Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Michel Pollet | 6448 | 91.19% | 1 | 6.25% |
Gareth Williams | 394 | 5.57% | 2 | 12.50% |
Miquel Raynal | 143 | 2.02% | 3 | 18.75% |
Geert Uytterhoeven | 65 | 0.92% | 3 | 18.75% |
Ralph Siemsen | 7 | 0.10% | 2 | 12.50% |
Phil Edworthy | 6 | 0.08% | 1 | 6.25% |
Michael Turquette | 3 | 0.04% | 1 | 6.25% |
Christophe Jaillet | 2 | 0.03% | 1 | 6.25% |
Bhaskar Chowdhury | 2 | 0.03% | 1 | 6.25% |
Marek Vašut | 1 | 0.01% | 1 | 6.25% |
Total | 7071 | 16 |
// SPDX-License-Identifier: GPL-2.0 /* * R9A06G032 clock driver * * Copyright (C) 2018 Renesas Electronics Europe Limited * * Michel Pollet <michel.pollet@bp.renesas.com>, <buserror@gmail.com> */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/math64.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/pm_clock.h> #include <linux/pm_domain.h> #include <linux/slab.h> #include <linux/soc/renesas/r9a06g032-sysctrl.h> #include <linux/spinlock.h> #include <dt-bindings/clock/r9a06g032-sysctrl.h> #define R9A06G032_SYSCTRL_DMAMUX 0xA0 struct r9a06g032_gate { u16 gate, reset, ready, midle, scon, mirack, mistat; }; /* This is used to describe a clock for instantiation */ struct r9a06g032_clkdesc { const char *name; uint32_t managed: 1; uint32_t type: 3; uint32_t index: 8; uint32_t source : 8; /* source index + 1 (0 == none) */ /* these are used to populate the bitsel struct */ union { struct r9a06g032_gate gate; /* for dividers */ struct { unsigned int div_min : 10, div_max : 10, reg: 10; u16 div_table[4]; }; /* For fixed-factor ones */ struct { u16 div, mul; }; /* for dual gate */ struct { uint16_t group : 1; u16 sel, g1, r1, g2, r2; } dual; }; }; #define I_GATE(_clk, _rst, _rdy, _midle, _scon, _mirack, _mistat) \ { .gate = _clk, .reset = _rst, \ .ready = _rdy, .midle = _midle, \ .scon = _scon, .mirack = _mirack, .mistat = _mistat } #define D_GATE(_idx, _n, _src, ...) \ { .type = K_GATE, .index = R9A06G032_##_idx, \ .source = 1 + R9A06G032_##_src, .name = _n, \ .gate = I_GATE(__VA_ARGS__) } #define D_MODULE(_idx, _n, _src, ...) \ { .type = K_GATE, .index = R9A06G032_##_idx, \ .source = 1 + R9A06G032_##_src, .name = _n, \ .managed = 1, .gate = I_GATE(__VA_ARGS__) } #define D_ROOT(_idx, _n, _mul, _div) \ { .type = K_FFC, .index = R9A06G032_##_idx, .name = _n, \ .div = _div, .mul = _mul } #define D_FFC(_idx, _n, _src, _div) \ { .type = K_FFC, .index = R9A06G032_##_idx, \ .source = 1 + R9A06G032_##_src, .name = _n, \ .div = _div, .mul = 1} #define D_DIV(_idx, _n, _src, _reg, _min, _max, ...) \ { .type = K_DIV, .index = R9A06G032_##_idx, \ .source = 1 + R9A06G032_##_src, .name = _n, \ .reg = _reg, .div_min = _min, .div_max = _max, \ .div_table = { __VA_ARGS__ } } #define D_UGATE(_idx, _n, _src, _g, _g1, _r1, _g2, _r2) \ { .type = K_DUALGATE, .index = R9A06G032_##_idx, \ .source = 1 + R9A06G032_##_src, .name = _n, \ .dual = { .group = _g, \ .g1 = _g1, .r1 = _r1, .g2 = _g2, .r2 = _r2 }, } enum { K_GATE = 0, K_FFC, K_DIV, K_BITSEL, K_DUALGATE }; /* Internal clock IDs */ #define R9A06G032_CLKOUT 0 #define R9A06G032_CLKOUT_D10 2 #define R9A06G032_CLKOUT_D16 3 #define R9A06G032_CLKOUT_D160 4 #define R9A06G032_CLKOUT_D1OR2 5 #define R9A06G032_CLKOUT_D20 6 #define R9A06G032_CLKOUT_D40 7 #define R9A06G032_CLKOUT_D5 8 #define R9A06G032_CLKOUT_D8 9 #define R9A06G032_DIV_ADC 10 #define R9A06G032_DIV_I2C 11 #define R9A06G032_DIV_NAND 12 #define R9A06G032_DIV_P1_PG 13 #define R9A06G032_DIV_P2_PG 14 #define R9A06G032_DIV_P3_PG 15 #define R9A06G032_DIV_P4_PG 16 #define R9A06G032_DIV_P5_PG 17 #define R9A06G032_DIV_P6_PG 18 #define R9A06G032_DIV_QSPI0 19 #define R9A06G032_DIV_QSPI1 20 #define R9A06G032_DIV_REF_SYNC 21 #define R9A06G032_DIV_SDIO0 22 #define R9A06G032_DIV_SDIO1 23 #define R9A06G032_DIV_SWITCH 24 #define R9A06G032_DIV_UART 25 #define R9A06G032_DIV_MOTOR 64 #define R9A06G032_CLK_DDRPHY_PLLCLK_D4 78 #define R9A06G032_CLK_ECAT100_D4 79 #define R9A06G032_CLK_HSR100_D2 80 #define R9A06G032_CLK_REF_SYNC_D4 81 #define R9A06G032_CLK_REF_SYNC_D8 82 #define R9A06G032_CLK_SERCOS100_D2 83 #define R9A06G032_DIV_CA7 84 #define R9A06G032_UART_GROUP_012 154 #define R9A06G032_UART_GROUP_34567 155 #define R9A06G032_CLOCK_COUNT (R9A06G032_UART_GROUP_34567 + 1) static const struct r9a06g032_clkdesc r9a06g032_clocks[] = { D_ROOT(CLKOUT, "clkout", 25, 1), D_ROOT(CLK_PLL_USB, "clk_pll_usb", 12, 10), D_FFC(CLKOUT_D10, "clkout_d10", CLKOUT, 10), D_FFC(CLKOUT_D16, "clkout_d16", CLKOUT, 16), D_FFC(CLKOUT_D160, "clkout_d160", CLKOUT, 160), D_DIV(CLKOUT_D1OR2, "clkout_d1or2", CLKOUT, 0, 1, 2), D_FFC(CLKOUT_D20, "clkout_d20", CLKOUT, 20), D_FFC(CLKOUT_D40, "clkout_d40", CLKOUT, 40), D_FFC(CLKOUT_D5, "clkout_d5", CLKOUT, 5), D_FFC(CLKOUT_D8, "clkout_d8", CLKOUT, 8), D_DIV(DIV_ADC, "div_adc", CLKOUT, 77, 50, 250), D_DIV(DIV_I2C, "div_i2c", CLKOUT, 78, 12, 16), D_DIV(DIV_NAND, "div_nand", CLKOUT, 82, 12, 32), D_DIV(DIV_P1_PG, "div_p1_pg", CLKOUT, 68, 12, 200), D_DIV(DIV_P2_PG, "div_p2_pg", CLKOUT, 62, 12, 128), D_DIV(DIV_P3_PG, "div_p3_pg", CLKOUT, 64, 8, 128), D_DIV(DIV_P4_PG, "div_p4_pg", CLKOUT, 66, 8, 128), D_DIV(DIV_P5_PG, "div_p5_pg", CLKOUT, 71, 10, 40), D_DIV(DIV_P6_PG, "div_p6_pg", CLKOUT, 18, 12, 64), D_DIV(DIV_QSPI0, "div_qspi0", CLKOUT, 73, 3, 7), D_DIV(DIV_QSPI1, "div_qspi1", CLKOUT, 25, 3, 7), D_DIV(DIV_REF_SYNC, "div_ref_sync", CLKOUT, 56, 2, 16, 2, 4, 8, 16), D_DIV(DIV_SDIO0, "div_sdio0", CLKOUT, 74, 20, 128), D_DIV(DIV_SDIO1, "div_sdio1", CLKOUT, 75, 20, 128), D_DIV(DIV_SWITCH, "div_switch", CLKOUT, 37, 5, 40), D_DIV(DIV_UART, "div_uart", CLKOUT, 79, 12, 128), D_GATE(CLK_25_PG4, "clk_25_pg4", CLKOUT_D40, 0x749, 0x74a, 0x74b, 0, 0xae3, 0, 0), D_GATE(CLK_25_PG5, "clk_25_pg5", CLKOUT_D40, 0x74c, 0x74d, 0x74e, 0, 0xae4, 0, 0), D_GATE(CLK_25_PG6, "clk_25_pg6", CLKOUT_D40, 0x74f, 0x750, 0x751, 0, 0xae5, 0, 0), D_GATE(CLK_25_PG7, "clk_25_pg7", CLKOUT_D40, 0x752, 0x753, 0x754, 0, 0xae6, 0, 0), D_GATE(CLK_25_PG8, "clk_25_pg8", CLKOUT_D40, 0x755, 0x756, 0x757, 0, 0xae7, 0, 0), D_GATE(CLK_ADC, "clk_adc", DIV_ADC, 0x1ea, 0x1eb, 0, 0, 0, 0, 0), D_GATE(CLK_ECAT100, "clk_ecat100", CLKOUT_D10, 0x405, 0, 0, 0, 0, 0, 0), D_GATE(CLK_HSR100, "clk_hsr100", CLKOUT_D10, 0x483, 0, 0, 0, 0, 0, 0), D_GATE(CLK_I2C0, "clk_i2c0", DIV_I2C, 0x1e6, 0x1e7, 0, 0, 0, 0, 0), D_GATE(CLK_I2C1, "clk_i2c1", DIV_I2C, 0x1e8, 0x1e9, 0, 0, 0, 0, 0), D_GATE(CLK_MII_REF, "clk_mii_ref", CLKOUT_D40, 0x342, 0, 0, 0, 0, 0, 0), D_GATE(CLK_NAND, "clk_nand", DIV_NAND, 0x284, 0x285, 0, 0, 0, 0, 0), D_GATE(CLK_NOUSBP2_PG6, "clk_nousbp2_pg6", DIV_P2_PG, 0x774, 0x775, 0, 0, 0, 0, 0), D_GATE(CLK_P1_PG2, "clk_p1_pg2", DIV_P1_PG, 0x862, 0x863, 0, 0, 0, 0, 0), D_GATE(CLK_P1_PG3, "clk_p1_pg3", DIV_P1_PG, 0x864, 0x865, 0, 0, 0, 0, 0), D_GATE(CLK_P1_PG4, "clk_p1_pg4", DIV_P1_PG, 0x866, 0x867, 0, 0, 0, 0, 0), D_GATE(CLK_P4_PG3, "clk_p4_pg3", DIV_P4_PG, 0x824, 0x825, 0, 0, 0, 0, 0), D_GATE(CLK_P4_PG4, "clk_p4_pg4", DIV_P4_PG, 0x826, 0x827, 0, 0, 0, 0, 0), D_GATE(CLK_P6_PG1, "clk_p6_pg1", DIV_P6_PG, 0x8a0, 0x8a1, 0x8a2, 0, 0xb60, 0, 0), D_GATE(CLK_P6_PG2, "clk_p6_pg2", DIV_P6_PG, 0x8a3, 0x8a4, 0x8a5, 0, 0xb61, 0, 0), D_GATE(CLK_P6_PG3, "clk_p6_pg3", DIV_P6_PG, 0x8a6, 0x8a7, 0x8a8, 0, 0xb62, 0, 0), D_GATE(CLK_P6_PG4, "clk_p6_pg4", DIV_P6_PG, 0x8a9, 0x8aa, 0x8ab, 0, 0xb63, 0, 0), D_MODULE(CLK_PCI_USB, "clk_pci_usb", CLKOUT_D40, 0xe6, 0, 0, 0, 0, 0, 0), D_GATE(CLK_QSPI0, "clk_qspi0", DIV_QSPI0, 0x2a4, 0x2a5, 0, 0, 0, 0, 0), D_GATE(CLK_QSPI1, "clk_qspi1", DIV_QSPI1, 0x484, 0x485, 0, 0, 0, 0, 0), D_GATE(CLK_RGMII_REF, "clk_rgmii_ref", CLKOUT_D8, 0x340, 0, 0, 0, 0, 0, 0), D_GATE(CLK_RMII_REF, "clk_rmii_ref", CLKOUT_D20, 0x341, 0, 0, 0, 0, 0, 0), D_GATE(CLK_SDIO0, "clk_sdio0", DIV_SDIO0, 0x64, 0, 0, 0, 0, 0, 0), D_GATE(CLK_SDIO1, "clk_sdio1", DIV_SDIO1, 0x644, 0, 0, 0, 0, 0, 0), D_GATE(CLK_SERCOS100, "clk_sercos100", CLKOUT_D10, 0x425, 0, 0, 0, 0, 0, 0), D_GATE(CLK_SLCD, "clk_slcd", DIV_P1_PG, 0x860, 0x861, 0, 0, 0, 0, 0), D_GATE(CLK_SPI0, "clk_spi0", DIV_P3_PG, 0x7e0, 0x7e1, 0, 0, 0, 0, 0), D_GATE(CLK_SPI1, "clk_spi1", DIV_P3_PG, 0x7e2, 0x7e3, 0, 0, 0, 0, 0), D_GATE(CLK_SPI2, "clk_spi2", DIV_P3_PG, 0x7e4, 0x7e5, 0, 0, 0, 0, 0), D_GATE(CLK_SPI3, "clk_spi3", DIV_P3_PG, 0x7e6, 0x7e7, 0, 0, 0, 0, 0), D_GATE(CLK_SPI4, "clk_spi4", DIV_P4_PG, 0x820, 0x821, 0, 0, 0, 0, 0), D_GATE(CLK_SPI5, "clk_spi5", DIV_P4_PG, 0x822, 0x823, 0, 0, 0, 0, 0), D_GATE(CLK_SWITCH, "clk_switch", DIV_SWITCH, 0x982, 0x983, 0, 0, 0, 0, 0), D_DIV(DIV_MOTOR, "div_motor", CLKOUT_D5, 84, 2, 8), D_MODULE(HCLK_ECAT125, "hclk_ecat125", CLKOUT_D8, 0x400, 0x401, 0, 0x402, 0, 0x440, 0x441), D_MODULE(HCLK_PINCONFIG, "hclk_pinconfig", CLKOUT_D40, 0x740, 0x741, 0x742, 0, 0xae0, 0, 0), D_MODULE(HCLK_SERCOS, "hclk_sercos", CLKOUT_D10, 0x420, 0x422, 0, 0x421, 0, 0x460, 0x461), D_MODULE(HCLK_SGPIO2, "hclk_sgpio2", DIV_P5_PG, 0x8c3, 0x8c4, 0x8c5, 0, 0xb41, 0, 0), D_MODULE(HCLK_SGPIO3, "hclk_sgpio3", DIV_P5_PG, 0x8c6, 0x8c7, 0x8c8, 0, 0xb42, 0, 0), D_MODULE(HCLK_SGPIO4, "hclk_sgpio4", DIV_P5_PG, 0x8c9, 0x8ca, 0x8cb, 0, 0xb43, 0, 0), D_MODULE(HCLK_TIMER0, "hclk_timer0", CLKOUT_D40, 0x743, 0x744, 0x745, 0, 0xae1, 0, 0), D_MODULE(HCLK_TIMER1, "hclk_timer1", CLKOUT_D40, 0x746, 0x747, 0x748, 0, 0xae2, 0, 0), D_MODULE(HCLK_USBF, "hclk_usbf", CLKOUT_D8, 0xe3, 0, 0, 0xe4, 0, 0x102, 0x103), D_MODULE(HCLK_USBH, "hclk_usbh", CLKOUT_D8, 0xe0, 0xe1, 0, 0xe2, 0, 0x100, 0x101), D_MODULE(HCLK_USBPM, "hclk_usbpm", CLKOUT_D8, 0xe5, 0, 0, 0, 0, 0, 0), D_GATE(CLK_48_PG_F, "clk_48_pg_f", CLK_48, 0x78c, 0x78d, 0, 0x78e, 0, 0xb04, 0xb05), D_GATE(CLK_48_PG4, "clk_48_pg4", CLK_48, 0x789, 0x78a, 0x78b, 0, 0xb03, 0, 0), D_FFC(CLK_DDRPHY_PLLCLK_D4, "clk_ddrphy_pllclk_d4", CLK_DDRPHY_PLLCLK, 4), D_FFC(CLK_ECAT100_D4, "clk_ecat100_d4", CLK_ECAT100, 4), D_FFC(CLK_HSR100_D2, "clk_hsr100_d2", CLK_HSR100, 2), D_FFC(CLK_REF_SYNC_D4, "clk_ref_sync_d4", CLK_REF_SYNC, 4), D_FFC(CLK_REF_SYNC_D8, "clk_ref_sync_d8", CLK_REF_SYNC, 8), D_FFC(CLK_SERCOS100_D2, "clk_sercos100_d2", CLK_SERCOS100, 2), D_DIV(DIV_CA7, "div_ca7", CLK_REF_SYNC, 57, 1, 4, 1, 2, 4), D_MODULE(HCLK_CAN0, "hclk_can0", CLK_48, 0x783, 0x784, 0x785, 0, 0xb01, 0, 0), D_MODULE(HCLK_CAN1, "hclk_can1", CLK_48, 0x786, 0x787, 0x788, 0, 0xb02, 0, 0), D_MODULE(HCLK_DELTASIGMA, "hclk_deltasigma", DIV_MOTOR, 0x1ef, 0x1f0, 0x1f1, 0, 0, 0, 0), D_MODULE(HCLK_PWMPTO, "hclk_pwmpto", DIV_MOTOR, 0x1ec, 0x1ed, 0x1ee, 0, 0, 0, 0), D_MODULE(HCLK_RSV, "hclk_rsv", CLK_48, 0x780, 0x781, 0x782, 0, 0xb00, 0, 0), D_MODULE(HCLK_SGPIO0, "hclk_sgpio0", DIV_MOTOR, 0x1e0, 0x1e1, 0x1e2, 0, 0, 0, 0), D_MODULE(HCLK_SGPIO1, "hclk_sgpio1", DIV_MOTOR, 0x1e3, 0x1e4, 0x1e5, 0, 0, 0, 0), D_DIV(RTOS_MDC, "rtos_mdc", CLK_REF_SYNC, 100, 80, 640, 80, 160, 320, 640), D_GATE(CLK_CM3, "clk_cm3", CLK_REF_SYNC_D4, 0xba0, 0xba1, 0, 0xba2, 0, 0xbc0, 0xbc1), D_GATE(CLK_DDRC, "clk_ddrc", CLK_DDRPHY_PLLCLK_D4, 0x323, 0x324, 0, 0, 0, 0, 0), D_GATE(CLK_ECAT25, "clk_ecat25", CLK_ECAT100_D4, 0x403, 0x404, 0, 0, 0, 0, 0), D_GATE(CLK_HSR50, "clk_hsr50", CLK_HSR100_D2, 0x484, 0x485, 0, 0, 0, 0, 0), D_GATE(CLK_HW_RTOS, "clk_hw_rtos", CLK_REF_SYNC_D4, 0xc60, 0xc61, 0, 0, 0, 0, 0), D_GATE(CLK_SERCOS50, "clk_sercos50", CLK_SERCOS100_D2, 0x424, 0x423, 0, 0, 0, 0, 0), D_MODULE(HCLK_ADC, "hclk_adc", CLK_REF_SYNC_D8, 0x1af, 0x1b0, 0x1b1, 0, 0, 0, 0), D_MODULE(HCLK_CM3, "hclk_cm3", CLK_REF_SYNC_D4, 0xc20, 0xc21, 0xc22, 0, 0, 0, 0), D_MODULE(HCLK_CRYPTO_EIP150, "hclk_crypto_eip150", CLK_REF_SYNC_D4, 0x123, 0x124, 0x125, 0, 0x142, 0, 0), D_MODULE(HCLK_CRYPTO_EIP93, "hclk_crypto_eip93", CLK_REF_SYNC_D4, 0x120, 0x121, 0, 0x122, 0, 0x140, 0x141), D_MODULE(HCLK_DDRC, "hclk_ddrc", CLK_REF_SYNC_D4, 0x320, 0x322, 0, 0x321, 0, 0x3a0, 0x3a1), D_MODULE(HCLK_DMA0, "hclk_dma0", CLK_REF_SYNC_D4, 0x260, 0x261, 0x262, 0x263, 0x2c0, 0x2c1, 0x2c2), D_MODULE(HCLK_DMA1, "hclk_dma1", CLK_REF_SYNC_D4, 0x264, 0x265, 0x266, 0x267, 0x2c3, 0x2c4, 0x2c5), D_MODULE(HCLK_GMAC0, "hclk_gmac0", CLK_REF_SYNC_D4, 0x360, 0x361, 0x362, 0x363, 0x3c0, 0x3c1, 0x3c2), D_MODULE(HCLK_GMAC1, "hclk_gmac1", CLK_REF_SYNC_D4, 0x380, 0x381, 0x382, 0x383, 0x3e0, 0x3e1, 0x3e2), D_MODULE(HCLK_GPIO0, "hclk_gpio0", CLK_REF_SYNC_D4, 0x212, 0x213, 0x214, 0, 0, 0, 0), D_MODULE(HCLK_GPIO1, "hclk_gpio1", CLK_REF_SYNC_D4, 0x215, 0x216, 0x217, 0, 0, 0, 0), D_MODULE(HCLK_GPIO2, "hclk_gpio2", CLK_REF_SYNC_D4, 0x229, 0x22a, 0x22b, 0, 0, 0, 0), D_MODULE(HCLK_HSR, "hclk_hsr", CLK_HSR100_D2, 0x480, 0x482, 0, 0x481, 0, 0x4c0, 0x4c1), D_MODULE(HCLK_I2C0, "hclk_i2c0", CLK_REF_SYNC_D8, 0x1a9, 0x1aa, 0x1ab, 0, 0, 0, 0), D_MODULE(HCLK_I2C1, "hclk_i2c1", CLK_REF_SYNC_D8, 0x1ac, 0x1ad, 0x1ae, 0, 0, 0, 0), D_MODULE(HCLK_LCD, "hclk_lcd", CLK_REF_SYNC_D4, 0x7a0, 0x7a1, 0x7a2, 0, 0xb20, 0, 0), D_MODULE(HCLK_MSEBI_M, "hclk_msebi_m", CLK_REF_SYNC_D4, 0x164, 0x165, 0x166, 0, 0x183, 0, 0), D_MODULE(HCLK_MSEBI_S, "hclk_msebi_s", CLK_REF_SYNC_D4, 0x160, 0x161, 0x162, 0x163, 0x180, 0x181, 0x182), D_MODULE(HCLK_NAND, "hclk_nand", CLK_REF_SYNC_D4, 0x280, 0x281, 0x282, 0x283, 0x2e0, 0x2e1, 0x2e2), D_MODULE(HCLK_PG_I, "hclk_pg_i", CLK_REF_SYNC_D4, 0x7ac, 0x7ad, 0, 0x7ae, 0, 0xb24, 0xb25), D_MODULE(HCLK_PG19, "hclk_pg19", CLK_REF_SYNC_D4, 0x22c, 0x22d, 0x22e, 0, 0, 0, 0), D_MODULE(HCLK_PG20, "hclk_pg20", CLK_REF_SYNC_D4, 0x22f, 0x230, 0x231, 0, 0, 0, 0), D_MODULE(HCLK_PG3, "hclk_pg3", CLK_REF_SYNC_D4, 0x7a6, 0x7a7, 0x7a8, 0, 0xb22, 0, 0), D_MODULE(HCLK_PG4, "hclk_pg4", CLK_REF_SYNC_D4, 0x7a9, 0x7aa, 0x7ab, 0, 0xb23, 0, 0), D_MODULE(HCLK_QSPI0, "hclk_qspi0", CLK_REF_SYNC_D4, 0x2a0, 0x2a1, 0x2a2, 0x2a3, 0x300, 0x301, 0x302), D_MODULE(HCLK_QSPI1, "hclk_qspi1", CLK_REF_SYNC_D4, 0x480, 0x481, 0x482, 0x483, 0x4c0, 0x4c1, 0x4c2), D_MODULE(HCLK_ROM, "hclk_rom", CLK_REF_SYNC_D4, 0xaa0, 0xaa1, 0xaa2, 0, 0xb80, 0, 0), D_MODULE(HCLK_RTC, "hclk_rtc", CLK_REF_SYNC_D8, 0xa00, 0xa03, 0, 0xa02, 0, 0, 0), D_MODULE(HCLK_SDIO0, "hclk_sdio0", CLK_REF_SYNC_D4, 0x60, 0x61, 0x62, 0x63, 0x80, 0x81, 0x82), D_MODULE(HCLK_SDIO1, "hclk_sdio1", CLK_REF_SYNC_D4, 0x640, 0x641, 0x642, 0x643, 0x660, 0x661, 0x662), D_MODULE(HCLK_SEMAP, "hclk_semap", CLK_REF_SYNC_D4, 0x7a3, 0x7a4, 0x7a5, 0, 0xb21, 0, 0), D_MODULE(HCLK_SPI0, "hclk_spi0", CLK_REF_SYNC_D4, 0x200, 0x201, 0x202, 0, 0, 0, 0), D_MODULE(HCLK_SPI1, "hclk_spi1", CLK_REF_SYNC_D4, 0x203, 0x204, 0x205, 0, 0, 0, 0), D_MODULE(HCLK_SPI2, "hclk_spi2", CLK_REF_SYNC_D4, 0x206, 0x207, 0x208, 0, 0, 0, 0), D_MODULE(HCLK_SPI3, "hclk_spi3", CLK_REF_SYNC_D4, 0x209, 0x20a, 0x20b, 0, 0, 0, 0), D_MODULE(HCLK_SPI4, "hclk_spi4", CLK_REF_SYNC_D4, 0x20c, 0x20d, 0x20e, 0, 0, 0, 0), D_MODULE(HCLK_SPI5, "hclk_spi5", CLK_REF_SYNC_D4, 0x20f, 0x210, 0x211, 0, 0, 0, 0), D_MODULE(HCLK_SWITCH, "hclk_switch", CLK_REF_SYNC_D4, 0x980, 0, 0x981, 0, 0, 0, 0), D_MODULE(HCLK_SWITCH_RG, "hclk_switch_rg", CLK_REF_SYNC_D4, 0xc40, 0xc41, 0xc42, 0, 0, 0, 0), D_MODULE(HCLK_UART0, "hclk_uart0", CLK_REF_SYNC_D8, 0x1a0, 0x1a1, 0x1a2, 0, 0, 0, 0), D_MODULE(HCLK_UART1, "hclk_uart1", CLK_REF_SYNC_D8, 0x1a3, 0x1a4, 0x1a5, 0, 0, 0, 0), D_MODULE(HCLK_UART2, "hclk_uart2", CLK_REF_SYNC_D8, 0x1a6, 0x1a7, 0x1a8, 0, 0, 0, 0), D_MODULE(HCLK_UART3, "hclk_uart3", CLK_REF_SYNC_D4, 0x218, 0x219, 0x21a, 0, 0, 0, 0), D_MODULE(HCLK_UART4, "hclk_uart4", CLK_REF_SYNC_D4, 0x21b, 0x21c, 0x21d, 0, 0, 0, 0), D_MODULE(HCLK_UART5, "hclk_uart5", CLK_REF_SYNC_D4, 0x220, 0x221, 0x222, 0, 0, 0, 0), D_MODULE(HCLK_UART6, "hclk_uart6", CLK_REF_SYNC_D4, 0x223, 0x224, 0x225, 0, 0, 0, 0), D_MODULE(HCLK_UART7, "hclk_uart7", CLK_REF_SYNC_D4, 0x226, 0x227, 0x228, 0, 0, 0, 0), /* * These are not hardware clocks, but are needed to handle the special * case where we have a 'selector bit' that doesn't just change the * parent for a clock, but also the gate it's supposed to use. */ { .index = R9A06G032_UART_GROUP_012, .name = "uart_group_012", .type = K_BITSEL, .source = 1 + R9A06G032_DIV_UART, /* R9A06G032_SYSCTRL_REG_PWRCTRL_PG0_0 */ .dual.sel = ((0x34 / 4) << 5) | 30, .dual.group = 0, }, { .index = R9A06G032_UART_GROUP_34567, .name = "uart_group_34567", .type = K_BITSEL, .source = 1 + R9A06G032_DIV_P2_PG, /* R9A06G032_SYSCTRL_REG_PWRCTRL_PG1_PR2 */ .dual.sel = ((0xec / 4) << 5) | 24, .dual.group = 1, }, D_UGATE(CLK_UART0, "clk_uart0", UART_GROUP_012, 0, 0x1b2, 0x1b3, 0x1b4, 0x1b5), D_UGATE(CLK_UART1, "clk_uart1", UART_GROUP_012, 0, 0x1b6, 0x1b7, 0x1b8, 0x1b9), D_UGATE(CLK_UART2, "clk_uart2", UART_GROUP_012, 0, 0x1ba, 0x1bb, 0x1bc, 0x1bd), D_UGATE(CLK_UART3, "clk_uart3", UART_GROUP_34567, 1, 0x760, 0x761, 0x762, 0x763), D_UGATE(CLK_UART4, "clk_uart4", UART_GROUP_34567, 1, 0x764, 0x765, 0x766, 0x767), D_UGATE(CLK_UART5, "clk_uart5", UART_GROUP_34567, 1, 0x768, 0x769, 0x76a, 0x76b), D_UGATE(CLK_UART6, "clk_uart6", UART_GROUP_34567, 1, 0x76c, 0x76d, 0x76e, 0x76f), D_UGATE(CLK_UART7, "clk_uart7", UART_GROUP_34567, 1, 0x770, 0x771, 0x772, 0x773), }; struct r9a06g032_priv { struct clk_onecell_data data; spinlock_t lock; /* protects concurrent access to gates */ void __iomem *reg; }; static struct r9a06g032_priv *sysctrl_priv; /* Exported helper to access the DMAMUX register */ int r9a06g032_sysctrl_set_dmamux(u32 mask, u32 val) { unsigned long flags; u32 dmamux; if (!sysctrl_priv) return -EPROBE_DEFER; spin_lock_irqsave(&sysctrl_priv->lock, flags); dmamux = readl(sysctrl_priv->reg + R9A06G032_SYSCTRL_DMAMUX); dmamux &= ~mask; dmamux |= val & mask; writel(dmamux, sysctrl_priv->reg + R9A06G032_SYSCTRL_DMAMUX); spin_unlock_irqrestore(&sysctrl_priv->lock, flags); return 0; } EXPORT_SYMBOL_GPL(r9a06g032_sysctrl_set_dmamux); /* register/bit pairs are encoded as an uint16_t */ static void clk_rdesc_set(struct r9a06g032_priv *clocks, u16 one, unsigned int on) { u32 __iomem *reg = clocks->reg + (4 * (one >> 5)); u32 val = readl(reg); val = (val & ~(1U << (one & 0x1f))) | ((!!on) << (one & 0x1f)); writel(val, reg); } static int clk_rdesc_get(struct r9a06g032_priv *clocks, uint16_t one) { u32 __iomem *reg = clocks->reg + (4 * (one >> 5)); u32 val = readl(reg); return !!(val & (1U << (one & 0x1f))); } /* * This implements the R9A06G032 clock gate 'driver'. We cannot use the system's * clock gate framework as the gates on the R9A06G032 have a special enabling * sequence, therefore we use this little proxy. */ struct r9a06g032_clk_gate { struct clk_hw hw; struct r9a06g032_priv *clocks; u16 index; struct r9a06g032_gate gate; }; #define to_r9a06g032_gate(_hw) container_of(_hw, struct r9a06g032_clk_gate, hw) static int create_add_module_clock(struct of_phandle_args *clkspec, struct device *dev) { struct clk *clk; int error; clk = of_clk_get_from_provider(clkspec); if (IS_ERR(clk)) return PTR_ERR(clk); error = pm_clk_create(dev); if (error) { clk_put(clk); return error; } error = pm_clk_add_clk(dev, clk); if (error) { pm_clk_destroy(dev); clk_put(clk); } return error; } static int r9a06g032_attach_dev(struct generic_pm_domain *pd, struct device *dev) { struct device_node *np = dev->of_node; struct of_phandle_args clkspec; int i = 0; int error; int index; while (!of_parse_phandle_with_args(np, "clocks", "#clock-cells", i++, &clkspec)) { if (clkspec.np != pd->dev.of_node) continue; index = clkspec.args[0]; if (index < R9A06G032_CLOCK_COUNT && r9a06g032_clocks[index].managed) { error = create_add_module_clock(&clkspec, dev); of_node_put(clkspec.np); if (error) return error; } } return 0; } static void r9a06g032_detach_dev(struct generic_pm_domain *unused, struct device *dev) { if (!pm_clk_no_clocks(dev)) pm_clk_destroy(dev); } static int r9a06g032_add_clk_domain(struct device *dev) { struct device_node *np = dev->of_node; struct generic_pm_domain *pd; pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); if (!pd) return -ENOMEM; pd->name = np->name; pd->flags = GENPD_FLAG_PM_CLK | GENPD_FLAG_ALWAYS_ON | GENPD_FLAG_ACTIVE_WAKEUP; pd->attach_dev = r9a06g032_attach_dev; pd->detach_dev = r9a06g032_detach_dev; pm_genpd_init(pd, &pm_domain_always_on_gov, false); of_genpd_add_provider_simple(np, pd); return 0; } static void r9a06g032_clk_gate_set(struct r9a06g032_priv *clocks, struct r9a06g032_gate *g, int on) { unsigned long flags; WARN_ON(!g->gate); spin_lock_irqsave(&clocks->lock, flags); clk_rdesc_set(clocks, g->gate, on); /* De-assert reset */ if (g->reset) clk_rdesc_set(clocks, g->reset, 1); spin_unlock_irqrestore(&clocks->lock, flags); /* Hardware manual recommends 5us delay after enabling clock & reset */ udelay(5); /* If the peripheral is memory mapped (i.e. an AXI slave), there is an * associated SLVRDY bit in the System Controller that needs to be set * so that the FlexWAY bus fabric passes on the read/write requests. */ if (g->ready || g->midle) { spin_lock_irqsave(&clocks->lock, flags); if (g->ready) clk_rdesc_set(clocks, g->ready, on); /* Clear 'Master Idle Request' bit */ if (g->midle) clk_rdesc_set(clocks, g->midle, !on); spin_unlock_irqrestore(&clocks->lock, flags); } /* Note: We don't wait for FlexWAY Socket Connection signal */ } static int r9a06g032_clk_gate_enable(struct clk_hw *hw) { struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw); r9a06g032_clk_gate_set(g->clocks, &g->gate, 1); return 0; } static void r9a06g032_clk_gate_disable(struct clk_hw *hw) { struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw); r9a06g032_clk_gate_set(g->clocks, &g->gate, 0); } static int r9a06g032_clk_gate_is_enabled(struct clk_hw *hw) { struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw); /* if clock is in reset, the gate might be on, and still not 'be' on */ if (g->gate.reset && !clk_rdesc_get(g->clocks, g->gate.reset)) return 0; return clk_rdesc_get(g->clocks, g->gate.gate); } static const struct clk_ops r9a06g032_clk_gate_ops = { .enable = r9a06g032_clk_gate_enable, .disable = r9a06g032_clk_gate_disable, .is_enabled = r9a06g032_clk_gate_is_enabled, }; static struct clk * r9a06g032_register_gate(struct r9a06g032_priv *clocks, const char *parent_name, const struct r9a06g032_clkdesc *desc) { struct clk *clk; struct r9a06g032_clk_gate *g; struct clk_init_data init = {}; g = kzalloc(sizeof(*g), GFP_KERNEL); if (!g) return NULL; init.name = desc->name; init.ops = &r9a06g032_clk_gate_ops; init.flags = CLK_SET_RATE_PARENT; init.parent_names = parent_name ? &parent_name : NULL; init.num_parents = parent_name ? 1 : 0; g->clocks = clocks; g->index = desc->index; g->gate = desc->gate; g->hw.init = &init; /* * important here, some clocks are already in use by the CM3, we * have to assume they are not Linux's to play with and try to disable * at the end of the boot! */ if (r9a06g032_clk_gate_is_enabled(&g->hw)) { init.flags |= CLK_IS_CRITICAL; pr_debug("%s was enabled, making read-only\n", desc->name); } clk = clk_register(NULL, &g->hw); if (IS_ERR(clk)) { kfree(g); return NULL; } return clk; } struct r9a06g032_clk_div { struct clk_hw hw; struct r9a06g032_priv *clocks; u16 index; u16 reg; u16 min, max; u8 table_size; u16 table[8]; /* we know there are no more than 8 */ }; #define to_r9a06g032_div(_hw) \ container_of(_hw, struct r9a06g032_clk_div, hw) static unsigned long r9a06g032_div_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw); u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg); u32 div = readl(reg); if (div < clk->min) div = clk->min; else if (div > clk->max) div = clk->max; return DIV_ROUND_UP(parent_rate, div); } /* * Attempts to find a value that is in range of min,max, * and if a table of set dividers was specified for this * register, try to find the fixed divider that is the closest * to the target frequency */ static long r9a06g032_div_clamp_div(struct r9a06g032_clk_div *clk, unsigned long rate, unsigned long prate) { /* + 1 to cope with rates that have the remainder dropped */ u32 div = DIV_ROUND_UP(prate, rate + 1); int i; if (div <= clk->min) return clk->min; if (div >= clk->max) return clk->max; for (i = 0; clk->table_size && i < clk->table_size - 1; i++) { if (div >= clk->table[i] && div <= clk->table[i + 1]) { unsigned long m = rate - DIV_ROUND_UP(prate, clk->table[i]); unsigned long p = DIV_ROUND_UP(prate, clk->table[i + 1]) - rate; /* * select the divider that generates * the value closest to the ideal frequency */ div = p >= m ? clk->table[i] : clk->table[i + 1]; return div; } } return div; } static int r9a06g032_div_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw); u32 div = DIV_ROUND_UP(req->best_parent_rate, req->rate); pr_devel("%s %pC %ld (prate %ld) (wanted div %u)\n", __func__, hw->clk, req->rate, req->best_parent_rate, div); pr_devel(" min %d (%ld) max %d (%ld)\n", clk->min, DIV_ROUND_UP(req->best_parent_rate, clk->min), clk->max, DIV_ROUND_UP(req->best_parent_rate, clk->max)); div = r9a06g032_div_clamp_div(clk, req->rate, req->best_parent_rate); /* * this is a hack. Currently the serial driver asks for a clock rate * that is 16 times the baud rate -- and that is wildly outside the * range of the UART divider, somehow there is no provision for that * case of 'let the divider as is if outside range'. * The serial driver *shouldn't* play with these clocks anyway, there's * several uarts attached to this divider, and changing this impacts * everyone. */ if (clk->index == R9A06G032_DIV_UART || clk->index == R9A06G032_DIV_P2_PG) { pr_devel("%s div uart hack!\n", __func__); req->rate = clk_get_rate(hw->clk); return 0; } req->rate = DIV_ROUND_UP(req->best_parent_rate, div); pr_devel("%s %pC %ld / %u = %ld\n", __func__, hw->clk, req->best_parent_rate, div, req->rate); return 0; } static int r9a06g032_div_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw); /* + 1 to cope with rates that have the remainder dropped */ u32 div = DIV_ROUND_UP(parent_rate, rate + 1); u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg); pr_devel("%s %pC rate %ld parent %ld div %d\n", __func__, hw->clk, rate, parent_rate, div); /* * Need to write the bit 31 with the divider value to * latch it. Technically we should wait until it has been * cleared too. * TODO: Find whether this callback is sleepable, in case * the hardware /does/ require some sort of spinloop here. */ writel(div | BIT(31), reg); return 0; } static const struct clk_ops r9a06g032_clk_div_ops = { .recalc_rate = r9a06g032_div_recalc_rate, .determine_rate = r9a06g032_div_determine_rate, .set_rate = r9a06g032_div_set_rate, }; static struct clk * r9a06g032_register_div(struct r9a06g032_priv *clocks, const char *parent_name, const struct r9a06g032_clkdesc *desc) { struct r9a06g032_clk_div *div; struct clk *clk; struct clk_init_data init = {}; unsigned int i; div = kzalloc(sizeof(*div), GFP_KERNEL); if (!div) return NULL; init.name = desc->name; init.ops = &r9a06g032_clk_div_ops; init.flags = CLK_SET_RATE_PARENT; init.parent_names = parent_name ? &parent_name : NULL; init.num_parents = parent_name ? 1 : 0; div->clocks = clocks; div->index = desc->index; div->reg = desc->reg; div->hw.init = &init; div->min = desc->div_min; div->max = desc->div_max; /* populate (optional) divider table fixed values */ for (i = 0; i < ARRAY_SIZE(div->table) && i < ARRAY_SIZE(desc->div_table) && desc->div_table[i]; i++) { div->table[div->table_size++] = desc->div_table[i]; } clk = clk_register(NULL, &div->hw); if (IS_ERR(clk)) { kfree(div); return NULL; } return clk; } /* * This clock provider handles the case of the R9A06G032 where you have * peripherals that have two potential clock source and two gates, one for * each of the clock source - the used clock source (for all sub clocks) * is selected by a single bit. * That single bit affects all sub-clocks, and therefore needs to change the * active gate (and turn the others off) and force a recalculation of the rates. * * This implements two clock providers, one 'bitselect' that * handles the switch between both parents, and another 'dualgate' * that knows which gate to poke at, depending on the parent's bit position. */ struct r9a06g032_clk_bitsel { struct clk_hw hw; struct r9a06g032_priv *clocks; u16 index; u16 selector; /* selector register + bit */ }; #define to_clk_bitselect(_hw) \ container_of(_hw, struct r9a06g032_clk_bitsel, hw) static u8 r9a06g032_clk_mux_get_parent(struct clk_hw *hw) { struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw); return clk_rdesc_get(set->clocks, set->selector); } static int r9a06g032_clk_mux_set_parent(struct clk_hw *hw, u8 index) { struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw); /* a single bit in the register selects one of two parent clocks */ clk_rdesc_set(set->clocks, set->selector, !!index); return 0; } static const struct clk_ops clk_bitselect_ops = { .get_parent = r9a06g032_clk_mux_get_parent, .set_parent = r9a06g032_clk_mux_set_parent, }; static struct clk * r9a06g032_register_bitsel(struct r9a06g032_priv *clocks, const char *parent_name, const struct r9a06g032_clkdesc *desc) { struct clk *clk; struct r9a06g032_clk_bitsel *g; struct clk_init_data init = {}; const char *names[2]; /* allocate the gate */ g = kzalloc(sizeof(*g), GFP_KERNEL); if (!g) return NULL; names[0] = parent_name; names[1] = "clk_pll_usb"; init.name = desc->name; init.ops = &clk_bitselect_ops; init.flags = CLK_SET_RATE_PARENT; init.parent_names = names; init.num_parents = 2; g->clocks = clocks; g->index = desc->index; g->selector = desc->dual.sel; g->hw.init = &init; clk = clk_register(NULL, &g->hw); if (IS_ERR(clk)) { kfree(g); return NULL; } return clk; } struct r9a06g032_clk_dualgate { struct clk_hw hw; struct r9a06g032_priv *clocks; u16 index; u16 selector; /* selector register + bit */ struct r9a06g032_gate gate[2]; }; #define to_clk_dualgate(_hw) \ container_of(_hw, struct r9a06g032_clk_dualgate, hw) static int r9a06g032_clk_dualgate_setenable(struct r9a06g032_clk_dualgate *g, int enable) { u8 sel_bit = clk_rdesc_get(g->clocks, g->selector); /* we always turn off the 'other' gate, regardless */ r9a06g032_clk_gate_set(g->clocks, &g->gate[!sel_bit], 0); r9a06g032_clk_gate_set(g->clocks, &g->gate[sel_bit], enable); return 0; } static int r9a06g032_clk_dualgate_enable(struct clk_hw *hw) { struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw); r9a06g032_clk_dualgate_setenable(gate, 1); return 0; } static void r9a06g032_clk_dualgate_disable(struct clk_hw *hw) { struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw); r9a06g032_clk_dualgate_setenable(gate, 0); } static int r9a06g032_clk_dualgate_is_enabled(struct clk_hw *hw) { struct r9a06g032_clk_dualgate *g = to_clk_dualgate(hw); u8 sel_bit = clk_rdesc_get(g->clocks, g->selector); return clk_rdesc_get(g->clocks, g->gate[sel_bit].gate); } static const struct clk_ops r9a06g032_clk_dualgate_ops = { .enable = r9a06g032_clk_dualgate_enable, .disable = r9a06g032_clk_dualgate_disable, .is_enabled = r9a06g032_clk_dualgate_is_enabled, }; static struct clk * r9a06g032_register_dualgate(struct r9a06g032_priv *clocks, const char *parent_name, const struct r9a06g032_clkdesc *desc, uint16_t sel) { struct r9a06g032_clk_dualgate *g; struct clk *clk; struct clk_init_data init = {}; /* allocate the gate */ g = kzalloc(sizeof(*g), GFP_KERNEL); if (!g) return NULL; g->clocks = clocks; g->index = desc->index; g->selector = sel; g->gate[0].gate = desc->dual.g1; g->gate[0].reset = desc->dual.r1; g->gate[1].gate = desc->dual.g2; g->gate[1].reset = desc->dual.r2; init.name = desc->name; init.ops = &r9a06g032_clk_dualgate_ops; init.flags = CLK_SET_RATE_PARENT; init.parent_names = &parent_name; init.num_parents = 1; g->hw.init = &init; /* * important here, some clocks are already in use by the CM3, we * have to assume they are not Linux's to play with and try to disable * at the end of the boot! */ if (r9a06g032_clk_dualgate_is_enabled(&g->hw)) { init.flags |= CLK_IS_CRITICAL; pr_debug("%s was enabled, making read-only\n", desc->name); } clk = clk_register(NULL, &g->hw); if (IS_ERR(clk)) { kfree(g); return NULL; } return clk; } static void r9a06g032_clocks_del_clk_provider(void *data) { of_clk_del_provider(data); } static int __init r9a06g032_clocks_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct r9a06g032_priv *clocks; struct clk **clks; struct clk *mclk; unsigned int i; u16 uart_group_sel[2]; int error; clocks = devm_kzalloc(dev, sizeof(*clocks), GFP_KERNEL); clks = devm_kcalloc(dev, R9A06G032_CLOCK_COUNT, sizeof(struct clk *), GFP_KERNEL); if (!clocks || !clks) return -ENOMEM; spin_lock_init(&clocks->lock); clocks->data.clks = clks; clocks->data.clk_num = R9A06G032_CLOCK_COUNT; mclk = devm_clk_get(dev, "mclk"); if (IS_ERR(mclk)) return PTR_ERR(mclk); clocks->reg = of_iomap(np, 0); if (WARN_ON(!clocks->reg)) return -ENOMEM; for (i = 0; i < ARRAY_SIZE(r9a06g032_clocks); ++i) { const struct r9a06g032_clkdesc *d = &r9a06g032_clocks[i]; const char *parent_name = d->source ? __clk_get_name(clocks->data.clks[d->source - 1]) : __clk_get_name(mclk); struct clk *clk = NULL; switch (d->type) { case K_FFC: clk = clk_register_fixed_factor(NULL, d->name, parent_name, 0, d->mul, d->div); break; case K_GATE: clk = r9a06g032_register_gate(clocks, parent_name, d); break; case K_DIV: clk = r9a06g032_register_div(clocks, parent_name, d); break; case K_BITSEL: /* keep that selector register around */ uart_group_sel[d->dual.group] = d->dual.sel; clk = r9a06g032_register_bitsel(clocks, parent_name, d); break; case K_DUALGATE: clk = r9a06g032_register_dualgate(clocks, parent_name, d, uart_group_sel[d->dual.group]); break; } clocks->data.clks[d->index] = clk; } error = of_clk_add_provider(np, of_clk_src_onecell_get, &clocks->data); if (error) return error; error = devm_add_action_or_reset(dev, r9a06g032_clocks_del_clk_provider, np); if (error) return error; error = r9a06g032_add_clk_domain(dev); if (error) return error; sysctrl_priv = clocks; error = of_platform_populate(np, NULL, NULL, dev); if (error) dev_err(dev, "Failed to populate children (%d)\n", error); return 0; } static const struct of_device_id r9a06g032_match[] = { { .compatible = "renesas,r9a06g032-sysctrl" }, { } }; static struct platform_driver r9a06g032_clock_driver = { .driver = { .name = "renesas,r9a06g032-sysctrl", .of_match_table = r9a06g032_match, }, }; static int __init r9a06g032_clocks_init(void) { return platform_driver_probe(&r9a06g032_clock_driver, r9a06g032_clocks_probe); } subsys_initcall(r9a06g032_clocks_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1