Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ezequiel García | 1143 | 75.65% | 3 | 27.27% |
Thomas Petazzoni | 318 | 21.05% | 4 | 36.36% |
Chris Packham | 45 | 2.98% | 2 | 18.18% |
Michael Turquette | 3 | 0.20% | 1 | 9.09% |
Gregory CLEMENT | 2 | 0.13% | 1 | 9.09% |
Total | 1511 | 11 |
// SPDX-License-Identifier: GPL-2.0 /* * MVEBU Core divider clock * * Copyright (C) 2013 Marvell * * Ezequiel Garcia <ezequiel.garcia@free-electrons.com> * */ #include <linux/kernel.h> #include <linux/clk-provider.h> #include <linux/io.h> #include <linux/of_address.h> #include <linux/slab.h> #include <linux/delay.h> #include "common.h" #define CORE_CLK_DIV_RATIO_MASK 0xff /* * This structure describes the hardware details (bit offset and mask) * to configure one particular core divider clock. Those hardware * details may differ from one SoC to another. This structure is * therefore typically instantiated statically to describe the * hardware details. */ struct clk_corediv_desc { unsigned int mask; unsigned int offset; unsigned int fieldbit; }; /* * This structure describes the hardware details to configure the core * divider clocks on a given SoC. Amongst others, it points to the * array of core divider clock descriptors for this SoC, as well as * the corresponding operations to manipulate them. */ struct clk_corediv_soc_desc { const struct clk_corediv_desc *descs; unsigned int ndescs; const struct clk_ops ops; u32 ratio_reload; u32 enable_bit_offset; u32 ratio_offset; }; /* * This structure represents one core divider clock for the clock * framework, and is dynamically allocated for each core divider clock * existing in the current SoC. */ struct clk_corediv { struct clk_hw hw; void __iomem *reg; const struct clk_corediv_desc *desc; const struct clk_corediv_soc_desc *soc_desc; spinlock_t lock; }; static struct clk_onecell_data clk_data; /* * Description of the core divider clocks available. For now, we * support only NAND, and it is available at the same register * locations regardless of the SoC. */ static const struct clk_corediv_desc mvebu_corediv_desc[] = { { .mask = 0x3f, .offset = 8, .fieldbit = 1 }, /* NAND clock */ }; static const struct clk_corediv_desc mv98dx3236_corediv_desc[] = { { .mask = 0x0f, .offset = 6, .fieldbit = 27 }, /* NAND clock */ }; #define to_corediv_clk(p) container_of(p, struct clk_corediv, hw) static int clk_corediv_is_enabled(struct clk_hw *hwclk) { struct clk_corediv *corediv = to_corediv_clk(hwclk); const struct clk_corediv_soc_desc *soc_desc = corediv->soc_desc; const struct clk_corediv_desc *desc = corediv->desc; u32 enable_mask = BIT(desc->fieldbit) << soc_desc->enable_bit_offset; return !!(readl(corediv->reg) & enable_mask); } static int clk_corediv_enable(struct clk_hw *hwclk) { struct clk_corediv *corediv = to_corediv_clk(hwclk); const struct clk_corediv_soc_desc *soc_desc = corediv->soc_desc; const struct clk_corediv_desc *desc = corediv->desc; unsigned long flags = 0; u32 reg; spin_lock_irqsave(&corediv->lock, flags); reg = readl(corediv->reg); reg |= (BIT(desc->fieldbit) << soc_desc->enable_bit_offset); writel(reg, corediv->reg); spin_unlock_irqrestore(&corediv->lock, flags); return 0; } static void clk_corediv_disable(struct clk_hw *hwclk) { struct clk_corediv *corediv = to_corediv_clk(hwclk); const struct clk_corediv_soc_desc *soc_desc = corediv->soc_desc; const struct clk_corediv_desc *desc = corediv->desc; unsigned long flags = 0; u32 reg; spin_lock_irqsave(&corediv->lock, flags); reg = readl(corediv->reg); reg &= ~(BIT(desc->fieldbit) << soc_desc->enable_bit_offset); writel(reg, corediv->reg); spin_unlock_irqrestore(&corediv->lock, flags); } static unsigned long clk_corediv_recalc_rate(struct clk_hw *hwclk, unsigned long parent_rate) { struct clk_corediv *corediv = to_corediv_clk(hwclk); const struct clk_corediv_soc_desc *soc_desc = corediv->soc_desc; const struct clk_corediv_desc *desc = corediv->desc; u32 reg, div; reg = readl(corediv->reg + soc_desc->ratio_offset); div = (reg >> desc->offset) & desc->mask; return parent_rate / div; } static long clk_corediv_round_rate(struct clk_hw *hwclk, unsigned long rate, unsigned long *parent_rate) { /* Valid ratio are 1:4, 1:5, 1:6 and 1:8 */ u32 div; div = *parent_rate / rate; if (div < 4) div = 4; else if (div > 6) div = 8; return *parent_rate / div; } static int clk_corediv_set_rate(struct clk_hw *hwclk, unsigned long rate, unsigned long parent_rate) { struct clk_corediv *corediv = to_corediv_clk(hwclk); const struct clk_corediv_soc_desc *soc_desc = corediv->soc_desc; const struct clk_corediv_desc *desc = corediv->desc; unsigned long flags = 0; u32 reg, div; div = parent_rate / rate; spin_lock_irqsave(&corediv->lock, flags); /* Write new divider to the divider ratio register */ reg = readl(corediv->reg + soc_desc->ratio_offset); reg &= ~(desc->mask << desc->offset); reg |= (div & desc->mask) << desc->offset; writel(reg, corediv->reg + soc_desc->ratio_offset); /* Set reload-force for this clock */ reg = readl(corediv->reg) | BIT(desc->fieldbit); writel(reg, corediv->reg); /* Now trigger the clock update */ reg = readl(corediv->reg) | soc_desc->ratio_reload; writel(reg, corediv->reg); /* * Wait for clocks to settle down, and then clear all the * ratios request and the reload request. */ udelay(1000); reg &= ~(CORE_CLK_DIV_RATIO_MASK | soc_desc->ratio_reload); writel(reg, corediv->reg); udelay(1000); spin_unlock_irqrestore(&corediv->lock, flags); return 0; } static const struct clk_corediv_soc_desc armada370_corediv_soc = { .descs = mvebu_corediv_desc, .ndescs = ARRAY_SIZE(mvebu_corediv_desc), .ops = { .enable = clk_corediv_enable, .disable = clk_corediv_disable, .is_enabled = clk_corediv_is_enabled, .recalc_rate = clk_corediv_recalc_rate, .round_rate = clk_corediv_round_rate, .set_rate = clk_corediv_set_rate, }, .ratio_reload = BIT(8), .enable_bit_offset = 24, .ratio_offset = 0x8, }; static const struct clk_corediv_soc_desc armada380_corediv_soc = { .descs = mvebu_corediv_desc, .ndescs = ARRAY_SIZE(mvebu_corediv_desc), .ops = { .enable = clk_corediv_enable, .disable = clk_corediv_disable, .is_enabled = clk_corediv_is_enabled, .recalc_rate = clk_corediv_recalc_rate, .round_rate = clk_corediv_round_rate, .set_rate = clk_corediv_set_rate, }, .ratio_reload = BIT(8), .enable_bit_offset = 16, .ratio_offset = 0x4, }; static const struct clk_corediv_soc_desc armada375_corediv_soc = { .descs = mvebu_corediv_desc, .ndescs = ARRAY_SIZE(mvebu_corediv_desc), .ops = { .recalc_rate = clk_corediv_recalc_rate, .round_rate = clk_corediv_round_rate, .set_rate = clk_corediv_set_rate, }, .ratio_reload = BIT(8), .ratio_offset = 0x4, }; static const struct clk_corediv_soc_desc mv98dx3236_corediv_soc = { .descs = mv98dx3236_corediv_desc, .ndescs = ARRAY_SIZE(mv98dx3236_corediv_desc), .ops = { .recalc_rate = clk_corediv_recalc_rate, .round_rate = clk_corediv_round_rate, .set_rate = clk_corediv_set_rate, }, .ratio_reload = BIT(10), .ratio_offset = 0x8, }; static void __init mvebu_corediv_clk_init(struct device_node *node, const struct clk_corediv_soc_desc *soc_desc) { struct clk_init_data init; struct clk_corediv *corediv; struct clk **clks; void __iomem *base; const char *parent_name; const char *clk_name; int i; base = of_iomap(node, 0); if (WARN_ON(!base)) return; parent_name = of_clk_get_parent_name(node, 0); clk_data.clk_num = soc_desc->ndescs; /* clks holds the clock array */ clks = kcalloc(clk_data.clk_num, sizeof(struct clk *), GFP_KERNEL); if (WARN_ON(!clks)) goto err_unmap; /* corediv holds the clock specific array */ corediv = kcalloc(clk_data.clk_num, sizeof(struct clk_corediv), GFP_KERNEL); if (WARN_ON(!corediv)) goto err_free_clks; spin_lock_init(&corediv->lock); for (i = 0; i < clk_data.clk_num; i++) { of_property_read_string_index(node, "clock-output-names", i, &clk_name); init.num_parents = 1; init.parent_names = &parent_name; init.name = clk_name; init.ops = &soc_desc->ops; init.flags = 0; corediv[i].soc_desc = soc_desc; corediv[i].desc = soc_desc->descs + i; corediv[i].reg = base; corediv[i].hw.init = &init; clks[i] = clk_register(NULL, &corediv[i].hw); WARN_ON(IS_ERR(clks[i])); } clk_data.clks = clks; of_clk_add_provider(node, of_clk_src_onecell_get, &clk_data); return; err_free_clks: kfree(clks); err_unmap: iounmap(base); } static void __init armada370_corediv_clk_init(struct device_node *node) { return mvebu_corediv_clk_init(node, &armada370_corediv_soc); } CLK_OF_DECLARE(armada370_corediv_clk, "marvell,armada-370-corediv-clock", armada370_corediv_clk_init); static void __init armada375_corediv_clk_init(struct device_node *node) { return mvebu_corediv_clk_init(node, &armada375_corediv_soc); } CLK_OF_DECLARE(armada375_corediv_clk, "marvell,armada-375-corediv-clock", armada375_corediv_clk_init); static void __init armada380_corediv_clk_init(struct device_node *node) { return mvebu_corediv_clk_init(node, &armada380_corediv_soc); } CLK_OF_DECLARE(armada380_corediv_clk, "marvell,armada-380-corediv-clock", armada380_corediv_clk_init); static void __init mv98dx3236_corediv_clk_init(struct device_node *node) { return mvebu_corediv_clk_init(node, &mv98dx3236_corediv_soc); } CLK_OF_DECLARE(mv98dx3236_corediv_clk, "marvell,mv98dx3236-corediv-clock", mv98dx3236_corediv_clk_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1