Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Damien Le Moal | 4783 | 98.48% | 3 | 75.00% |
Christoph Hellwig | 74 | 1.52% | 1 | 25.00% |
Total | 4857 | 4 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2019-20 Sean Anderson <seanga2@gmail.com> * Copyright (c) 2019 Western Digital Corporation or its affiliates. */ #define pr_fmt(fmt) "k210-clk: " fmt #include <linux/io.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/platform_device.h> #include <linux/of.h> #include <linux/of_clk.h> #include <linux/of_platform.h> #include <linux/of_address.h> #include <linux/clk-provider.h> #include <linux/bitfield.h> #include <linux/delay.h> #include <soc/canaan/k210-sysctl.h> #include <dt-bindings/clock/k210-clk.h> struct k210_sysclk; struct k210_clk { int id; struct k210_sysclk *ksc; struct clk_hw hw; }; struct k210_clk_cfg { const char *name; u8 gate_reg; u8 gate_bit; u8 div_reg; u8 div_shift; u8 div_width; u8 div_type; u8 mux_reg; u8 mux_bit; }; enum k210_clk_div_type { K210_DIV_NONE, K210_DIV_ONE_BASED, K210_DIV_DOUBLE_ONE_BASED, K210_DIV_POWER_OF_TWO, }; #define K210_GATE(_reg, _bit) \ .gate_reg = (_reg), \ .gate_bit = (_bit) #define K210_DIV(_reg, _shift, _width, _type) \ .div_reg = (_reg), \ .div_shift = (_shift), \ .div_width = (_width), \ .div_type = (_type) #define K210_MUX(_reg, _bit) \ .mux_reg = (_reg), \ .mux_bit = (_bit) static struct k210_clk_cfg k210_clk_cfgs[K210_NUM_CLKS] = { /* Gated clocks, no mux, no divider */ [K210_CLK_CPU] = { .name = "cpu", K210_GATE(K210_SYSCTL_EN_CENT, 0) }, [K210_CLK_DMA] = { .name = "dma", K210_GATE(K210_SYSCTL_EN_PERI, 1) }, [K210_CLK_FFT] = { .name = "fft", K210_GATE(K210_SYSCTL_EN_PERI, 4) }, [K210_CLK_GPIO] = { .name = "gpio", K210_GATE(K210_SYSCTL_EN_PERI, 5) }, [K210_CLK_UART1] = { .name = "uart1", K210_GATE(K210_SYSCTL_EN_PERI, 16) }, [K210_CLK_UART2] = { .name = "uart2", K210_GATE(K210_SYSCTL_EN_PERI, 17) }, [K210_CLK_UART3] = { .name = "uart3", K210_GATE(K210_SYSCTL_EN_PERI, 18) }, [K210_CLK_FPIOA] = { .name = "fpioa", K210_GATE(K210_SYSCTL_EN_PERI, 20) }, [K210_CLK_SHA] = { .name = "sha", K210_GATE(K210_SYSCTL_EN_PERI, 26) }, [K210_CLK_AES] = { .name = "aes", K210_GATE(K210_SYSCTL_EN_PERI, 19) }, [K210_CLK_OTP] = { .name = "otp", K210_GATE(K210_SYSCTL_EN_PERI, 27) }, [K210_CLK_RTC] = { .name = "rtc", K210_GATE(K210_SYSCTL_EN_PERI, 29) }, /* Gated divider clocks */ [K210_CLK_SRAM0] = { .name = "sram0", K210_GATE(K210_SYSCTL_EN_CENT, 1), K210_DIV(K210_SYSCTL_THR0, 0, 4, K210_DIV_ONE_BASED) }, [K210_CLK_SRAM1] = { .name = "sram1", K210_GATE(K210_SYSCTL_EN_CENT, 2), K210_DIV(K210_SYSCTL_THR0, 4, 4, K210_DIV_ONE_BASED) }, [K210_CLK_ROM] = { .name = "rom", K210_GATE(K210_SYSCTL_EN_PERI, 0), K210_DIV(K210_SYSCTL_THR0, 16, 4, K210_DIV_ONE_BASED) }, [K210_CLK_DVP] = { .name = "dvp", K210_GATE(K210_SYSCTL_EN_PERI, 3), K210_DIV(K210_SYSCTL_THR0, 12, 4, K210_DIV_ONE_BASED) }, [K210_CLK_APB0] = { .name = "apb0", K210_GATE(K210_SYSCTL_EN_CENT, 3), K210_DIV(K210_SYSCTL_SEL0, 3, 3, K210_DIV_ONE_BASED) }, [K210_CLK_APB1] = { .name = "apb1", K210_GATE(K210_SYSCTL_EN_CENT, 4), K210_DIV(K210_SYSCTL_SEL0, 6, 3, K210_DIV_ONE_BASED) }, [K210_CLK_APB2] = { .name = "apb2", K210_GATE(K210_SYSCTL_EN_CENT, 5), K210_DIV(K210_SYSCTL_SEL0, 9, 3, K210_DIV_ONE_BASED) }, [K210_CLK_AI] = { .name = "ai", K210_GATE(K210_SYSCTL_EN_PERI, 2), K210_DIV(K210_SYSCTL_THR0, 8, 4, K210_DIV_ONE_BASED) }, [K210_CLK_SPI0] = { .name = "spi0", K210_GATE(K210_SYSCTL_EN_PERI, 6), K210_DIV(K210_SYSCTL_THR1, 0, 8, K210_DIV_DOUBLE_ONE_BASED) }, [K210_CLK_SPI1] = { .name = "spi1", K210_GATE(K210_SYSCTL_EN_PERI, 7), K210_DIV(K210_SYSCTL_THR1, 8, 8, K210_DIV_DOUBLE_ONE_BASED) }, [K210_CLK_SPI2] = { .name = "spi2", K210_GATE(K210_SYSCTL_EN_PERI, 8), K210_DIV(K210_SYSCTL_THR1, 16, 8, K210_DIV_DOUBLE_ONE_BASED) }, [K210_CLK_I2C0] = { .name = "i2c0", K210_GATE(K210_SYSCTL_EN_PERI, 13), K210_DIV(K210_SYSCTL_THR5, 8, 8, K210_DIV_DOUBLE_ONE_BASED) }, [K210_CLK_I2C1] = { .name = "i2c1", K210_GATE(K210_SYSCTL_EN_PERI, 14), K210_DIV(K210_SYSCTL_THR5, 16, 8, K210_DIV_DOUBLE_ONE_BASED) }, [K210_CLK_I2C2] = { .name = "i2c2", K210_GATE(K210_SYSCTL_EN_PERI, 15), K210_DIV(K210_SYSCTL_THR5, 24, 8, K210_DIV_DOUBLE_ONE_BASED) }, [K210_CLK_WDT0] = { .name = "wdt0", K210_GATE(K210_SYSCTL_EN_PERI, 24), K210_DIV(K210_SYSCTL_THR6, 0, 8, K210_DIV_DOUBLE_ONE_BASED) }, [K210_CLK_WDT1] = { .name = "wdt1", K210_GATE(K210_SYSCTL_EN_PERI, 25), K210_DIV(K210_SYSCTL_THR6, 8, 8, K210_DIV_DOUBLE_ONE_BASED) }, [K210_CLK_I2S0] = { .name = "i2s0", K210_GATE(K210_SYSCTL_EN_PERI, 10), K210_DIV(K210_SYSCTL_THR3, 0, 16, K210_DIV_DOUBLE_ONE_BASED) }, [K210_CLK_I2S1] = { .name = "i2s1", K210_GATE(K210_SYSCTL_EN_PERI, 11), K210_DIV(K210_SYSCTL_THR3, 16, 16, K210_DIV_DOUBLE_ONE_BASED) }, [K210_CLK_I2S2] = { .name = "i2s2", K210_GATE(K210_SYSCTL_EN_PERI, 12), K210_DIV(K210_SYSCTL_THR4, 0, 16, K210_DIV_DOUBLE_ONE_BASED) }, /* Divider clocks, no gate, no mux */ [K210_CLK_I2S0_M] = { .name = "i2s0_m", K210_DIV(K210_SYSCTL_THR4, 16, 8, K210_DIV_DOUBLE_ONE_BASED) }, [K210_CLK_I2S1_M] = { .name = "i2s1_m", K210_DIV(K210_SYSCTL_THR4, 24, 8, K210_DIV_DOUBLE_ONE_BASED) }, [K210_CLK_I2S2_M] = { .name = "i2s2_m", K210_DIV(K210_SYSCTL_THR4, 0, 8, K210_DIV_DOUBLE_ONE_BASED) }, /* Muxed gated divider clocks */ [K210_CLK_SPI3] = { .name = "spi3", K210_GATE(K210_SYSCTL_EN_PERI, 9), K210_DIV(K210_SYSCTL_THR1, 24, 8, K210_DIV_DOUBLE_ONE_BASED), K210_MUX(K210_SYSCTL_SEL0, 12) }, [K210_CLK_TIMER0] = { .name = "timer0", K210_GATE(K210_SYSCTL_EN_PERI, 21), K210_DIV(K210_SYSCTL_THR2, 0, 8, K210_DIV_DOUBLE_ONE_BASED), K210_MUX(K210_SYSCTL_SEL0, 13) }, [K210_CLK_TIMER1] = { .name = "timer1", K210_GATE(K210_SYSCTL_EN_PERI, 22), K210_DIV(K210_SYSCTL_THR2, 8, 8, K210_DIV_DOUBLE_ONE_BASED), K210_MUX(K210_SYSCTL_SEL0, 14) }, [K210_CLK_TIMER2] = { .name = "timer2", K210_GATE(K210_SYSCTL_EN_PERI, 23), K210_DIV(K210_SYSCTL_THR2, 16, 8, K210_DIV_DOUBLE_ONE_BASED), K210_MUX(K210_SYSCTL_SEL0, 15) }, }; /* * PLL control register bits. */ #define K210_PLL_CLKR GENMASK(3, 0) #define K210_PLL_CLKF GENMASK(9, 4) #define K210_PLL_CLKOD GENMASK(13, 10) #define K210_PLL_BWADJ GENMASK(19, 14) #define K210_PLL_RESET (1 << 20) #define K210_PLL_PWRD (1 << 21) #define K210_PLL_INTFB (1 << 22) #define K210_PLL_BYPASS (1 << 23) #define K210_PLL_TEST (1 << 24) #define K210_PLL_EN (1 << 25) #define K210_PLL_SEL GENMASK(27, 26) /* PLL2 only */ /* * PLL lock register bits. */ #define K210_PLL_LOCK 0 #define K210_PLL_CLEAR_SLIP 2 #define K210_PLL_TEST_OUT 3 /* * Clock selector register bits. */ #define K210_ACLK_SEL BIT(0) #define K210_ACLK_DIV GENMASK(2, 1) /* * PLLs. */ enum k210_pll_id { K210_PLL0, K210_PLL1, K210_PLL2, K210_PLL_NUM }; struct k210_pll { enum k210_pll_id id; struct k210_sysclk *ksc; void __iomem *base; void __iomem *reg; void __iomem *lock; u8 lock_shift; u8 lock_width; struct clk_hw hw; }; #define to_k210_pll(_hw) container_of(_hw, struct k210_pll, hw) /* * PLLs configuration: by default PLL0 runs at 780 MHz and PLL1 at 299 MHz. * The first 2 SRAM banks depend on ACLK/CPU clock which is by default PLL0 * rate divided by 2. Set PLL1 to 390 MHz so that the third SRAM bank has the * same clock as the first 2. */ struct k210_pll_cfg { u32 reg; u8 lock_shift; u8 lock_width; u32 r; u32 f; u32 od; u32 bwadj; }; static struct k210_pll_cfg k210_plls_cfg[] = { { K210_SYSCTL_PLL0, 0, 2, 0, 59, 1, 59 }, /* 780 MHz */ { K210_SYSCTL_PLL1, 8, 1, 0, 59, 3, 59 }, /* 390 MHz */ { K210_SYSCTL_PLL2, 16, 1, 0, 22, 1, 22 }, /* 299 MHz */ }; /** * struct k210_sysclk - sysclk driver data * @regs: system controller registers start address * @clk_lock: clock setting spinlock * @plls: SoC PLLs descriptors * @aclk: ACLK clock * @clks: All other clocks */ struct k210_sysclk { void __iomem *regs; spinlock_t clk_lock; struct k210_pll plls[K210_PLL_NUM]; struct clk_hw aclk; struct k210_clk clks[K210_NUM_CLKS]; }; #define to_k210_sysclk(_hw) container_of(_hw, struct k210_sysclk, aclk) /* * Set ACLK parent selector: 0 for IN0, 1 for PLL0. */ static void k210_aclk_set_selector(void __iomem *regs, u8 sel) { u32 reg = readl(regs + K210_SYSCTL_SEL0); if (sel) reg |= K210_ACLK_SEL; else reg &= K210_ACLK_SEL; writel(reg, regs + K210_SYSCTL_SEL0); } static void k210_init_pll(void __iomem *regs, enum k210_pll_id pllid, struct k210_pll *pll) { pll->id = pllid; pll->reg = regs + k210_plls_cfg[pllid].reg; pll->lock = regs + K210_SYSCTL_PLL_LOCK; pll->lock_shift = k210_plls_cfg[pllid].lock_shift; pll->lock_width = k210_plls_cfg[pllid].lock_width; } static void k210_pll_wait_for_lock(struct k210_pll *pll) { u32 reg, mask = GENMASK(pll->lock_shift + pll->lock_width - 1, pll->lock_shift); while (true) { reg = readl(pll->lock); if ((reg & mask) == mask) break; reg |= BIT(pll->lock_shift + K210_PLL_CLEAR_SLIP); writel(reg, pll->lock); } } static bool k210_pll_hw_is_enabled(struct k210_pll *pll) { u32 reg = readl(pll->reg); u32 mask = K210_PLL_PWRD | K210_PLL_EN; if (reg & K210_PLL_RESET) return false; return (reg & mask) == mask; } static void k210_pll_enable_hw(void __iomem *regs, struct k210_pll *pll) { struct k210_pll_cfg *pll_cfg = &k210_plls_cfg[pll->id]; u32 reg; if (k210_pll_hw_is_enabled(pll)) return; /* * For PLL0, we need to re-parent ACLK to IN0 to keep the CPU cores and * SRAM running. */ if (pll->id == K210_PLL0) k210_aclk_set_selector(regs, 0); /* Set PLL factors */ reg = readl(pll->reg); reg &= ~GENMASK(19, 0); reg |= FIELD_PREP(K210_PLL_CLKR, pll_cfg->r); reg |= FIELD_PREP(K210_PLL_CLKF, pll_cfg->f); reg |= FIELD_PREP(K210_PLL_CLKOD, pll_cfg->od); reg |= FIELD_PREP(K210_PLL_BWADJ, pll_cfg->bwadj); reg |= K210_PLL_PWRD; writel(reg, pll->reg); /* * Reset the PLL: ensure reset is low before asserting it. * The magic NOPs come from the Kendryte reference SDK. */ reg &= ~K210_PLL_RESET; writel(reg, pll->reg); reg |= K210_PLL_RESET; writel(reg, pll->reg); nop(); nop(); reg &= ~K210_PLL_RESET; writel(reg, pll->reg); k210_pll_wait_for_lock(pll); reg &= ~K210_PLL_BYPASS; reg |= K210_PLL_EN; writel(reg, pll->reg); if (pll->id == K210_PLL0) k210_aclk_set_selector(regs, 1); } static int k210_pll_enable(struct clk_hw *hw) { struct k210_pll *pll = to_k210_pll(hw); struct k210_sysclk *ksc = pll->ksc; unsigned long flags; spin_lock_irqsave(&ksc->clk_lock, flags); k210_pll_enable_hw(ksc->regs, pll); spin_unlock_irqrestore(&ksc->clk_lock, flags); return 0; } static void k210_pll_disable(struct clk_hw *hw) { struct k210_pll *pll = to_k210_pll(hw); struct k210_sysclk *ksc = pll->ksc; unsigned long flags; u32 reg; /* * Bypassing before powering off is important so child clocks do not * stop working. This is especially important for pll0, the indirect * parent of the cpu clock. */ spin_lock_irqsave(&ksc->clk_lock, flags); reg = readl(pll->reg); reg |= K210_PLL_BYPASS; writel(reg, pll->reg); reg &= ~K210_PLL_PWRD; reg &= ~K210_PLL_EN; writel(reg, pll->reg); spin_unlock_irqrestore(&ksc->clk_lock, flags); } static int k210_pll_is_enabled(struct clk_hw *hw) { return k210_pll_hw_is_enabled(to_k210_pll(hw)); } static unsigned long k210_pll_get_rate(struct clk_hw *hw, unsigned long parent_rate) { struct k210_pll *pll = to_k210_pll(hw); u32 reg = readl(pll->reg); u32 r, f, od; if (reg & K210_PLL_BYPASS) return parent_rate; if (!(reg & K210_PLL_PWRD)) return 0; r = FIELD_GET(K210_PLL_CLKR, reg) + 1; f = FIELD_GET(K210_PLL_CLKF, reg) + 1; od = FIELD_GET(K210_PLL_CLKOD, reg) + 1; return (u64)parent_rate * f / (r * od); } static const struct clk_ops k210_pll_ops = { .enable = k210_pll_enable, .disable = k210_pll_disable, .is_enabled = k210_pll_is_enabled, .recalc_rate = k210_pll_get_rate, }; static int k210_pll2_set_parent(struct clk_hw *hw, u8 index) { struct k210_pll *pll = to_k210_pll(hw); struct k210_sysclk *ksc = pll->ksc; unsigned long flags; u32 reg; spin_lock_irqsave(&ksc->clk_lock, flags); reg = readl(pll->reg); reg &= ~K210_PLL_SEL; reg |= FIELD_PREP(K210_PLL_SEL, index); writel(reg, pll->reg); spin_unlock_irqrestore(&ksc->clk_lock, flags); return 0; } static u8 k210_pll2_get_parent(struct clk_hw *hw) { struct k210_pll *pll = to_k210_pll(hw); u32 reg = readl(pll->reg); return FIELD_GET(K210_PLL_SEL, reg); } static const struct clk_ops k210_pll2_ops = { .enable = k210_pll_enable, .disable = k210_pll_disable, .is_enabled = k210_pll_is_enabled, .recalc_rate = k210_pll_get_rate, .set_parent = k210_pll2_set_parent, .get_parent = k210_pll2_get_parent, }; static int __init k210_register_pll(struct device_node *np, struct k210_sysclk *ksc, enum k210_pll_id pllid, const char *name, int num_parents, const struct clk_ops *ops) { struct k210_pll *pll = &ksc->plls[pllid]; struct clk_init_data init = {}; const struct clk_parent_data parent_data[] = { { /* .index = 0 for in0 */ }, { .hw = &ksc->plls[K210_PLL0].hw }, { .hw = &ksc->plls[K210_PLL1].hw }, }; init.name = name; init.parent_data = parent_data; init.num_parents = num_parents; init.ops = ops; pll->hw.init = &init; pll->ksc = ksc; return of_clk_hw_register(np, &pll->hw); } static int __init k210_register_plls(struct device_node *np, struct k210_sysclk *ksc) { int i, ret; for (i = 0; i < K210_PLL_NUM; i++) k210_init_pll(ksc->regs, i, &ksc->plls[i]); /* PLL0 and PLL1 only have IN0 as parent */ ret = k210_register_pll(np, ksc, K210_PLL0, "pll0", 1, &k210_pll_ops); if (ret) { pr_err("%pOFP: register PLL0 failed\n", np); return ret; } ret = k210_register_pll(np, ksc, K210_PLL1, "pll1", 1, &k210_pll_ops); if (ret) { pr_err("%pOFP: register PLL1 failed\n", np); return ret; } /* PLL2 has IN0, PLL0 and PLL1 as parents */ ret = k210_register_pll(np, ksc, K210_PLL2, "pll2", 3, &k210_pll2_ops); if (ret) { pr_err("%pOFP: register PLL2 failed\n", np); return ret; } return 0; } static int k210_aclk_set_parent(struct clk_hw *hw, u8 index) { struct k210_sysclk *ksc = to_k210_sysclk(hw); unsigned long flags; spin_lock_irqsave(&ksc->clk_lock, flags); k210_aclk_set_selector(ksc->regs, index); spin_unlock_irqrestore(&ksc->clk_lock, flags); return 0; } static u8 k210_aclk_get_parent(struct clk_hw *hw) { struct k210_sysclk *ksc = to_k210_sysclk(hw); u32 sel; sel = readl(ksc->regs + K210_SYSCTL_SEL0) & K210_ACLK_SEL; return sel ? 1 : 0; } static unsigned long k210_aclk_get_rate(struct clk_hw *hw, unsigned long parent_rate) { struct k210_sysclk *ksc = to_k210_sysclk(hw); u32 reg = readl(ksc->regs + K210_SYSCTL_SEL0); unsigned int shift; if (!(reg & 0x1)) return parent_rate; shift = FIELD_GET(K210_ACLK_DIV, reg); return parent_rate / (2UL << shift); } static const struct clk_ops k210_aclk_ops = { .set_parent = k210_aclk_set_parent, .get_parent = k210_aclk_get_parent, .recalc_rate = k210_aclk_get_rate, }; /* * ACLK has IN0 and PLL0 as parents. */ static int __init k210_register_aclk(struct device_node *np, struct k210_sysclk *ksc) { struct clk_init_data init = {}; const struct clk_parent_data parent_data[] = { { /* .index = 0 for in0 */ }, { .hw = &ksc->plls[K210_PLL0].hw }, }; int ret; init.name = "aclk"; init.parent_data = parent_data; init.num_parents = 2; init.ops = &k210_aclk_ops; ksc->aclk.init = &init; ret = of_clk_hw_register(np, &ksc->aclk); if (ret) { pr_err("%pOFP: register aclk failed\n", np); return ret; } return 0; } #define to_k210_clk(_hw) container_of(_hw, struct k210_clk, hw) static int k210_clk_enable(struct clk_hw *hw) { struct k210_clk *kclk = to_k210_clk(hw); struct k210_sysclk *ksc = kclk->ksc; struct k210_clk_cfg *cfg = &k210_clk_cfgs[kclk->id]; unsigned long flags; u32 reg; if (!cfg->gate_reg) return 0; spin_lock_irqsave(&ksc->clk_lock, flags); reg = readl(ksc->regs + cfg->gate_reg); reg |= BIT(cfg->gate_bit); writel(reg, ksc->regs + cfg->gate_reg); spin_unlock_irqrestore(&ksc->clk_lock, flags); return 0; } static void k210_clk_disable(struct clk_hw *hw) { struct k210_clk *kclk = to_k210_clk(hw); struct k210_sysclk *ksc = kclk->ksc; struct k210_clk_cfg *cfg = &k210_clk_cfgs[kclk->id]; unsigned long flags; u32 reg; if (!cfg->gate_reg) return; spin_lock_irqsave(&ksc->clk_lock, flags); reg = readl(ksc->regs + cfg->gate_reg); reg &= ~BIT(cfg->gate_bit); writel(reg, ksc->regs + cfg->gate_reg); spin_unlock_irqrestore(&ksc->clk_lock, flags); } static int k210_clk_set_parent(struct clk_hw *hw, u8 index) { struct k210_clk *kclk = to_k210_clk(hw); struct k210_sysclk *ksc = kclk->ksc; struct k210_clk_cfg *cfg = &k210_clk_cfgs[kclk->id]; unsigned long flags; u32 reg; spin_lock_irqsave(&ksc->clk_lock, flags); reg = readl(ksc->regs + cfg->mux_reg); if (index) reg |= BIT(cfg->mux_bit); else reg &= ~BIT(cfg->mux_bit); writel(reg, ksc->regs + cfg->mux_reg); spin_unlock_irqrestore(&ksc->clk_lock, flags); return 0; } static u8 k210_clk_get_parent(struct clk_hw *hw) { struct k210_clk *kclk = to_k210_clk(hw); struct k210_sysclk *ksc = kclk->ksc; struct k210_clk_cfg *cfg = &k210_clk_cfgs[kclk->id]; unsigned long flags; u32 reg, idx; spin_lock_irqsave(&ksc->clk_lock, flags); reg = readl(ksc->regs + cfg->mux_reg); idx = (reg & BIT(cfg->mux_bit)) ? 1 : 0; spin_unlock_irqrestore(&ksc->clk_lock, flags); return idx; } static unsigned long k210_clk_get_rate(struct clk_hw *hw, unsigned long parent_rate) { struct k210_clk *kclk = to_k210_clk(hw); struct k210_sysclk *ksc = kclk->ksc; struct k210_clk_cfg *cfg = &k210_clk_cfgs[kclk->id]; u32 reg, div_val; if (!cfg->div_reg) return parent_rate; reg = readl(ksc->regs + cfg->div_reg); div_val = (reg >> cfg->div_shift) & GENMASK(cfg->div_width - 1, 0); switch (cfg->div_type) { case K210_DIV_ONE_BASED: return parent_rate / (div_val + 1); case K210_DIV_DOUBLE_ONE_BASED: return parent_rate / ((div_val + 1) * 2); case K210_DIV_POWER_OF_TWO: return parent_rate / (2UL << div_val); case K210_DIV_NONE: default: return 0; } } static const struct clk_ops k210_clk_mux_ops = { .enable = k210_clk_enable, .disable = k210_clk_disable, .set_parent = k210_clk_set_parent, .get_parent = k210_clk_get_parent, .recalc_rate = k210_clk_get_rate, }; static const struct clk_ops k210_clk_ops = { .enable = k210_clk_enable, .disable = k210_clk_disable, .recalc_rate = k210_clk_get_rate, }; static void __init k210_register_clk(struct device_node *np, struct k210_sysclk *ksc, int id, const struct clk_parent_data *parent_data, int num_parents, unsigned long flags) { struct k210_clk *kclk = &ksc->clks[id]; struct clk_init_data init = {}; int ret; init.name = k210_clk_cfgs[id].name; init.flags = flags; init.parent_data = parent_data; init.num_parents = num_parents; if (num_parents > 1) init.ops = &k210_clk_mux_ops; else init.ops = &k210_clk_ops; kclk->id = id; kclk->ksc = ksc; kclk->hw.init = &init; ret = of_clk_hw_register(np, &kclk->hw); if (ret) { pr_err("%pOFP: register clock %s failed\n", np, k210_clk_cfgs[id].name); kclk->id = -1; } } /* * All muxed clocks have IN0 and PLL0 as parents. */ static inline void __init k210_register_mux_clk(struct device_node *np, struct k210_sysclk *ksc, int id) { const struct clk_parent_data parent_data[2] = { { /* .index = 0 for in0 */ }, { .hw = &ksc->plls[K210_PLL0].hw } }; k210_register_clk(np, ksc, id, parent_data, 2, 0); } static inline void __init k210_register_in0_child(struct device_node *np, struct k210_sysclk *ksc, int id) { const struct clk_parent_data parent_data = { /* .index = 0 for in0 */ }; k210_register_clk(np, ksc, id, &parent_data, 1, 0); } static inline void __init k210_register_pll_child(struct device_node *np, struct k210_sysclk *ksc, int id, enum k210_pll_id pllid, unsigned long flags) { const struct clk_parent_data parent_data = { .hw = &ksc->plls[pllid].hw, }; k210_register_clk(np, ksc, id, &parent_data, 1, flags); } static inline void __init k210_register_aclk_child(struct device_node *np, struct k210_sysclk *ksc, int id, unsigned long flags) { const struct clk_parent_data parent_data = { .hw = &ksc->aclk, }; k210_register_clk(np, ksc, id, &parent_data, 1, flags); } static inline void __init k210_register_clk_child(struct device_node *np, struct k210_sysclk *ksc, int id, int parent_id) { const struct clk_parent_data parent_data = { .hw = &ksc->clks[parent_id].hw, }; k210_register_clk(np, ksc, id, &parent_data, 1, 0); } static struct clk_hw *k210_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data) { struct k210_sysclk *ksc = data; unsigned int idx = clkspec->args[0]; if (idx >= K210_NUM_CLKS) return ERR_PTR(-EINVAL); return &ksc->clks[idx].hw; } static void __init k210_clk_init(struct device_node *np) { struct device_node *sysctl_np; struct k210_sysclk *ksc; int i, ret; ksc = kzalloc(sizeof(*ksc), GFP_KERNEL); if (!ksc) return; spin_lock_init(&ksc->clk_lock); sysctl_np = of_get_parent(np); ksc->regs = of_iomap(sysctl_np, 0); of_node_put(sysctl_np); if (!ksc->regs) { pr_err("%pOFP: failed to map registers\n", np); return; } ret = k210_register_plls(np, ksc); if (ret) return; ret = k210_register_aclk(np, ksc); if (ret) return; /* * Critical clocks: there are no consumers of the SRAM clocks, * including the AI clock for the third SRAM bank. The CPU clock * is only referenced by the uarths serial device and so would be * disabled if the serial console is disabled to switch to another * console. Mark all these clocks as critical so that they are never * disabled by the core clock management. */ k210_register_aclk_child(np, ksc, K210_CLK_CPU, CLK_IS_CRITICAL); k210_register_aclk_child(np, ksc, K210_CLK_SRAM0, CLK_IS_CRITICAL); k210_register_aclk_child(np, ksc, K210_CLK_SRAM1, CLK_IS_CRITICAL); k210_register_pll_child(np, ksc, K210_CLK_AI, K210_PLL1, CLK_IS_CRITICAL); /* Clocks with aclk as source */ k210_register_aclk_child(np, ksc, K210_CLK_DMA, 0); k210_register_aclk_child(np, ksc, K210_CLK_FFT, 0); k210_register_aclk_child(np, ksc, K210_CLK_ROM, 0); k210_register_aclk_child(np, ksc, K210_CLK_DVP, 0); k210_register_aclk_child(np, ksc, K210_CLK_APB0, 0); k210_register_aclk_child(np, ksc, K210_CLK_APB1, 0); k210_register_aclk_child(np, ksc, K210_CLK_APB2, 0); /* Clocks with PLL0 as source */ k210_register_pll_child(np, ksc, K210_CLK_SPI0, K210_PLL0, 0); k210_register_pll_child(np, ksc, K210_CLK_SPI1, K210_PLL0, 0); k210_register_pll_child(np, ksc, K210_CLK_SPI2, K210_PLL0, 0); k210_register_pll_child(np, ksc, K210_CLK_I2C0, K210_PLL0, 0); k210_register_pll_child(np, ksc, K210_CLK_I2C1, K210_PLL0, 0); k210_register_pll_child(np, ksc, K210_CLK_I2C2, K210_PLL0, 0); /* Clocks with PLL2 as source */ k210_register_pll_child(np, ksc, K210_CLK_I2S0, K210_PLL2, 0); k210_register_pll_child(np, ksc, K210_CLK_I2S1, K210_PLL2, 0); k210_register_pll_child(np, ksc, K210_CLK_I2S2, K210_PLL2, 0); k210_register_pll_child(np, ksc, K210_CLK_I2S0_M, K210_PLL2, 0); k210_register_pll_child(np, ksc, K210_CLK_I2S1_M, K210_PLL2, 0); k210_register_pll_child(np, ksc, K210_CLK_I2S2_M, K210_PLL2, 0); /* Clocks with IN0 as source */ k210_register_in0_child(np, ksc, K210_CLK_WDT0); k210_register_in0_child(np, ksc, K210_CLK_WDT1); k210_register_in0_child(np, ksc, K210_CLK_RTC); /* Clocks with APB0 as source */ k210_register_clk_child(np, ksc, K210_CLK_GPIO, K210_CLK_APB0); k210_register_clk_child(np, ksc, K210_CLK_UART1, K210_CLK_APB0); k210_register_clk_child(np, ksc, K210_CLK_UART2, K210_CLK_APB0); k210_register_clk_child(np, ksc, K210_CLK_UART3, K210_CLK_APB0); k210_register_clk_child(np, ksc, K210_CLK_FPIOA, K210_CLK_APB0); k210_register_clk_child(np, ksc, K210_CLK_SHA, K210_CLK_APB0); /* Clocks with APB1 as source */ k210_register_clk_child(np, ksc, K210_CLK_AES, K210_CLK_APB1); k210_register_clk_child(np, ksc, K210_CLK_OTP, K210_CLK_APB1); /* Mux clocks with in0 or pll0 as source */ k210_register_mux_clk(np, ksc, K210_CLK_SPI3); k210_register_mux_clk(np, ksc, K210_CLK_TIMER0); k210_register_mux_clk(np, ksc, K210_CLK_TIMER1); k210_register_mux_clk(np, ksc, K210_CLK_TIMER2); /* Check for registration errors */ for (i = 0; i < K210_NUM_CLKS; i++) { if (ksc->clks[i].id != i) return; } ret = of_clk_add_hw_provider(np, k210_clk_hw_onecell_get, ksc); if (ret) { pr_err("%pOFP: add clock provider failed %d\n", np, ret); return; } pr_info("%pOFP: CPU running at %lu MHz\n", np, clk_hw_get_rate(&ksc->clks[K210_CLK_CPU].hw) / 1000000); } CLK_OF_DECLARE(k210_clk, "canaan,k210-clk", k210_clk_init); /* * Enable PLL1 to be able to use the AI SRAM. */ void __init k210_clk_early_init(void __iomem *regs) { struct k210_pll pll1; /* Make sure ACLK selector is set to PLL0 */ k210_aclk_set_selector(regs, 1); /* Startup PLL1 to enable the aisram bank for general memory use */ k210_init_pll(regs, K210_PLL1, &pll1); k210_pll_enable_hw(regs, &pll1); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1