Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Walleij | 1902 | 99.69% | 2 | 40.00% |
Kees Cook | 4 | 0.21% | 1 | 20.00% |
Randy Dunlap | 1 | 0.05% | 1 | 20.00% |
Greg Kroah-Hartman | 1 | 0.05% | 1 | 20.00% |
Total | 1908 | 5 |
// SPDX-License-Identifier: GPL-2.0 /* * Cortina Gemini SoC Clock Controller driver * Copyright (c) 2017 Linus Walleij <linus.walleij@linaro.org> */ #define pr_fmt(fmt) "clk-gemini: " fmt #include <linux/init.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/err.h> #include <linux/io.h> #include <linux/clk-provider.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/mfd/syscon.h> #include <linux/regmap.h> #include <linux/spinlock.h> #include <linux/reset-controller.h> #include <dt-bindings/reset/cortina,gemini-reset.h> #include <dt-bindings/clock/cortina,gemini-clock.h> /* Globally visible clocks */ static DEFINE_SPINLOCK(gemini_clk_lock); #define GEMINI_GLOBAL_STATUS 0x04 #define PLL_OSC_SEL BIT(30) #define AHBSPEED_SHIFT (15) #define AHBSPEED_MASK 0x07 #define CPU_AHB_RATIO_SHIFT (18) #define CPU_AHB_RATIO_MASK 0x03 #define GEMINI_GLOBAL_PLL_CONTROL 0x08 #define GEMINI_GLOBAL_SOFT_RESET 0x0c #define GEMINI_GLOBAL_MISC_CONTROL 0x30 #define PCI_CLK_66MHZ BIT(18) #define GEMINI_GLOBAL_CLOCK_CONTROL 0x34 #define PCI_CLKRUN_EN BIT(16) #define TVC_HALFDIV_SHIFT (24) #define TVC_HALFDIV_MASK 0x1f #define SECURITY_CLK_SEL BIT(29) #define GEMINI_GLOBAL_PCI_DLL_CONTROL 0x44 #define PCI_DLL_BYPASS BIT(31) #define PCI_DLL_TAP_SEL_MASK 0x1f /** * struct gemini_gate_data - Gemini gated clocks * @bit_idx: the bit used to gate this clock in the clock register * @name: the clock name * @parent_name: the name of the parent clock * @flags: standard clock framework flags */ struct gemini_gate_data { u8 bit_idx; const char *name; const char *parent_name; unsigned long flags; }; /** * struct clk_gemini_pci - Gemini PCI clock * @hw: corresponding clock hardware entry * @map: regmap to access the registers * @rate: current rate */ struct clk_gemini_pci { struct clk_hw hw; struct regmap *map; unsigned long rate; }; /** * struct gemini_reset - gemini reset controller * @map: regmap to access the containing system controller * @rcdev: reset controller device */ struct gemini_reset { struct regmap *map; struct reset_controller_dev rcdev; }; /* Keeps track of all clocks */ static struct clk_hw_onecell_data *gemini_clk_data; static const struct gemini_gate_data gemini_gates[] = { { 1, "security-gate", "secdiv", 0 }, { 2, "gmac0-gate", "ahb", 0 }, { 3, "gmac1-gate", "ahb", 0 }, { 4, "sata0-gate", "ahb", 0 }, { 5, "sata1-gate", "ahb", 0 }, { 6, "usb0-gate", "ahb", 0 }, { 7, "usb1-gate", "ahb", 0 }, { 8, "ide-gate", "ahb", 0 }, { 9, "pci-gate", "ahb", 0 }, /* * The DDR controller may never have a driver, but certainly must * not be gated off. */ { 10, "ddr-gate", "ahb", CLK_IS_CRITICAL }, /* * The flash controller must be on to access NOR flash through the * memory map. */ { 11, "flash-gate", "ahb", CLK_IGNORE_UNUSED }, { 12, "tvc-gate", "ahb", 0 }, { 13, "boot-gate", "apb", 0 }, }; #define to_pciclk(_hw) container_of(_hw, struct clk_gemini_pci, hw) #define to_gemini_reset(p) container_of((p), struct gemini_reset, rcdev) static unsigned long gemini_pci_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_gemini_pci *pciclk = to_pciclk(hw); u32 val; regmap_read(pciclk->map, GEMINI_GLOBAL_MISC_CONTROL, &val); if (val & PCI_CLK_66MHZ) return 66000000; return 33000000; } static long gemini_pci_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { /* We support 33 and 66 MHz */ if (rate < 48000000) return 33000000; return 66000000; } static int gemini_pci_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_gemini_pci *pciclk = to_pciclk(hw); if (rate == 33000000) return regmap_update_bits(pciclk->map, GEMINI_GLOBAL_MISC_CONTROL, PCI_CLK_66MHZ, 0); if (rate == 66000000) return regmap_update_bits(pciclk->map, GEMINI_GLOBAL_MISC_CONTROL, 0, PCI_CLK_66MHZ); return -EINVAL; } static int gemini_pci_enable(struct clk_hw *hw) { struct clk_gemini_pci *pciclk = to_pciclk(hw); regmap_update_bits(pciclk->map, GEMINI_GLOBAL_CLOCK_CONTROL, 0, PCI_CLKRUN_EN); return 0; } static void gemini_pci_disable(struct clk_hw *hw) { struct clk_gemini_pci *pciclk = to_pciclk(hw); regmap_update_bits(pciclk->map, GEMINI_GLOBAL_CLOCK_CONTROL, PCI_CLKRUN_EN, 0); } static int gemini_pci_is_enabled(struct clk_hw *hw) { struct clk_gemini_pci *pciclk = to_pciclk(hw); unsigned int val; regmap_read(pciclk->map, GEMINI_GLOBAL_CLOCK_CONTROL, &val); return !!(val & PCI_CLKRUN_EN); } static const struct clk_ops gemini_pci_clk_ops = { .recalc_rate = gemini_pci_recalc_rate, .round_rate = gemini_pci_round_rate, .set_rate = gemini_pci_set_rate, .enable = gemini_pci_enable, .disable = gemini_pci_disable, .is_enabled = gemini_pci_is_enabled, }; static struct clk_hw *gemini_pci_clk_setup(const char *name, const char *parent_name, struct regmap *map) { struct clk_gemini_pci *pciclk; struct clk_init_data init; int ret; pciclk = kzalloc(sizeof(*pciclk), GFP_KERNEL); if (!pciclk) return ERR_PTR(-ENOMEM); init.name = name; init.ops = &gemini_pci_clk_ops; init.flags = 0; init.parent_names = &parent_name; init.num_parents = 1; pciclk->map = map; pciclk->hw.init = &init; ret = clk_hw_register(NULL, &pciclk->hw); if (ret) { kfree(pciclk); return ERR_PTR(ret); } return &pciclk->hw; } /* * This is a self-deasserting reset controller. */ static int gemini_reset(struct reset_controller_dev *rcdev, unsigned long id) { struct gemini_reset *gr = to_gemini_reset(rcdev); /* Manual says to always set BIT 30 (CPU1) to 1 */ return regmap_write(gr->map, GEMINI_GLOBAL_SOFT_RESET, BIT(GEMINI_RESET_CPU1) | BIT(id)); } static int gemini_reset_assert(struct reset_controller_dev *rcdev, unsigned long id) { return 0; } static int gemini_reset_deassert(struct reset_controller_dev *rcdev, unsigned long id) { return 0; } static int gemini_reset_status(struct reset_controller_dev *rcdev, unsigned long id) { struct gemini_reset *gr = to_gemini_reset(rcdev); u32 val; int ret; ret = regmap_read(gr->map, GEMINI_GLOBAL_SOFT_RESET, &val); if (ret) return ret; return !!(val & BIT(id)); } static const struct reset_control_ops gemini_reset_ops = { .reset = gemini_reset, .assert = gemini_reset_assert, .deassert = gemini_reset_deassert, .status = gemini_reset_status, }; static int gemini_clk_probe(struct platform_device *pdev) { /* Gives the fracions 1x, 1.5x, 1.85x and 2x */ unsigned int cpu_ahb_mult[4] = { 1, 3, 24, 2 }; unsigned int cpu_ahb_div[4] = { 1, 2, 13, 1 }; void __iomem *base; struct gemini_reset *gr; struct regmap *map; struct clk_hw *hw; struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; unsigned int mult, div; struct resource *res; u32 val; int ret; int i; gr = devm_kzalloc(dev, sizeof(*gr), GFP_KERNEL); if (!gr) return -ENOMEM; /* Remap the system controller for the exclusive register */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); base = devm_ioremap_resource(dev, res); if (IS_ERR(base)) return PTR_ERR(base); map = syscon_node_to_regmap(np); if (IS_ERR(map)) { dev_err(dev, "no syscon regmap\n"); return PTR_ERR(map); } gr->map = map; gr->rcdev.owner = THIS_MODULE; gr->rcdev.nr_resets = 32; gr->rcdev.ops = &gemini_reset_ops; gr->rcdev.of_node = np; ret = devm_reset_controller_register(dev, &gr->rcdev); if (ret) { dev_err(dev, "could not register reset controller\n"); return ret; } /* RTC clock 32768 Hz */ hw = clk_hw_register_fixed_rate(NULL, "rtc", NULL, 0, 32768); gemini_clk_data->hws[GEMINI_CLK_RTC] = hw; /* CPU clock derived as a fixed ratio from the AHB clock */ regmap_read(map, GEMINI_GLOBAL_STATUS, &val); val >>= CPU_AHB_RATIO_SHIFT; val &= CPU_AHB_RATIO_MASK; hw = clk_hw_register_fixed_factor(NULL, "cpu", "ahb", 0, cpu_ahb_mult[val], cpu_ahb_div[val]); gemini_clk_data->hws[GEMINI_CLK_CPU] = hw; /* Security clock is 1:1 or 0.75 of APB */ regmap_read(map, GEMINI_GLOBAL_CLOCK_CONTROL, &val); if (val & SECURITY_CLK_SEL) { mult = 1; div = 1; } else { mult = 3; div = 4; } hw = clk_hw_register_fixed_factor(NULL, "secdiv", "ahb", 0, mult, div); /* * These are the leaf gates, at boot no clocks are gated. */ for (i = 0; i < ARRAY_SIZE(gemini_gates); i++) { const struct gemini_gate_data *gd; gd = &gemini_gates[i]; gemini_clk_data->hws[GEMINI_CLK_GATES + i] = clk_hw_register_gate(NULL, gd->name, gd->parent_name, gd->flags, base + GEMINI_GLOBAL_CLOCK_CONTROL, gd->bit_idx, CLK_GATE_SET_TO_DISABLE, &gemini_clk_lock); } /* * The TV Interface Controller has a 5-bit half divider register. * This clock is supposed to be 27MHz as this is an exact multiple * of PAL and NTSC frequencies. The register is undocumented :( * FIXME: figure out the parent and how the divider works. */ mult = 1; div = ((val >> TVC_HALFDIV_SHIFT) & TVC_HALFDIV_MASK); dev_dbg(dev, "TVC half divider value = %d\n", div); div += 1; hw = clk_hw_register_fixed_rate(NULL, "tvcdiv", "xtal", 0, 27000000); gemini_clk_data->hws[GEMINI_CLK_TVC] = hw; /* FIXME: very unclear what the parent is */ hw = gemini_pci_clk_setup("PCI", "xtal", map); gemini_clk_data->hws[GEMINI_CLK_PCI] = hw; /* FIXME: very unclear what the parent is */ hw = clk_hw_register_fixed_rate(NULL, "uart", "xtal", 0, 48000000); gemini_clk_data->hws[GEMINI_CLK_UART] = hw; return 0; } static const struct of_device_id gemini_clk_dt_ids[] = { { .compatible = "cortina,gemini-syscon", }, { /* sentinel */ }, }; static struct platform_driver gemini_clk_driver = { .probe = gemini_clk_probe, .driver = { .name = "gemini-clk", .of_match_table = gemini_clk_dt_ids, .suppress_bind_attrs = true, }, }; builtin_platform_driver(gemini_clk_driver); static void __init gemini_cc_init(struct device_node *np) { struct regmap *map; struct clk_hw *hw; unsigned long freq; unsigned int mult, div; u32 val; int ret; int i; gemini_clk_data = kzalloc(struct_size(gemini_clk_data, hws, GEMINI_NUM_CLKS), GFP_KERNEL); if (!gemini_clk_data) return; /* * This way all clock fetched before the platform device probes, * except those we assign here for early use, will be deferred. */ for (i = 0; i < GEMINI_NUM_CLKS; i++) gemini_clk_data->hws[i] = ERR_PTR(-EPROBE_DEFER); map = syscon_node_to_regmap(np); if (IS_ERR(map)) { pr_err("no syscon regmap\n"); return; } /* * We check that the regmap works on this very first access, * but as this is an MMIO-backed regmap, subsequent regmap * access is not going to fail and we skip error checks from * this point. */ ret = regmap_read(map, GEMINI_GLOBAL_STATUS, &val); if (ret) { pr_err("failed to read global status register\n"); return; } /* * XTAL is the crystal oscillator, 60 or 30 MHz selected from * strap pin E6 */ if (val & PLL_OSC_SEL) freq = 30000000; else freq = 60000000; hw = clk_hw_register_fixed_rate(NULL, "xtal", NULL, 0, freq); pr_debug("main crystal @%lu MHz\n", freq / 1000000); /* VCO clock derived from the crystal */ mult = 13 + ((val >> AHBSPEED_SHIFT) & AHBSPEED_MASK); div = 2; /* If we run on 30 MHz crystal we have to multiply with two */ if (val & PLL_OSC_SEL) mult *= 2; hw = clk_hw_register_fixed_factor(NULL, "vco", "xtal", 0, mult, div); /* The AHB clock is always 1/3 of the VCO */ hw = clk_hw_register_fixed_factor(NULL, "ahb", "vco", 0, 1, 3); gemini_clk_data->hws[GEMINI_CLK_AHB] = hw; /* The APB clock is always 1/6 of the AHB */ hw = clk_hw_register_fixed_factor(NULL, "apb", "ahb", 0, 1, 6); gemini_clk_data->hws[GEMINI_CLK_APB] = hw; /* Register the clocks to be accessed by the device tree */ gemini_clk_data->num = GEMINI_NUM_CLKS; of_clk_add_hw_provider(np, of_clk_hw_onecell_get, gemini_clk_data); } CLK_OF_DECLARE_DRIVER(gemini_cc, "cortina,gemini-syscon", gemini_cc_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1