdc(); return 0; } } unit[drive].track = 0; ms_delay(unit[drive].type->settle_time); rel_fdc(); fd_deselect(drive); return 1; } static int fd_seek(int drive, int track) { unsigned char prb; int cnt; #ifdef DEBUG printk("seeking drive %d to track %d\n",drive,track); #endif drive &= 3; get_fdc(drive); if (unit[drive].track == track) { rel_fdc(); return 1; } if (!fd_motor_on(drive)) { rel_fdc(); return 0; } if (unit[drive].track < 0 && !fd_calibrate(drive)) { rel_fdc(); return 0; } fd_select (drive); cnt = unit[drive].track/2 - track/2; prb = ciab.prb; prb |= DSKSIDE | DSKDIREC; if (track % 2 != 0) prb &= ~DSKSIDE; if (cnt < 0) { cnt = - cnt; prb &= ~DSKDIREC; } ciab.prb = prb; if (track % 2 != unit[drive].track % 2) ms_delay (unit[drive].type->side_time); unit[drive].track = track; if (cnt == 0) { rel_fdc(); fd_deselect(drive); return 1; } do { prb &= ~DSKSTEP; ciab.prb = prb; prb |= DSKSTEP; udelay (1); ciab.prb = prb; ms_delay (unit[drive].type->step_delay); } while (--cnt != 0); ms_delay (unit[drive].type->settle_time); rel_fdc(); fd_deselect(drive); return 1; } static unsigned long fd_get_drive_id(int drive) { int i; ulong id = 0; drive&=3; get_fdc(drive); /* set up for ID */ MOTOR_ON; udelay(2); SELECT(SELMASK(drive)); udelay(2); DESELECT(SELMASK(drive)); udelay(2); MOTOR_OFF; udelay(2); SELECT(SELMASK(drive)); udelay(2); DESELECT(SELMASK(drive)); udelay(2); /* loop and read disk ID */ for (i=0; i<32; i++) { SELECT(SELMASK(drive)); udelay(2); /* read and store value of DSKRDY */ id <<= 1; id |= (ciaa.pra & DSKRDY) ? 0 : 1; /* cia regs are low-active! */ DESELECT(SELMASK(drive)); } rel_fdc(); /* * RB: At least A500/A2000's df0: don't identify themselves. * As every (real) Amiga has at least a 3.5" DD drive as df0: * we default to that if df0: doesn't identify as a certain * type. */ if(drive == 0 && id == FD_NODRIVE) { id = fd_def_df0; printk(KERN_NOTICE "fd: drive 0 didn't identify, setting default %08lx\n", (ulong)fd_def_df0); } /* return the ID value */ return (id); } static irqreturn_t fd_block_done(int irq, void *dummy) { if (block_flag) custom.dsklen = 0x4000; if (block_flag == 2) { /* writing */ writepending = 2; post_write_timer.expires = jiffies + 1; /* at least 2 ms */ post_write_timer_drive = selected; add_timer(&post_write_timer); } else { /* reading */ block_flag = 0; wake_up (&wait_fd_block); } return IRQ_HANDLED; } static void raw_read(int drive) { drive&=3; get_fdc(drive); wait_event(wait_fd_block, !block_flag); fd_select(drive); /* setup adkcon bits correctly */ custom.adkcon = ADK_MSBSYNC; custom.adkcon = ADK_SETCLR|ADK_WORDSYNC|ADK_FAST; custom.dsksync = MFM_SYNC; custom.dsklen = 0; custom.dskptr = (u_char *)ZTWO_PADDR((u_char *)raw_buf); custom.dsklen = unit[drive].type->read_size/sizeof(short) | DSKLEN_DMAEN; custom.dsklen = unit[drive].type->read_size/sizeof(short) | DSKLEN_DMAEN; block_flag = 1; wait_event(wait_fd_block, !block_flag); custom.dsklen = 0; fd_deselect(drive); rel_fdc(); } static int raw_write(int drive) { ushort adk; drive&=3; get_fdc(drive); /* corresponds to rel_fdc() in post_write() */ if ((ciaa.pra & DSKPROT) == 0) { rel_fdc(); return 0; } wait_event(wait_fd_block, !block_flag); fd_select(drive); /* clear adkcon bits */ custom.adkcon = ADK_PRECOMP1|ADK_PRECOMP0|ADK_WORDSYNC|ADK_MSBSYNC; /* set appropriate adkcon bits */ adk = ADK_SETCLR|ADK_FAST; if ((ulong)unit[drive].track >= unit[drive].type->precomp2) adk |= ADK_PRECOMP1; else if ((ulong)unit[drive].track >= unit[drive].type->precomp1) adk |= ADK_PRECOMP0; custom.adkcon = adk; custom.dsklen = DSKLEN_WRITE; custom.dskptr = (u_char *)ZTWO_PADDR((u_char *)raw_buf); custom.dsklen = unit[drive].type->write_size/sizeof(short) | DSKLEN_DMAEN|DSKLEN_WRITE; custom.dsklen = unit[drive].type->write_size/sizeof(short) | DSKLEN_DMAEN|DSKLEN_WRITE; block_flag = 2; return 1; } /* * to be called at least 2ms after the write has finished but before any * other access to the hardware. */ static void post_write (unsigned long drive) { #ifdef DEBUG printk("post_write for drive %ld\n",drive); #endif drive &= 3; custom.dsklen = 0; block_flag = 0; writepending = 0; writefromint = 0; unit[drive].dirty = 0; wake_up(&wait_fd_block); fd_deselect(drive); rel_fdc(); /* corresponds to get_fdc() in raw_write */ } static void post_write_callback(struct timer_list *timer) { post_write(post_write_timer_drive); } /* * The following functions are to convert the block contents into raw data * written to disk and vice versa. * (Add other formats here ;-)) */ static unsigned long scan_sync(unsigned long raw, unsigned long end) { ushort *ptr = (ushort *)raw, *endp = (ushort *)end; while (ptr < endp && *ptr++ != 0x4489) ; if (ptr < endp) { while (*ptr == 0x4489 && ptr < endp) ptr++; return (ulong)ptr; } return 0; } static inline unsigned long checksum(unsigned long *addr, int len) { unsigned long csum = 0; len /= sizeof(*addr); while (len-- > 0) csum ^= *addr++; csum = ((csum>>1) & 0x55555555) ^ (csum & 0x55555555); return csum; } static unsigned long decode (unsigned long *data, unsigned long *raw, int len) { ulong *odd, *even; /* convert length from bytes to longwords */ len >>= 2; odd = raw; even = odd + len; /* prepare return pointer */ raw += len * 2; do { *data++ = ((*odd++ & 0x55555555) << 1) | (*even++ & 0x55555555); } while (--len != 0); return (ulong)raw; } struct header { unsigned char magic; unsigned char track; unsigned char sect; unsigned char ord; unsigned char labels[16]; unsigned long hdrchk; unsigned long datachk; }; static int amiga_read(int drive) { unsigned long raw; unsigned long end; int scnt; unsigned long csum; struct header hdr; drive&=3; raw = (long) raw_buf; end = raw + unit[drive].type->read_size; for (scnt = 0;scnt < unit[drive].dtype->sects * unit[drive].type->sect_mult; scnt++) { if (!(raw = scan_sync(raw, end))) { printk (KERN_INFO "can't find sync for sector %d\n", scnt); return MFM_NOSYNC; } raw = decode ((ulong *)&hdr.magic, (ulong *)raw, 4); raw = decode ((ulong *)&hdr.labels, (ulong *)raw, 16); raw = decode ((ulong *)&hdr.hdrchk, (ulong *)raw, 4); raw = decode ((ulong *)&hdr.datachk, (ulong *)raw, 4); csum = checksum((ulong *)&hdr, (char *)&hdr.hdrchk-(char *)&hdr); #ifdef DEBUG printk ("(%x,%d,%d,%d) (%lx,%lx,%lx,%lx) %lx %lx\n", hdr.magic, hdr.track, hdr.sect, hdr.ord, *(ulong *)&hdr.labels[0], *(ulong *)&hdr.labels[4], *(ulong *)&hdr.labels[8], *(ulong *)&hdr.labels[12], hdr.hdrchk, hdr.datachk); #endif if (hdr.hdrchk != csum) { printk(KERN_INFO "MFM_HEADER: %08lx,%08lx\n", hdr.hdrchk, csum); return MFM_HEADER; } /* verify track */ if (hdr.track != unit[drive].track) { printk(KERN_INFO "MFM_TRACK: %d, %d\n", hdr.track, unit[drive].track); return MFM_TRACK; } raw = decode ((ulong *)(unit[drive].trackbuf + hdr.sect*512), (ulong *)raw, 512); csum = checksum((ulong *)(unit[drive].trackbuf + hdr.sect*512), 512); if (hdr.datachk != csum) { printk(KERN_INFO "MFM_DATA: (%x:%d:%d:%d) sc=%d %lx, %lx\n", hdr.magic, hdr.track, hdr.sect, hdr.ord, scnt, hdr.datachk, csum); printk (KERN_INFO "data=(%lx,%lx,%lx,%lx)\n", ((ulong *)(unit[drive].trackbuf+hdr.sect*512))[0], ((ulong *)(unit[drive].trackbuf+hdr.sect*512))[1], ((ulong *)(unit[drive].trackbuf+hdr.sect*512))[2], ((ulong *)(unit[drive].trackbuf+hdr.sect*512))[3]); return MFM_DATA; } } return 0; } static void encode(unsigned long data, unsigned long *dest) { unsigned long data2; data &= 0x55555555; data2 = data ^ 0x55555555; data |= ((data2 >> 1) | 0x80000000) & (data2 << 1); if (*(dest - 1) & 0x00000001) data &= 0x7FFFFFFF; *dest = data; } static void encode_block(unsigned long *dest, unsigned long *src, int len) { int cnt, to_cnt = 0; unsigned long data; /* odd bits */ for (cnt = 0; cnt < len / 4; cnt++) { data = src[cnt] >> 1; encode(data, dest + to_cnt++); } /* even bits */ for (cnt = 0; cnt < len / 4; cnt++) { data = src[cnt]; encode(data, dest + to_cnt++); } } static unsigned long *putsec(int disk, unsigned long *raw, int cnt) { struct header hdr; int i; disk&=3; *raw = (raw[-1]&1) ? 0x2AAAAAAA : 0xAAAAAAAA; raw++; *raw++ = 0x44894489; hdr.magic = 0xFF; hdr.track = unit[disk].track; hdr.sect = cnt; hdr.ord = unit[disk].dtype->sects * unit[disk].type->sect_mult - cnt; for (i = 0; i < 16; i++) hdr.labels[i] = 0; hdr.hdrchk = checksum((ulong *)&hdr, (char *)&hdr.hdrchk-(char *)&hdr); hdr.datachk = checksum((ulong *)(unit[disk].trackbuf+cnt*512), 512); encode_block(raw, (ulong *)&hdr.magic, 4); raw += 2; encode_block(raw, (ulong *)&hdr.labels, 16); raw += 8; encode_block(raw, (ulong *)&hdr.hdrchk, 4); raw += 2; encode_block(raw, (ulong *)&hdr.datachk, 4); raw += 2; encode_block(raw, (ulong *)(unit[disk].trackbuf+cnt*512), 512); raw += 256; return raw; } static void amiga_write(int disk) { unsigned int cnt; unsigned long *ptr = (unsigned long *)raw_buf; disk&=3; /* gap space */ for (cnt = 0; cnt < 415 * unit[disk].type->sect_mult; cnt++) *ptr++ = 0xaaaaaaaa; /* sectors */ for (cnt = 0; cnt < unit[disk].dtype->sects * unit[disk].type->sect_mult; cnt++) ptr = putsec (disk, ptr, cnt); *(ushort *)ptr = (ptr[-1]&1) ? 0x2AA8 : 0xAAA8; } struct dos_header { unsigned char track, /* 0-80 */ side, /* 0-1 */ sec, /* 0-...*/ len_desc;/* 2 */ unsigned short crc; /* on 68000 we got an alignment problem, but this compiler solves it by adding silently adding a pad byte so data won't fit and this took about 3h to discover.... */ unsigned char gap1[22]; /* for longword-alignedness (0x4e) */ }; /* crc routines are borrowed from the messydos-handler */ /* excerpt from the messydos-device ; The CRC is computed not only over the actual data, but including ; the SYNC mark (3 * $a1) and the 'ID/DATA - Address Mark' ($fe/$fb). ; As we don't read or encode these fields into our buffers, we have to ; preload the registers containing the CRC with the values they would have ; after stepping over these fields. ; ; How CRCs "really" work: ; ; First, you should regard a bitstring as a series of coefficients of ; polynomials. We calculate with these polynomials in modulo-2 ; arithmetic, in which both add and subtract are done the same as ; exclusive-or. Now, we modify our data (a very long polynomial) in ; such a way that it becomes divisible by the CCITT-standard 16-bit ; 16 12 5 ; polynomial: x + x + x + 1, represented by $11021. The easiest ; way to do this would be to multiply (using proper arithmetic) our ; datablock with $11021. So we have: ; data * $11021 = ; data * ($10000 + $1021) = ; data * $10000 + data * $1021 ; The left part of this is simple: Just add two 0 bytes. But then ; the right part (data $1021) remains difficult and even could have ; a carry into the left part. The solution is to use a modified ; multiplication, which has a result that is not correct, but with ; a difference of any multiple of $11021. We then only need to keep ; the 16 least significant bits of the result. ; ; The following algorithm does this for us: ; ; unsigned char *data, c, crclo, crchi; ; while (not done) { ; c = *data++ + crchi; ; crchi = (@ c) >> 8 + crclo; ; crclo = @ c; ; } ; ; Remember, + is done with EOR, the @ operator is in two tables (high ; and low byte separately), which is calculated as ; ; $1021 * (c & $F0) ; xor $1021 * (c & $0F) ; xor $1021 * (c >> 4) (* is regular multiplication) ; ; ; Anyway, the end result is the same as the remainder of the division of ; the data by $11021. I am afraid I need to study theory a bit more... my only works was to code this from manx to C.... */ static ushort dos_crc(void * data_a3, int data_d0, int data_d1, int data_d3) { static unsigned char CRCTable1[] = { 0x00,0x10,0x20,0x30,0x40,0x50,0x60,0x70,0x81,0x91,0xa1,0xb1,0xc1,0xd1,0xe1,0xf1, 0x12,0x02,0x32,0x22,0x52,0x42,0x72,0x62,0x93,0x83,0xb3,0xa3,0xd3,0xc3,0xf3,0xe3, 0x24,0x34,0x04,0x14,0x64,0x74,0x44,0x54,0xa5,0xb5,0x85,0x95,0xe5,0xf5,0xc5,0xd5, 0x36,0x26,0x16,0x06,0x76,0x66,0x56,0x46,0xb7,0xa7,0x97,0x87,0xf7,0xe7,0xd7,0xc7, 0x48,0x58,0x68,0x78,0x08,0x18,0x28,0x38,0xc9,0xd9,0xe9,0xf9,0x89,0x99,0xa9,0xb9, 0x5a,0x4a,0x7a,0x6a,0x1a,0x0a,0x3a,0x2a,0xdb,0xcb,0xfb,0xeb,0x9b,0x8b,0xbb,0xab, 0x6c,0x7c,0x4c,0x5c,0x2c,0x3c,0x0c,0x1c,0xed,0xfd,0xcd,0xdd,0xad,0xbd,0x8d,0x9d, 0x7e,0x6e,0x5e,0x4e,0x3e,0x2e,0x1e,0x0e,0xff,0xef,0xdf,0xcf,0xbf,0xaf,0x9f,0x8f, 0x91,0x81,0xb1,0xa1,0xd1,0xc1,0xf1,0xe1,0x10,0x00,0x30,0x20,0x50,0x40,0x70,0x60, 0x83,0x93,0xa3,0xb3,0xc3,0xd3,0xe3,0xf3,0x02,0x12,0x22,0x32,0x42,0x52,0x62,0x72, 0xb5,0xa5,0x95,0x85,0xf5,0xe5,0xd5,0xc5,0x34,0x24,0x14,0x04,0x74,0x64,0x54,0x44, 0xa7,0xb7,0x87,0x97,0xe7,0xf7,0xc7,0xd7,0x26,0x36,0x06,0x16,0x66,0x76,0x46,0x56, 0xd9,0xc9,0xf9,0xe9,0x99,0x89,0xb9,0xa9,0x58,0x48,0x78,0x68,0x18,0x08,0x38,0x28, 0xcb,0xdb,0xeb,0xfb,0x8b,0x9b,0xab,0xbb,0x4a,0x5a,0x6a,0x7a,0x0a,0x1a,0x2a,0x3a, 0xfd,0xed,0xdd,0xcd,0xbd,0xad,0x9d,0x8d,0x7c,0x6c,0x5c,0x4c,0x3c,0x2c,0x1c,0x0c, 0xef,0xff,0xcf,0xdf,0xaf,0xbf,0x8f,0x9f,0x6e,0x7e,0x4e,0x5e,0x2e,0x3e,0x0e,0x1e }; static unsigned char CRCTable2[] = { 0x00,0x21,0x42,0x63,0x84,0xa5,0xc6,0xe7,0x08,0x29,0x4a,0x6b,0x8c,0xad,0xce,0xef, 0x31,0x10,0x73,0x52,0xb5,0x94,0xf7,0xd6,0x39,0x18,0x7b,0x5a,0xbd,0x9c,0xff,0xde, 0x62,0x43,0x20,0x01,0xe6,0xc7,0xa4,0x85,0x6a,0x4b,0x28,0x09,0xee,0xcf,0xac,0x8d, 0x53,0x72,0x11,0x30,0xd7,0xf6,0x95,0xb4,0x5b,0x7a,0x19,0x38,0xdf,0xfe,0x9d,0xbc, 0xc4,0xe5,0x86,0xa7,0x40,0x61,0x02,0x23,0xcc,0xed,0x8e,0xaf,0x48,0x69,0x0a,0x2b, 0xf5,0xd4,0xb7,0x96,0x71,0x50,0x33,0x12,0xfd,0xdc,0xbf,0x9e,0x79,0x58,0x3b,0x1a, 0xa6,0x87,0xe4,0xc5,0x22,0x03,0x60,0x41,0xae,0x8f,0xec,0xcd,0x2a,0x0b,0x68,0x49, 0x97,0xb6,0xd5,0xf4,0x13,0x32,0x51,0x70,0x9f,0xbe,0xdd,0xfc,0x1b,0x3a,0x59,0x78, 0x88,0xa9,0xca,0xeb,0x0c,0x2d,0x4e,0x6f,0x80,0xa1,0xc2,0xe3,0x04,0x25,0x46,0x67, 0xb9,0x98,0xfb,0xda,0x3d,0x1c,0x7f,0x5e,0xb1,0x90,0xf3,0xd2,0x35,0x14,0x77,0x56, 0xea,0xcb,0xa8,0x89,0x6e,0x4f,0x2c,0x0d,0xe2,0xc3,0xa0,0x81,0x66,0x47,0x24,0x05, 0xdb,0xfa,0x99,0xb8,0x5f,0x7e,0x1d,0x3c,0xd3,0xf2,0x91,0xb0,0x57,0x76,0x15,0x34, 0x4c,0x6d,0x0e,0x2f,0xc8,0xe9,0x8a,0xab,0x44,0x65,0x06,0x27,0xc0,0xe1,0x82,0xa3, 0x7d,0x5c,0x3f,0x1e,0xf9,0xd8,0xbb,0x9a,0x75,0x54,0x37,0x16,0xf1,0xd0,0xb3,0x92, 0x2e,0x0f,0x6c,0x4d,0xaa,0x8b,0xe8,0xc9,0x26,0x07,0x64,0x45,0xa2,0x83,0xe0,0xc1, 0x1f,0x3e,0x5d,0x7c,0x9b,0xba,0xd9,0xf8,0x17,0x36,0x55,0x74,0x93,0xb2,0xd1,0xf0 }; /* look at the asm-code - what looks in C a bit strange is almost as good as handmade */ register int i; register unsigned char *CRCT1, *CRCT2, *data, c, crch, crcl; CRCT1=CRCTable1; CRCT2=CRCTable2; data=data_a3; crcl=data_d1; crch=data_d0; for (i=data_d3; i>=0; i--) { c = (*data++) ^ crch; crch = CRCT1[c] ^ crcl; crcl = CRCT2[c]; } return (crch<<8)|crcl; } static inline ushort dos_hdr_crc (struct dos_header *hdr) { return dos_crc(&(hdr->track), 0xb2, 0x30, 3); /* precomputed magic */ } static inline ushort dos_data_crc(unsigned char *data) { return dos_crc(data, 0xe2, 0x95 ,511); /* precomputed magic */ } static inline unsigned char dos_decode_byte(ushort word) { register ushort w2; register unsigned char byte; register unsigned char *dec = mfmdecode; w2=word; w2>>=8; w2&=127; byte = dec[w2]; byte <<= 4; w2 = word & 127; byte |= dec[w2]; return byte; } static unsigned long dos_decode(unsigned char *data, unsigned short *raw, int len) { int i; for (i = 0; i < len; i++) *data++=dos_decode_byte(*raw++); return ((ulong)raw); } #ifdef DEBUG static void dbg(unsigned long ptr) { printk("raw data @%08lx: %08lx, %08lx ,%08lx, %08lx\n", ptr, ((ulong *)ptr)[0], ((ulong *)ptr)[1], ((ulong *)ptr)[2], ((ulong *)ptr)[3]); } #endif static int dos_read(int drive) { unsigned long end; unsigned long raw; int scnt; unsigned short crc,data_crc[2]; struct dos_header hdr; drive&=3; raw = (long) raw_buf; end = raw + unit[drive].type->read_size; for (scnt=0; scnt < unit[drive].dtype->sects * unit[drive].type->sect_mult; scnt++) { do { /* search for the right sync of each sec-hdr */ if (!(raw = scan_sync (raw, end))) { printk(KERN_INFO "dos_read: no hdr sync on " "track %d, unit %d for sector %d\n", unit[drive].track,drive,scnt); return MFM_NOSYNC; } #ifdef DEBUG dbg(raw); #endif } while (*((ushort *)raw)!=0x5554); /* loop usually only once done */ raw+=2; /* skip over headermark */ raw = dos_decode((unsigned char *)&hdr,(ushort *) raw,8); crc = dos_hdr_crc(&hdr); #ifdef DEBUG printk("(%3d,%d,%2d,%d) %x\n", hdr.track, hdr.side, hdr.sec, hdr.len_desc, hdr.crc); #endif if (crc != hdr.crc) { printk(KERN_INFO "dos_read: MFM_HEADER %04x,%04x\n", hdr.crc, crc); return MFM_HEADER; } if (hdr.track != unit[drive].track/unit[drive].type->heads) { printk(KERN_INFO "dos_read: MFM_TRACK %d, %d\n", hdr.track, unit[drive].track/unit[drive].type->heads); return MFM_TRACK; } if (hdr.side != unit[drive].track%unit[drive].type->heads) { printk(KERN_INFO "dos_read: MFM_SIDE %d, %d\n", hdr.side, unit[drive].track%unit[drive].type->heads); return MFM_TRACK; } if (hdr.len_desc != 2) { printk(KERN_INFO "dos_read: unknown sector len " "descriptor %d\n", hdr.len_desc); return MFM_DATA; } #ifdef DEBUG printk("hdr accepted\n"); #endif if (!(raw = scan_sync (raw, end))) { printk(KERN_INFO "dos_read: no data sync on track " "%d, unit %d for sector%d, disk sector %d\n", unit[drive].track, drive, scnt, hdr.sec); return MFM_NOSYNC; } #ifdef DEBUG dbg(raw); #endif if (*((ushort *)raw)!=0x5545) { printk(KERN_INFO "dos_read: no data mark after " "sync (%d,%d,%d,%d) sc=%d\n", hdr.track,hdr.side,hdr.sec,hdr.len_desc,scnt); return MFM_NOSYNC; } raw+=2; /* skip data mark (included in checksum) */ raw = dos_decode((unsigned char *)(unit[drive].trackbuf + (hdr.sec - 1) * 512), (ushort *) raw, 512); raw = dos_decode((unsigned char *)data_crc,(ushort *) raw,4); crc = dos_data_crc(unit[drive].trackbuf + (hdr.sec - 1) * 512); if (crc != data_crc[0]) { printk(KERN_INFO "dos_read: MFM_DATA (%d,%d,%d,%d) " "sc=%d, %x %x\n", hdr.track, hdr.side, hdr.sec, hdr.len_desc, scnt,data_crc[0], crc); printk(KERN_INFO "data=(%lx,%lx,%lx,%lx,...)\n", ((ulong *)(unit[drive].trackbuf+(hdr.sec-1)*512))[0], ((ulong *)(unit[drive].trackbuf+(hdr.sec-1)*512))[1], ((ulong *)(unit[drive].trackbuf+(hdr.sec-1)*512))[2], ((ulong *)(unit[drive].trackbuf+(hdr.sec-1)*512))[3]); return MFM_DATA; } } return 0; } static inline ushort dos_encode_byte(unsigned char byte) { register unsigned char *enc, b2, b1; register ushort word; enc=mfmencode; b1=byte; b2=b1>>4; b1&=15; word=enc[b2] <<8 | enc [b1]; return (word|((word&(256|64)) ? 0: 128)); } static void dos_encode_block(ushort *dest, unsigned char *src, int len) { int i; for (i = 0; i < len; i++) { *dest=dos_encode_byte(*src++); *dest|=((dest[-1]&1)||(*dest&0x4000))? 0: 0x8000; dest++; } } static unsigned long *ms_putsec(int drive, unsigned long *raw, int cnt) { static struct dos_header hdr={0,0,0,2,0, {78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78}}; int i; static ushort crc[2]={0,0x4e4e}; drive&=3; /* id gap 1 */ /* the MFM word before is always 9254 */ for(i=0;i<6;i++) *raw++=0xaaaaaaaa; /* 3 sync + 1 headermark */ *raw++=0x44894489; *raw++=0x44895554; /* fill in the variable parts of the header */ hdr.track=unit[drive].track/unit[drive].type->heads; hdr.side=unit[drive].track%unit[drive].type->heads; hdr.sec=cnt+1; hdr.crc=dos_hdr_crc(&hdr); /* header (without "magic") and id gap 2*/ dos_encode_block((ushort *)raw,(unsigned char *) &hdr.track,28); raw+=14; /*id gap 3 */ for(i=0;i<6;i++) *raw++=0xaaaaaaaa; /* 3 syncs and 1 datamark */ *raw++=0x44894489; *raw++=0x44895545; /* data */ dos_encode_block((ushort *)raw, (unsigned char *)unit[drive].trackbuf+cnt*512,512); raw+=256; /*data crc + jd's special gap (long words :-/) */ crc[0]=dos_data_crc(unit[drive].trackbuf+cnt*512); dos_encode_block((ushort *) raw,(unsigned char *)crc,4); raw+=2; /* data gap */ for(i=0;i<38;i++) *raw++=0x92549254; return raw; /* wrote 652 MFM words */ } static void dos_write(int disk) { int cnt; unsigned long raw = (unsigned long) raw_buf; unsigned long *ptr=(unsigned long *)raw; disk&=3; /* really gap4 + indexgap , but we write it first and round it up */ for (cnt=0;cnt<425;cnt++) *ptr++=0x92549254; /* the following is just guessed */ if (unit[disk].type->sect_mult==2) /* check for HD-Disks */ for(cnt=0;cnt<473;cnt++) *ptr++=0x92549254; /* now the index marks...*/ for (cnt=0;cnt<20;cnt++) *ptr++=0x92549254; for (cnt=0;cnt<6;cnt++) *ptr++=0xaaaaaaaa; *ptr++=0x52245224; *ptr++=0x52245552; for (cnt=0;cnt<20;cnt++) *ptr++=0x92549254; /* sectors */ for(cnt = 0; cnt < unit[disk].dtype->sects * unit[disk].type->sect_mult; cnt++) ptr=ms_putsec(disk,ptr,cnt); *(ushort *)ptr = 0xaaa8; /* MFM word before is always 0x9254 */ } /* * Here comes the high level stuff (i.e. the filesystem interface) * and helper functions. * Normally this should be the only part that has to be adapted to * different kernel versions. */ /* FIXME: this assumes the drive is still spinning - * which is only true if we complete writing a track within three seconds */ static void flush_track_callback(struct timer_list *timer) { unsigned long nr = ((unsigned long)timer - (unsigned long)&flush_track_timer[0]) / sizeof(flush_track_timer[0]); nr&=3; writefromint = 1; if (!try_fdc(nr)) { /* we might block in an interrupt, so try again later */ flush_track_timer[nr].expires = jiffies + 1; add_timer(flush_track_timer + nr); return; } get_fdc(nr); (*unit[nr].dtype->write_fkt)(nr); if (!raw_write(nr)) { printk (KERN_NOTICE "floppy disk write protected\n"); writefromint = 0; writepending = 0; } rel_fdc(); } static int non_int_flush_track (unsigned long nr) { unsigned long flags; nr&=3; writefromint = 0; del_timer(&post_write_timer); get_fdc(nr); if (!fd_motor_on(nr)) { writepending = 0; rel_fdc(); return 0; } local_irq_save(flags); if (writepending != 2) { local_irq_restore(flags); (*unit[nr].dtype->write_fkt)(nr); if (!raw_write(nr)) { printk (KERN_NOTICE "floppy disk write protected " "in write!\n"); writepending = 0; return 0; } wait_event(wait_fd_block, block_flag != 2); } else { local_irq_restore(flags); ms_delay(2); /* 2 ms post_write delay */ post_write(nr); } rel_fdc(); return 1; } static int get_track(int drive, int track) { int error, errcnt; drive&=3; if (unit[drive].track == track) return 0; get_fdc(drive); if (!fd_motor_on(drive)) { rel_fdc(); return -1; } if (unit[drive].dirty == 1) { del_timer (flush_track_timer + drive); non_int_flush_track (drive); } errcnt = 0; while (errcnt < MAX_ERRORS) { if (!fd_seek(drive, track)) return -1; raw_read(drive); error = (*unit[drive].dtype->read_fkt)(drive); if (error == 0) { rel_fdc(); return 0; } /* Read Error Handling: recalibrate and try again */ unit[drive].track = -1; errcnt++; } rel_fdc(); return -1; } static blk_status_t amiflop_rw_cur_segment(struct amiga_floppy_struct *floppy, struct request *rq) { int drive = floppy - unit; unsigned int cnt, block, track, sector; char *data; for (cnt = 0; cnt < blk_rq_cur_sectors(rq); cnt++) { #ifdef DEBUG printk("fd: sector %ld + %d requested for %s\n", blk_rq_pos(rq), cnt, (rq_data_dir(rq) == READ) ? "read" : "write"); #endif block = blk_rq_pos(rq) + cnt; track = block / (floppy->dtype->sects * floppy->type->sect_mult); sector = block % (floppy->dtype->sects * floppy->type->sect_mult); data = bio_data(rq->bio) + 512 * cnt; #ifdef DEBUG printk("access to track %d, sector %d, with buffer at " "0x%08lx\n", track, sector, data); #endif if (get_track(drive, track) == -1) return BLK_STS_IOERR; if (rq_data_dir(rq) == READ) { memcpy(data, floppy->trackbuf + sector * 512, 512); } else { memcpy(floppy->trackbuf + sector * 512, data, 512); /* keep the drive spinning while writes are scheduled */ if (!fd_motor_on(drive)) return BLK_STS_IOERR; /* * setup a callback to write the track buffer * after a short (1 tick) delay. */ floppy->dirty = 1; /* reset the timer */ mod_timer (flush_track_timer + drive, jiffies + 1); } } return BLK_STS_OK; } static blk_status_t amiflop_queue_rq(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *bd) { struct request *rq = bd->rq; struct amiga_floppy_struct *floppy = rq->q->disk->private_data; blk_status_t err; if (!spin_trylock_irq(&amiflop_lock)) return BLK_STS_DEV_RESOURCE; blk_mq_start_request(rq); do { err = amiflop_rw_cur_segment(floppy, rq); } while (blk_update_request(rq, err, blk_rq_cur_bytes(rq))); blk_mq_end_request(rq, err); spin_unlock_irq(&amiflop_lock); return BLK_STS_OK; } static int fd_getgeo(struct block_device *bdev, struct hd_geometry *geo) { int drive = MINOR(bdev->bd_dev) & 3; geo->heads = unit[drive].type->heads; geo->sectors = unit[drive].dtype->sects * unit[drive].type->sect_mult; geo->cylinders = unit[drive].type->tracks; return 0; } static int fd_locked_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long param) { struct amiga_floppy_struct *p = bdev->bd_disk->private_data; int drive = p - unit; static struct floppy_struct getprm; void __user *argp = (void __user *)param; switch(cmd){ case FDFMTBEG: get_fdc(drive); if (fd_ref[drive] > 1) { rel_fdc(); return -EBUSY; } fsync_bdev(bdev); if (fd_motor_on(drive) == 0) { rel_fdc(); return -ENODEV; } if (fd_calibrate(drive) == 0) { rel_fdc(); return -ENXIO; } floppy_off(drive); rel_fdc(); break; case FDFMTTRK: if (param < p->type->tracks * p->type->heads) { get_fdc(drive); if (fd_seek(drive,param) != 0){ memset(p->trackbuf, FD_FILL_BYTE, p->dtype->sects * p->type->sect_mult * 512); non_int_flush_track(drive); } floppy_off(drive); rel_fdc(); } else return -EINVAL; break; case FDFMTEND: floppy_off(drive); invalidate_bdev(bdev); break; case FDGETPRM: memset((void *)&getprm, 0, sizeof (getprm)); getprm.track=p->type->tracks; getprm.head=p->type->heads; getprm.sect=p->dtype->sects * p->type->sect_mult; getprm.size=p->blocks; if (copy_to_user(argp, &getprm, sizeof(struct floppy_struct))) return -EFAULT; break; case FDSETPRM: case FDDEFPRM: return -EINVAL; case FDFLUSH: /* unconditionally, even if not needed */ del_timer (flush_track_timer + drive); non_int_flush_track(drive); break; #ifdef RAW_IOCTL case IOCTL_RAW_TRACK: if (copy_to_user(argp, raw_buf, p->type->read_size)) return -EFAULT; else return p->type->read_size; #endif default: return -ENOSYS; } return 0; } static int fd_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long param) { int ret; mutex_lock(&amiflop_mutex); ret = fd_locked_ioctl(bdev, mode, cmd, param); mutex_unlock(&amiflop_mutex); return ret; } static void fd_probe(int dev) { unsigned long code; int type; int drive; drive = dev & 3; code = fd_get_drive_id(drive); /* get drive type */ for (type = 0; type < num_dr_types; type++) if (drive_types[type].code == code) break; if (type >= num_dr_types) { printk(KERN_WARNING "fd_probe: unsupported drive type " "%08lx found\n", code); unit[drive].type = &drive_types[num_dr_types-1]; /* FD_NODRIVE */ return; } unit[drive].type = drive_types + type; unit[drive].track = -1; unit[drive].disk = -1; unit[drive].motor = 0; unit[drive].busy = 0; unit[drive].status = -1; } /* * floppy_open check for aliasing (/dev/fd0 can be the same as * /dev/PS0 etc), and disallows simultaneous access to the same * drive with different device numbers. */ static int floppy_open(struct block_device *bdev, fmode_t mode) { int drive = MINOR(bdev->bd_dev) & 3; int system = (MINOR(bdev->bd_dev) & 4) >> 2; int old_dev; unsigned long flags; mutex_lock(&amiflop_mutex); old_dev = fd_device[drive]; if (fd_ref[drive] && old_dev != system) { mutex_unlock(&amiflop_mutex); return -EBUSY; } if (unit[drive].type->code == FD_NODRIVE) { mutex_unlock(&amiflop_mutex); return -ENXIO; } if (mode & (FMODE_READ|FMODE_WRITE)) { bdev_check_media_change(bdev); if (mode & FMODE_WRITE) { int wrprot; get_fdc(drive); fd_select (drive); wrprot = !(ciaa.pra & DSKPROT); fd_deselect (drive); rel_fdc(); if (wrprot) { mutex_unlock(&amiflop_mutex); return -EROFS; } } } local_irq_save(flags); fd_ref[drive]++; fd_device[drive] = system; local_irq_restore(flags); unit[drive].dtype=&data_types[system]; unit[drive].blocks=unit[drive].type->heads*unit[drive].type->tracks* data_types[system].sects*unit[drive].type->sect_mult; set_capacity(unit[drive].gendisk[system], unit[drive].blocks); printk(KERN_INFO "fd%d: accessing %s-disk with %s-layout\n",drive, unit[drive].type->name, data_types[system].name); mutex_unlock(&amiflop_mutex); return 0; } static void floppy_release(struct gendisk *disk, fmode_t mode) { struct amiga_floppy_struct *p = disk->private_data; int drive = p - unit; mutex_lock(&amiflop_mutex); if (unit[drive].dirty == 1) { del_timer (flush_track_timer + drive); non_int_flush_track (drive); } if (!fd_ref[drive]--) { printk(KERN_CRIT "floppy_release with fd_ref == 0"); fd_ref[drive] = 0; } #ifdef MODULE floppy_off (drive); #endif mutex_unlock(&amiflop_mutex); } /* * check_events is never called from an interrupt, so we can relax a bit * here, sleep etc. Note that floppy-on tries to set current_DOR to point * to the desired drive, but it will probably not survive the sleep if * several floppies are used at the same time: thus the loop. */ static unsigned amiga_check_events(struct gendisk *disk, unsigned int clearing) { struct amiga_floppy_struct *p = disk->private_data; int drive = p - unit; int changed; static int first_time = 1; if (first_time) changed = first_time--; else { get_fdc(drive); fd_select (drive); changed = !(ciaa.pra & DSKCHANGE); fd_deselect (drive); rel_fdc(); } if (changed) { fd_probe(drive); p->track = -1; p->dirty = 0; writepending = 0; /* if this was true before, too bad! */ writefromint = 0; return DISK_EVENT_MEDIA_CHANGE; } return 0; } static const struct block_device_operations floppy_fops = { .owner = THIS_MODULE, .open = floppy_open, .release = floppy_release, .ioctl = fd_ioctl, .getgeo = fd_getgeo, .check_events = amiga_check_events, }; static const struct blk_mq_ops amiflop_mq_ops = { .queue_rq = amiflop_queue_rq, }; static int fd_alloc_disk(int drive, int system) { struct gendisk *disk; int err; disk = blk_mq_alloc_disk(&unit[drive].tag_set, NULL); if (IS_ERR(disk)) return PTR_ERR(disk); disk->major = FLOPPY_MAJOR; disk->first_minor = drive + system; disk->minors = 1; disk->fops = &floppy_fops; disk->flags |= GENHD_FL_NO_PART; disk->events = DISK_EVENT_MEDIA_CHANGE; if (system) sprintf(disk->disk_name, "fd%d_msdos", drive); else sprintf(disk->disk_name, "fd%d", drive); disk->private_data = &unit[drive]; set_capacity(disk, 880 * 2); unit[drive].gendisk[system] = disk; err = add_disk(disk); if (err) put_disk(disk); return err; } static int fd_alloc_drive(int drive) { unit[drive].trackbuf = kmalloc(FLOPPY_MAX_SECTORS * 512, GFP_KERNEL); if (!unit[drive].trackbuf) goto out; memset(&unit[drive].tag_set, 0, sizeof(unit[drive].tag_set)); unit[drive].tag_set.ops = &amiflop_mq_ops; unit[drive].tag_set.nr_hw_queues = 1; unit[drive].tag_set.nr_maps = 1; unit[drive].tag_set.queue_depth = 2; unit[drive].tag_set.numa_node = NUMA_NO_NODE; unit[drive].tag_set.flags = BLK_MQ_F_SHOULD_MERGE; if (blk_mq_alloc_tag_set(&unit[drive].tag_set)) goto out_cleanup_trackbuf; pr_cont(" fd%d", drive); if (fd_alloc_disk(drive, 0) || fd_alloc_disk(drive, 1)) goto out_cleanup_tagset; return 0; out_cleanup_tagset: blk_mq_free_tag_set(&unit[drive].tag_set); out_cleanup_trackbuf: kfree(unit[drive].trackbuf); out: unit[drive].type->code = FD_NODRIVE; return -ENOMEM; } static int __init fd_probe_drives(void) { int drive,drives,nomem; pr_info("FD: probing units\nfound"); drives=0; nomem=0; for(drive=0;drive<FD_MAX_UNITS;drive++) { fd_probe(drive); if (unit[drive].type->code == FD_NODRIVE) continue; if (fd_alloc_drive(drive) < 0) { pr_cont(" no mem for fd%d", drive); nomem = 1; continue; } drives++; } if ((drives > 0) || (nomem == 0)) { if (drives == 0) pr_cont(" no drives"); pr_cont("\n"); return drives; } pr_cont("\n"); return -ENOMEM; } static int __init amiga_floppy_probe(struct platform_device *pdev) { int i, ret; if (register_blkdev(FLOPPY_MAJOR,"fd")) return -EBUSY; ret = -ENOMEM; raw_buf = amiga_chip_alloc(RAW_BUF_SIZE, "Floppy"); if (!raw_buf) { printk("fd: cannot get chip mem buffer\n"); goto out_blkdev; } ret = -EBUSY; if (request_irq(IRQ_AMIGA_DSKBLK, fd_block_done, 0, "floppy_dma", NULL)) { printk("fd: cannot get irq for dma\n"); goto out_irq; } if (request_irq(IRQ_AMIGA_CIAA_TB, ms_isr, 0, "floppy_timer", NULL)) { printk("fd: cannot get irq for timer\n"); goto out_irq2; } ret = -ENODEV; if (fd_probe_drives() < 1) /* No usable drives */ goto out_probe; /* initialize variables */ timer_setup(&motor_on_timer, motor_on_callback, 0); motor_on_timer.expires = 0; for (i = 0; i < FD_MAX_UNITS; i++) { timer_setup(&motor_off_timer[i], fd_motor_off, 0); motor_off_timer[i].expires = 0; timer_setup(&flush_track_timer[i], flush_track_callback, 0); flush_track_timer[i].expires = 0; unit[i].track = -1; } timer_setup(&post_write_timer, post_write_callback, 0); post_write_timer.expires = 0; for (i = 0; i < 128; i++) mfmdecode[i]=255; for (i = 0; i < 16; i++) mfmdecode[mfmencode[i]]=i; /* make sure that disk DMA is enabled */ custom.dmacon = DMAF_SETCLR | DMAF_DISK; /* init ms timer */ ciaa.crb = 8; /* one-shot, stop */ return 0; out_probe: free_irq(IRQ_AMIGA_CIAA_TB, NULL); out_irq2: free_irq(IRQ_AMIGA_DSKBLK, NULL); out_irq: amiga_chip_free(raw_buf); out_blkdev: unregister_blkdev(FLOPPY_MAJOR,"fd"); return ret; } static struct platform_driver amiga_floppy_driver = { .driver = { .name = "amiga-floppy", }, }; static int __init amiga_floppy_init(void) { return platform_driver_probe(&amiga_floppy_driver, amiga_floppy_probe); } module_init(amiga_floppy_init); #ifndef MODULE static int __init amiga_floppy_setup (char *str) { int n; if (!MACH_IS_AMIGA) return 0; if (!get_option(&str, &n)) return 0; printk (KERN_INFO "amiflop: Setting default df0 to %x\n", n); fd_def_df0 = n; return 1; } __setup("floppy=", amiga_floppy_setup); #endif MODULE_ALIAS("platform:amiga-floppy");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1