Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sebastian Hesselbarth | 789 | 63.22% | 1 | 8.33% |
Gregory CLEMENT | 250 | 20.03% | 2 | 16.67% |
Thomas Petazzoni | 160 | 12.82% | 3 | 25.00% |
JiSheng Zhang | 23 | 1.84% | 1 | 8.33% |
SF Markus Elfring | 10 | 0.80% | 1 | 8.33% |
Michael Turquette | 10 | 0.80% | 1 | 8.33% |
Stephen Boyd | 5 | 0.40% | 2 | 16.67% |
Colin Ian King | 1 | 0.08% | 1 | 8.33% |
Total | 1248 | 12 |
// SPDX-License-Identifier: GPL-2.0 /* * Marvell EBU SoC common clock handling * * Copyright (C) 2012 Marvell * * Gregory CLEMENT <gregory.clement@free-electrons.com> * Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com> * Andrew Lunn <andrew@lunn.ch> * */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/io.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/syscore_ops.h> #include "common.h" /* * Core Clocks */ #define SSCG_CONF_MODE(reg) (((reg) >> 16) & 0x3) #define SSCG_SPREAD_DOWN 0x0 #define SSCG_SPREAD_UP 0x1 #define SSCG_SPREAD_CENTRAL 0x2 #define SSCG_CONF_LOW(reg) (((reg) >> 8) & 0xFF) #define SSCG_CONF_HIGH(reg) ((reg) & 0xFF) static struct clk_onecell_data clk_data; /* * This function can be used by the Kirkwood, the Armada 370, the * Armada XP and the Armada 375 SoC. The name of the function was * chosen following the dt convention: using the first known SoC * compatible with it. */ u32 kirkwood_fix_sscg_deviation(u32 system_clk) { struct device_node *sscg_np = NULL; void __iomem *sscg_map; u32 sscg_reg; s32 low_bound, high_bound; u64 freq_swing_half; sscg_np = of_find_node_by_name(NULL, "sscg"); if (sscg_np == NULL) { pr_err("cannot get SSCG register node\n"); return system_clk; } sscg_map = of_iomap(sscg_np, 0); if (sscg_map == NULL) { pr_err("cannot map SSCG register\n"); goto out; } sscg_reg = readl(sscg_map); high_bound = SSCG_CONF_HIGH(sscg_reg); low_bound = SSCG_CONF_LOW(sscg_reg); if ((high_bound - low_bound) <= 0) goto out; /* * From Marvell engineer we got the following formula (when * this code was written, the datasheet was erroneous) * Spread percentage = 1/96 * (H - L) / H * H = SSCG_High_Boundary * L = SSCG_Low_Boundary * * As the deviation is half of spread then it lead to the * following formula in the code. * * To avoid an overflow and not lose any significant digit in * the same time we have to use a 64 bit integer. */ freq_swing_half = (((u64)high_bound - (u64)low_bound) * (u64)system_clk); do_div(freq_swing_half, (2 * 96 * high_bound)); switch (SSCG_CONF_MODE(sscg_reg)) { case SSCG_SPREAD_DOWN: system_clk -= freq_swing_half; break; case SSCG_SPREAD_UP: system_clk += freq_swing_half; break; case SSCG_SPREAD_CENTRAL: default: break; } iounmap(sscg_map); out: of_node_put(sscg_np); return system_clk; } void __init mvebu_coreclk_setup(struct device_node *np, const struct coreclk_soc_desc *desc) { const char *tclk_name = "tclk"; const char *cpuclk_name = "cpuclk"; void __iomem *base; unsigned long rate; int n; base = of_iomap(np, 0); if (WARN_ON(!base)) return; /* Allocate struct for TCLK, cpu clk, and core ratio clocks */ clk_data.clk_num = 2 + desc->num_ratios; /* One more clock for the optional refclk */ if (desc->get_refclk_freq) clk_data.clk_num += 1; clk_data.clks = kcalloc(clk_data.clk_num, sizeof(*clk_data.clks), GFP_KERNEL); if (WARN_ON(!clk_data.clks)) { iounmap(base); return; } /* Register TCLK */ of_property_read_string_index(np, "clock-output-names", 0, &tclk_name); rate = desc->get_tclk_freq(base); clk_data.clks[0] = clk_register_fixed_rate(NULL, tclk_name, NULL, 0, rate); WARN_ON(IS_ERR(clk_data.clks[0])); /* Register CPU clock */ of_property_read_string_index(np, "clock-output-names", 1, &cpuclk_name); rate = desc->get_cpu_freq(base); if (desc->is_sscg_enabled && desc->fix_sscg_deviation && desc->is_sscg_enabled(base)) rate = desc->fix_sscg_deviation(rate); clk_data.clks[1] = clk_register_fixed_rate(NULL, cpuclk_name, NULL, 0, rate); WARN_ON(IS_ERR(clk_data.clks[1])); /* Register fixed-factor clocks derived from CPU clock */ for (n = 0; n < desc->num_ratios; n++) { const char *rclk_name = desc->ratios[n].name; int mult, div; of_property_read_string_index(np, "clock-output-names", 2+n, &rclk_name); desc->get_clk_ratio(base, desc->ratios[n].id, &mult, &div); clk_data.clks[2+n] = clk_register_fixed_factor(NULL, rclk_name, cpuclk_name, 0, mult, div); WARN_ON(IS_ERR(clk_data.clks[2+n])); } /* Register optional refclk */ if (desc->get_refclk_freq) { const char *name = "refclk"; of_property_read_string_index(np, "clock-output-names", 2 + desc->num_ratios, &name); rate = desc->get_refclk_freq(base); clk_data.clks[2 + desc->num_ratios] = clk_register_fixed_rate(NULL, name, NULL, 0, rate); WARN_ON(IS_ERR(clk_data.clks[2 + desc->num_ratios])); } /* SAR register isn't needed anymore */ iounmap(base); of_clk_add_provider(np, of_clk_src_onecell_get, &clk_data); } /* * Clock Gating Control */ DEFINE_SPINLOCK(ctrl_gating_lock); struct clk_gating_ctrl { spinlock_t *lock; struct clk **gates; int num_gates; void __iomem *base; u32 saved_reg; }; static struct clk_gating_ctrl *ctrl; static struct clk *clk_gating_get_src( struct of_phandle_args *clkspec, void *data) { int n; if (clkspec->args_count < 1) return ERR_PTR(-EINVAL); for (n = 0; n < ctrl->num_gates; n++) { struct clk_gate *gate = to_clk_gate(__clk_get_hw(ctrl->gates[n])); if (clkspec->args[0] == gate->bit_idx) return ctrl->gates[n]; } return ERR_PTR(-ENODEV); } static int mvebu_clk_gating_suspend(void) { ctrl->saved_reg = readl(ctrl->base); return 0; } static void mvebu_clk_gating_resume(void) { writel(ctrl->saved_reg, ctrl->base); } static struct syscore_ops clk_gate_syscore_ops = { .suspend = mvebu_clk_gating_suspend, .resume = mvebu_clk_gating_resume, }; void __init mvebu_clk_gating_setup(struct device_node *np, const struct clk_gating_soc_desc *desc) { struct clk *clk; void __iomem *base; const char *default_parent = NULL; int n; if (ctrl) { pr_err("mvebu-clk-gating: cannot instantiate more than one gateable clock device\n"); return; } base = of_iomap(np, 0); if (WARN_ON(!base)) return; clk = of_clk_get(np, 0); if (!IS_ERR(clk)) { default_parent = __clk_get_name(clk); clk_put(clk); } ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); if (WARN_ON(!ctrl)) goto ctrl_out; /* lock must already be initialized */ ctrl->lock = &ctrl_gating_lock; ctrl->base = base; /* Count, allocate, and register clock gates */ for (n = 0; desc[n].name;) n++; ctrl->num_gates = n; ctrl->gates = kcalloc(ctrl->num_gates, sizeof(*ctrl->gates), GFP_KERNEL); if (WARN_ON(!ctrl->gates)) goto gates_out; for (n = 0; n < ctrl->num_gates; n++) { const char *parent = (desc[n].parent) ? desc[n].parent : default_parent; ctrl->gates[n] = clk_register_gate(NULL, desc[n].name, parent, desc[n].flags, base, desc[n].bit_idx, 0, ctrl->lock); WARN_ON(IS_ERR(ctrl->gates[n])); } of_clk_add_provider(np, clk_gating_get_src, ctrl); register_syscore_ops(&clk_gate_syscore_ops); return; gates_out: kfree(ctrl); ctrl_out: iounmap(base); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1