Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Lad Prabhakar | 3784 | 56.33% | 7 | 26.92% |
Biju Das | 2828 | 42.10% | 12 | 46.15% |
Phil Edworthy | 95 | 1.41% | 3 | 11.54% |
Dan Carpenter | 9 | 0.13% | 2 | 7.69% |
Geert Uytterhoeven | 1 | 0.01% | 1 | 3.85% |
Li Yang | 1 | 0.01% | 1 | 3.85% |
Total | 6718 | 26 |
// SPDX-License-Identifier: GPL-2.0 /* * RZ/G2L Clock Pulse Generator * * Copyright (C) 2021 Renesas Electronics Corp. * * Based on renesas-cpg-mssr.c * * Copyright (C) 2015 Glider bvba * Copyright (C) 2013 Ideas On Board SPRL * Copyright (C) 2015 Renesas Electronics Corp. */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/clk/renesas.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/init.h> #include <linux/iopoll.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/pm_clock.h> #include <linux/pm_domain.h> #include <linux/reset-controller.h> #include <linux/slab.h> #include <linux/units.h> #include <dt-bindings/clock/renesas-cpg-mssr.h> #include "rzg2l-cpg.h" #ifdef DEBUG #define WARN_DEBUG(x) WARN_ON(x) #else #define WARN_DEBUG(x) do { } while (0) #endif #define DIV_RSMASK(v, s, m) ((v >> s) & m) #define GET_SHIFT(val) ((val >> 12) & 0xff) #define GET_WIDTH(val) ((val >> 8) & 0xf) #define KDIV(val) DIV_RSMASK(val, 16, 0xffff) #define MDIV(val) DIV_RSMASK(val, 6, 0x3ff) #define PDIV(val) DIV_RSMASK(val, 0, 0x3f) #define SDIV(val) DIV_RSMASK(val, 0, 0x7) #define CLK_ON_R(reg) (reg) #define CLK_MON_R(reg) (0x180 + (reg)) #define CLK_RST_R(reg) (reg) #define CLK_MRST_R(reg) (0x180 + (reg)) #define GET_REG_OFFSET(val) ((val >> 20) & 0xfff) #define GET_REG_SAMPLL_CLK1(val) ((val >> 22) & 0xfff) #define GET_REG_SAMPLL_CLK2(val) ((val >> 12) & 0xfff) #define MAX_VCLK_FREQ (148500000) struct sd_hw_data { struct clk_hw hw; u32 conf; struct rzg2l_cpg_priv *priv; }; #define to_sd_hw_data(_hw) container_of(_hw, struct sd_hw_data, hw) struct rzg2l_pll5_param { u32 pl5_fracin; u8 pl5_refdiv; u8 pl5_intin; u8 pl5_postdiv1; u8 pl5_postdiv2; u8 pl5_spread; }; struct rzg2l_pll5_mux_dsi_div_param { u8 clksrc; u8 dsi_div_a; u8 dsi_div_b; }; /** * struct rzg2l_cpg_priv - Clock Pulse Generator Private Data * * @rcdev: Reset controller entity * @dev: CPG device * @base: CPG register block base address * @rmw_lock: protects register accesses * @clks: Array containing all Core and Module Clocks * @num_core_clks: Number of Core Clocks in clks[] * @num_mod_clks: Number of Module Clocks in clks[] * @num_resets: Number of Module Resets in info->resets[] * @last_dt_core_clk: ID of the last Core Clock exported to DT * @info: Pointer to platform data * @genpd: PM domain * @mux_dsi_div_params: pll5 mux and dsi div parameters */ struct rzg2l_cpg_priv { struct reset_controller_dev rcdev; struct device *dev; void __iomem *base; spinlock_t rmw_lock; struct clk **clks; unsigned int num_core_clks; unsigned int num_mod_clks; unsigned int num_resets; unsigned int last_dt_core_clk; const struct rzg2l_cpg_info *info; struct generic_pm_domain genpd; struct rzg2l_pll5_mux_dsi_div_param mux_dsi_div_params; }; static void rzg2l_cpg_del_clk_provider(void *data) { of_clk_del_provider(data); } static struct clk * __init rzg2l_cpg_div_clk_register(const struct cpg_core_clk *core, struct clk **clks, void __iomem *base, struct rzg2l_cpg_priv *priv) { struct device *dev = priv->dev; const struct clk *parent; const char *parent_name; struct clk_hw *clk_hw; parent = clks[core->parent & 0xffff]; if (IS_ERR(parent)) return ERR_CAST(parent); parent_name = __clk_get_name(parent); if (core->dtable) clk_hw = clk_hw_register_divider_table(dev, core->name, parent_name, 0, base + GET_REG_OFFSET(core->conf), GET_SHIFT(core->conf), GET_WIDTH(core->conf), core->flag, core->dtable, &priv->rmw_lock); else clk_hw = clk_hw_register_divider(dev, core->name, parent_name, 0, base + GET_REG_OFFSET(core->conf), GET_SHIFT(core->conf), GET_WIDTH(core->conf), core->flag, &priv->rmw_lock); if (IS_ERR(clk_hw)) return ERR_CAST(clk_hw); return clk_hw->clk; } static struct clk * __init rzg2l_cpg_mux_clk_register(const struct cpg_core_clk *core, void __iomem *base, struct rzg2l_cpg_priv *priv) { const struct clk_hw *clk_hw; clk_hw = devm_clk_hw_register_mux(priv->dev, core->name, core->parent_names, core->num_parents, core->flag, base + GET_REG_OFFSET(core->conf), GET_SHIFT(core->conf), GET_WIDTH(core->conf), core->mux_flags, &priv->rmw_lock); if (IS_ERR(clk_hw)) return ERR_CAST(clk_hw); return clk_hw->clk; } static int rzg2l_cpg_sd_clk_mux_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); } static int rzg2l_cpg_sd_clk_mux_set_parent(struct clk_hw *hw, u8 index) { struct sd_hw_data *hwdata = to_sd_hw_data(hw); struct rzg2l_cpg_priv *priv = hwdata->priv; u32 off = GET_REG_OFFSET(hwdata->conf); u32 shift = GET_SHIFT(hwdata->conf); const u32 clk_src_266 = 2; u32 bitmask; /* * As per the HW manual, we should not directly switch from 533 MHz to * 400 MHz and vice versa. To change the setting from 2’b01 (533 MHz) * to 2’b10 (400 MHz) or vice versa, Switch to 2’b11 (266 MHz) first, * and then switch to the target setting (2’b01 (533 MHz) or 2’b10 * (400 MHz)). * Setting a value of '0' to the SEL_SDHI0_SET or SEL_SDHI1_SET clock * switching register is prohibited. * The clock mux has 3 input clocks(533 MHz, 400 MHz, and 266 MHz), and * the index to value mapping is done by adding 1 to the index. */ bitmask = (GENMASK(GET_WIDTH(hwdata->conf) - 1, 0) << shift) << 16; if (index != clk_src_266) { u32 msk, val; int ret; writel(bitmask | ((clk_src_266 + 1) << shift), priv->base + off); msk = off ? CPG_CLKSTATUS_SELSDHI1_STS : CPG_CLKSTATUS_SELSDHI0_STS; ret = readl_poll_timeout(priv->base + CPG_CLKSTATUS, val, !(val & msk), 100, CPG_SDHI_CLK_SWITCH_STATUS_TIMEOUT_US); if (ret) { dev_err(priv->dev, "failed to switch clk source\n"); return ret; } } writel(bitmask | ((index + 1) << shift), priv->base + off); return 0; } static u8 rzg2l_cpg_sd_clk_mux_get_parent(struct clk_hw *hw) { struct sd_hw_data *hwdata = to_sd_hw_data(hw); struct rzg2l_cpg_priv *priv = hwdata->priv; u32 val = readl(priv->base + GET_REG_OFFSET(hwdata->conf)); val >>= GET_SHIFT(hwdata->conf); val &= GENMASK(GET_WIDTH(hwdata->conf) - 1, 0); if (val) { val--; } else { /* Prohibited clk source, change it to 533 MHz(reset value) */ rzg2l_cpg_sd_clk_mux_set_parent(hw, 0); } return val; } static const struct clk_ops rzg2l_cpg_sd_clk_mux_ops = { .determine_rate = rzg2l_cpg_sd_clk_mux_determine_rate, .set_parent = rzg2l_cpg_sd_clk_mux_set_parent, .get_parent = rzg2l_cpg_sd_clk_mux_get_parent, }; static struct clk * __init rzg2l_cpg_sd_mux_clk_register(const struct cpg_core_clk *core, void __iomem *base, struct rzg2l_cpg_priv *priv) { struct sd_hw_data *clk_hw_data; struct clk_init_data init; struct clk_hw *clk_hw; int ret; clk_hw_data = devm_kzalloc(priv->dev, sizeof(*clk_hw_data), GFP_KERNEL); if (!clk_hw_data) return ERR_PTR(-ENOMEM); clk_hw_data->priv = priv; clk_hw_data->conf = core->conf; init.name = GET_SHIFT(core->conf) ? "sd1" : "sd0"; init.ops = &rzg2l_cpg_sd_clk_mux_ops; init.flags = 0; init.num_parents = core->num_parents; init.parent_names = core->parent_names; clk_hw = &clk_hw_data->hw; clk_hw->init = &init; ret = devm_clk_hw_register(priv->dev, clk_hw); if (ret) return ERR_PTR(ret); return clk_hw->clk; } static unsigned long rzg2l_cpg_get_foutpostdiv_rate(struct rzg2l_pll5_param *params, unsigned long rate) { unsigned long foutpostdiv_rate; params->pl5_intin = rate / MEGA; params->pl5_fracin = div_u64(((u64)rate % MEGA) << 24, MEGA); params->pl5_refdiv = 2; params->pl5_postdiv1 = 1; params->pl5_postdiv2 = 1; params->pl5_spread = 0x16; foutpostdiv_rate = EXTAL_FREQ_IN_MEGA_HZ * MEGA / params->pl5_refdiv * ((((params->pl5_intin << 24) + params->pl5_fracin)) >> 24) / (params->pl5_postdiv1 * params->pl5_postdiv2); return foutpostdiv_rate; } struct dsi_div_hw_data { struct clk_hw hw; u32 conf; unsigned long rate; struct rzg2l_cpg_priv *priv; }; #define to_dsi_div_hw_data(_hw) container_of(_hw, struct dsi_div_hw_data, hw) static unsigned long rzg2l_cpg_dsi_div_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct dsi_div_hw_data *dsi_div = to_dsi_div_hw_data(hw); unsigned long rate = dsi_div->rate; if (!rate) rate = parent_rate; return rate; } static unsigned long rzg2l_cpg_get_vclk_parent_rate(struct clk_hw *hw, unsigned long rate) { struct dsi_div_hw_data *dsi_div = to_dsi_div_hw_data(hw); struct rzg2l_cpg_priv *priv = dsi_div->priv; struct rzg2l_pll5_param params; unsigned long parent_rate; parent_rate = rzg2l_cpg_get_foutpostdiv_rate(¶ms, rate); if (priv->mux_dsi_div_params.clksrc) parent_rate /= 2; return parent_rate; } static int rzg2l_cpg_dsi_div_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { if (req->rate > MAX_VCLK_FREQ) req->rate = MAX_VCLK_FREQ; req->best_parent_rate = rzg2l_cpg_get_vclk_parent_rate(hw, req->rate); return 0; } static int rzg2l_cpg_dsi_div_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct dsi_div_hw_data *dsi_div = to_dsi_div_hw_data(hw); struct rzg2l_cpg_priv *priv = dsi_div->priv; /* * MUX -->DIV_DSI_{A,B} -->M3 -->VCLK * * Based on the dot clock, the DSI divider clock sets the divider value, * calculates the pll parameters for generating FOUTPOSTDIV and the clk * source for the MUX and propagates that info to the parents. */ if (!rate || rate > MAX_VCLK_FREQ) return -EINVAL; dsi_div->rate = rate; writel(CPG_PL5_SDIV_DIV_DSI_A_WEN | CPG_PL5_SDIV_DIV_DSI_B_WEN | (priv->mux_dsi_div_params.dsi_div_a << 0) | (priv->mux_dsi_div_params.dsi_div_b << 8), priv->base + CPG_PL5_SDIV); return 0; } static const struct clk_ops rzg2l_cpg_dsi_div_ops = { .recalc_rate = rzg2l_cpg_dsi_div_recalc_rate, .determine_rate = rzg2l_cpg_dsi_div_determine_rate, .set_rate = rzg2l_cpg_dsi_div_set_rate, }; static struct clk * __init rzg2l_cpg_dsi_div_clk_register(const struct cpg_core_clk *core, struct clk **clks, struct rzg2l_cpg_priv *priv) { struct dsi_div_hw_data *clk_hw_data; const struct clk *parent; const char *parent_name; struct clk_init_data init; struct clk_hw *clk_hw; int ret; parent = clks[core->parent & 0xffff]; if (IS_ERR(parent)) return ERR_CAST(parent); clk_hw_data = devm_kzalloc(priv->dev, sizeof(*clk_hw_data), GFP_KERNEL); if (!clk_hw_data) return ERR_PTR(-ENOMEM); clk_hw_data->priv = priv; parent_name = __clk_get_name(parent); init.name = core->name; init.ops = &rzg2l_cpg_dsi_div_ops; init.flags = CLK_SET_RATE_PARENT; init.parent_names = &parent_name; init.num_parents = 1; clk_hw = &clk_hw_data->hw; clk_hw->init = &init; ret = devm_clk_hw_register(priv->dev, clk_hw); if (ret) return ERR_PTR(ret); return clk_hw->clk; } struct pll5_mux_hw_data { struct clk_hw hw; u32 conf; unsigned long rate; struct rzg2l_cpg_priv *priv; }; #define to_pll5_mux_hw_data(_hw) container_of(_hw, struct pll5_mux_hw_data, hw) static int rzg2l_cpg_pll5_4_clk_mux_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct clk_hw *parent; struct pll5_mux_hw_data *hwdata = to_pll5_mux_hw_data(hw); struct rzg2l_cpg_priv *priv = hwdata->priv; parent = clk_hw_get_parent_by_index(hw, priv->mux_dsi_div_params.clksrc); req->best_parent_hw = parent; req->best_parent_rate = req->rate; return 0; } static int rzg2l_cpg_pll5_4_clk_mux_set_parent(struct clk_hw *hw, u8 index) { struct pll5_mux_hw_data *hwdata = to_pll5_mux_hw_data(hw); struct rzg2l_cpg_priv *priv = hwdata->priv; /* * FOUTPOSTDIV--->| * | | -->MUX -->DIV_DSIA_B -->M3 -->VCLK * |--FOUT1PH0-->| * * Based on the dot clock, the DSI divider clock calculates the parent * rate and clk source for the MUX. It propagates that info to * pll5_4_clk_mux which sets the clock source for DSI divider clock. */ writel(CPG_OTHERFUNC1_REG_RES0_ON_WEN | index, priv->base + CPG_OTHERFUNC1_REG); return 0; } static u8 rzg2l_cpg_pll5_4_clk_mux_get_parent(struct clk_hw *hw) { struct pll5_mux_hw_data *hwdata = to_pll5_mux_hw_data(hw); struct rzg2l_cpg_priv *priv = hwdata->priv; return readl(priv->base + GET_REG_OFFSET(hwdata->conf)); } static const struct clk_ops rzg2l_cpg_pll5_4_clk_mux_ops = { .determine_rate = rzg2l_cpg_pll5_4_clk_mux_determine_rate, .set_parent = rzg2l_cpg_pll5_4_clk_mux_set_parent, .get_parent = rzg2l_cpg_pll5_4_clk_mux_get_parent, }; static struct clk * __init rzg2l_cpg_pll5_4_mux_clk_register(const struct cpg_core_clk *core, struct rzg2l_cpg_priv *priv) { struct pll5_mux_hw_data *clk_hw_data; struct clk_init_data init; struct clk_hw *clk_hw; int ret; clk_hw_data = devm_kzalloc(priv->dev, sizeof(*clk_hw_data), GFP_KERNEL); if (!clk_hw_data) return ERR_PTR(-ENOMEM); clk_hw_data->priv = priv; clk_hw_data->conf = core->conf; init.name = core->name; init.ops = &rzg2l_cpg_pll5_4_clk_mux_ops; init.flags = CLK_SET_RATE_PARENT; init.num_parents = core->num_parents; init.parent_names = core->parent_names; clk_hw = &clk_hw_data->hw; clk_hw->init = &init; ret = devm_clk_hw_register(priv->dev, clk_hw); if (ret) return ERR_PTR(ret); return clk_hw->clk; } struct sipll5 { struct clk_hw hw; u32 conf; unsigned long foutpostdiv_rate; struct rzg2l_cpg_priv *priv; }; #define to_sipll5(_hw) container_of(_hw, struct sipll5, hw) static unsigned long rzg2l_cpg_get_vclk_rate(struct clk_hw *hw, unsigned long rate) { struct sipll5 *sipll5 = to_sipll5(hw); struct rzg2l_cpg_priv *priv = sipll5->priv; unsigned long vclk; vclk = rate / ((1 << priv->mux_dsi_div_params.dsi_div_a) * (priv->mux_dsi_div_params.dsi_div_b + 1)); if (priv->mux_dsi_div_params.clksrc) vclk /= 2; return vclk; } static unsigned long rzg2l_cpg_sipll5_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct sipll5 *sipll5 = to_sipll5(hw); unsigned long pll5_rate = sipll5->foutpostdiv_rate; if (!pll5_rate) pll5_rate = parent_rate; return pll5_rate; } static long rzg2l_cpg_sipll5_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { return rate; } static int rzg2l_cpg_sipll5_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct sipll5 *sipll5 = to_sipll5(hw); struct rzg2l_cpg_priv *priv = sipll5->priv; struct rzg2l_pll5_param params; unsigned long vclk_rate; int ret; u32 val; /* * OSC --> PLL5 --> FOUTPOSTDIV-->| * | | -->MUX -->DIV_DSIA_B -->M3 -->VCLK * |--FOUT1PH0-->| * * Based on the dot clock, the DSI divider clock calculates the parent * rate and the pll5 parameters for generating FOUTPOSTDIV. It propagates * that info to sipll5 which sets parameters for generating FOUTPOSTDIV. * * OSC --> PLL5 --> FOUTPOSTDIV */ if (!rate) return -EINVAL; vclk_rate = rzg2l_cpg_get_vclk_rate(hw, rate); sipll5->foutpostdiv_rate = rzg2l_cpg_get_foutpostdiv_rate(¶ms, vclk_rate); /* Put PLL5 into standby mode */ writel(CPG_SIPLL5_STBY_RESETB_WEN, priv->base + CPG_SIPLL5_STBY); ret = readl_poll_timeout(priv->base + CPG_SIPLL5_MON, val, !(val & CPG_SIPLL5_MON_PLL5_LOCK), 100, 250000); if (ret) { dev_err(priv->dev, "failed to release pll5 lock"); return ret; } /* Output clock setting 1 */ writel(CPG_SIPLL5_CLK1_POSTDIV1_WEN | CPG_SIPLL5_CLK1_POSTDIV2_WEN | CPG_SIPLL5_CLK1_REFDIV_WEN | (params.pl5_postdiv1 << 0) | (params.pl5_postdiv2 << 4) | (params.pl5_refdiv << 8), priv->base + CPG_SIPLL5_CLK1); /* Output clock setting, SSCG modulation value setting 3 */ writel((params.pl5_fracin << 8), priv->base + CPG_SIPLL5_CLK3); /* Output clock setting 4 */ writel(CPG_SIPLL5_CLK4_RESV_LSB | (params.pl5_intin << 16), priv->base + CPG_SIPLL5_CLK4); /* Output clock setting 5 */ writel(params.pl5_spread, priv->base + CPG_SIPLL5_CLK5); /* PLL normal mode setting */ writel(CPG_SIPLL5_STBY_DOWNSPREAD_WEN | CPG_SIPLL5_STBY_SSCG_EN_WEN | CPG_SIPLL5_STBY_RESETB_WEN | CPG_SIPLL5_STBY_RESETB, priv->base + CPG_SIPLL5_STBY); /* PLL normal mode transition, output clock stability check */ ret = readl_poll_timeout(priv->base + CPG_SIPLL5_MON, val, (val & CPG_SIPLL5_MON_PLL5_LOCK), 100, 250000); if (ret) { dev_err(priv->dev, "failed to lock pll5"); return ret; } return 0; } static const struct clk_ops rzg2l_cpg_sipll5_ops = { .recalc_rate = rzg2l_cpg_sipll5_recalc_rate, .round_rate = rzg2l_cpg_sipll5_round_rate, .set_rate = rzg2l_cpg_sipll5_set_rate, }; static struct clk * __init rzg2l_cpg_sipll5_register(const struct cpg_core_clk *core, struct clk **clks, struct rzg2l_cpg_priv *priv) { const struct clk *parent; struct clk_init_data init; const char *parent_name; struct sipll5 *sipll5; struct clk_hw *clk_hw; int ret; parent = clks[core->parent & 0xffff]; if (IS_ERR(parent)) return ERR_CAST(parent); sipll5 = devm_kzalloc(priv->dev, sizeof(*sipll5), GFP_KERNEL); if (!sipll5) return ERR_PTR(-ENOMEM); init.name = core->name; parent_name = __clk_get_name(parent); init.ops = &rzg2l_cpg_sipll5_ops; init.flags = 0; init.parent_names = &parent_name; init.num_parents = 1; sipll5->hw.init = &init; sipll5->conf = core->conf; sipll5->priv = priv; writel(CPG_SIPLL5_STBY_SSCG_EN_WEN | CPG_SIPLL5_STBY_RESETB_WEN | CPG_SIPLL5_STBY_RESETB, priv->base + CPG_SIPLL5_STBY); clk_hw = &sipll5->hw; clk_hw->init = &init; ret = devm_clk_hw_register(priv->dev, clk_hw); if (ret) return ERR_PTR(ret); priv->mux_dsi_div_params.clksrc = 1; /* Use clk src 1 for DSI */ priv->mux_dsi_div_params.dsi_div_a = 1; /* Divided by 2 */ priv->mux_dsi_div_params.dsi_div_b = 2; /* Divided by 3 */ return clk_hw->clk; } struct pll_clk { struct clk_hw hw; unsigned int conf; unsigned int type; void __iomem *base; struct rzg2l_cpg_priv *priv; }; #define to_pll(_hw) container_of(_hw, struct pll_clk, hw) static unsigned long rzg2l_cpg_pll_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct pll_clk *pll_clk = to_pll(hw); struct rzg2l_cpg_priv *priv = pll_clk->priv; unsigned int val1, val2; unsigned int mult = 1; unsigned int div = 1; if (pll_clk->type != CLK_TYPE_SAM_PLL) return parent_rate; val1 = readl(priv->base + GET_REG_SAMPLL_CLK1(pll_clk->conf)); val2 = readl(priv->base + GET_REG_SAMPLL_CLK2(pll_clk->conf)); mult = MDIV(val1) + KDIV(val1) / 65536; div = PDIV(val1) << SDIV(val2); return DIV_ROUND_CLOSEST_ULL((u64)parent_rate * mult, div); } static const struct clk_ops rzg2l_cpg_pll_ops = { .recalc_rate = rzg2l_cpg_pll_clk_recalc_rate, }; static struct clk * __init rzg2l_cpg_pll_clk_register(const struct cpg_core_clk *core, struct clk **clks, void __iomem *base, struct rzg2l_cpg_priv *priv) { struct device *dev = priv->dev; const struct clk *parent; struct clk_init_data init; const char *parent_name; struct pll_clk *pll_clk; parent = clks[core->parent & 0xffff]; if (IS_ERR(parent)) return ERR_CAST(parent); pll_clk = devm_kzalloc(dev, sizeof(*pll_clk), GFP_KERNEL); if (!pll_clk) return ERR_PTR(-ENOMEM); parent_name = __clk_get_name(parent); init.name = core->name; init.ops = &rzg2l_cpg_pll_ops; init.flags = 0; init.parent_names = &parent_name; init.num_parents = 1; pll_clk->hw.init = &init; pll_clk->conf = core->conf; pll_clk->base = base; pll_clk->priv = priv; pll_clk->type = core->type; return clk_register(NULL, &pll_clk->hw); } static struct clk *rzg2l_cpg_clk_src_twocell_get(struct of_phandle_args *clkspec, void *data) { unsigned int clkidx = clkspec->args[1]; struct rzg2l_cpg_priv *priv = data; struct device *dev = priv->dev; const char *type; struct clk *clk; switch (clkspec->args[0]) { case CPG_CORE: type = "core"; if (clkidx > priv->last_dt_core_clk) { dev_err(dev, "Invalid %s clock index %u\n", type, clkidx); return ERR_PTR(-EINVAL); } clk = priv->clks[clkidx]; break; case CPG_MOD: type = "module"; if (clkidx >= priv->num_mod_clks) { dev_err(dev, "Invalid %s clock index %u\n", type, clkidx); return ERR_PTR(-EINVAL); } clk = priv->clks[priv->num_core_clks + clkidx]; break; default: dev_err(dev, "Invalid CPG clock type %u\n", clkspec->args[0]); return ERR_PTR(-EINVAL); } if (IS_ERR(clk)) dev_err(dev, "Cannot get %s clock %u: %ld", type, clkidx, PTR_ERR(clk)); else dev_dbg(dev, "clock (%u, %u) is %pC at %lu Hz\n", clkspec->args[0], clkspec->args[1], clk, clk_get_rate(clk)); return clk; } static void __init rzg2l_cpg_register_core_clk(const struct cpg_core_clk *core, const struct rzg2l_cpg_info *info, struct rzg2l_cpg_priv *priv) { struct clk *clk = ERR_PTR(-EOPNOTSUPP), *parent; struct device *dev = priv->dev; unsigned int id = core->id, div = core->div; const char *parent_name; WARN_DEBUG(id >= priv->num_core_clks); WARN_DEBUG(PTR_ERR(priv->clks[id]) != -ENOENT); if (!core->name) { /* Skip NULLified clock */ return; } switch (core->type) { case CLK_TYPE_IN: clk = of_clk_get_by_name(priv->dev->of_node, core->name); break; case CLK_TYPE_FF: WARN_DEBUG(core->parent >= priv->num_core_clks); parent = priv->clks[core->parent]; if (IS_ERR(parent)) { clk = parent; goto fail; } parent_name = __clk_get_name(parent); clk = clk_register_fixed_factor(NULL, core->name, parent_name, CLK_SET_RATE_PARENT, core->mult, div); break; case CLK_TYPE_SAM_PLL: clk = rzg2l_cpg_pll_clk_register(core, priv->clks, priv->base, priv); break; case CLK_TYPE_SIPLL5: clk = rzg2l_cpg_sipll5_register(core, priv->clks, priv); break; case CLK_TYPE_DIV: clk = rzg2l_cpg_div_clk_register(core, priv->clks, priv->base, priv); break; case CLK_TYPE_MUX: clk = rzg2l_cpg_mux_clk_register(core, priv->base, priv); break; case CLK_TYPE_SD_MUX: clk = rzg2l_cpg_sd_mux_clk_register(core, priv->base, priv); break; case CLK_TYPE_PLL5_4_MUX: clk = rzg2l_cpg_pll5_4_mux_clk_register(core, priv); break; case CLK_TYPE_DSI_DIV: clk = rzg2l_cpg_dsi_div_clk_register(core, priv->clks, priv); break; default: goto fail; } if (IS_ERR_OR_NULL(clk)) goto fail; dev_dbg(dev, "Core clock %pC at %lu Hz\n", clk, clk_get_rate(clk)); priv->clks[id] = clk; return; fail: dev_err(dev, "Failed to register %s clock %s: %ld\n", "core", core->name, PTR_ERR(clk)); } /** * struct mstp_clock - MSTP gating clock * * @hw: handle between common and hardware-specific interfaces * @off: register offset * @bit: ON/MON bit * @enabled: soft state of the clock, if it is coupled with another clock * @priv: CPG/MSTP private data * @sibling: pointer to the other coupled clock */ struct mstp_clock { struct clk_hw hw; u16 off; u8 bit; bool enabled; struct rzg2l_cpg_priv *priv; struct mstp_clock *sibling; }; #define to_mod_clock(_hw) container_of(_hw, struct mstp_clock, hw) static int rzg2l_mod_clock_endisable(struct clk_hw *hw, bool enable) { struct mstp_clock *clock = to_mod_clock(hw); struct rzg2l_cpg_priv *priv = clock->priv; unsigned int reg = clock->off; struct device *dev = priv->dev; unsigned long flags; unsigned int i; u32 bitmask = BIT(clock->bit); u32 value; if (!clock->off) { dev_dbg(dev, "%pC does not support ON/OFF\n", hw->clk); return 0; } dev_dbg(dev, "CLK_ON %u/%pC %s\n", CLK_ON_R(reg), hw->clk, enable ? "ON" : "OFF"); spin_lock_irqsave(&priv->rmw_lock, flags); if (enable) value = (bitmask << 16) | bitmask; else value = bitmask << 16; writel(value, priv->base + CLK_ON_R(reg)); spin_unlock_irqrestore(&priv->rmw_lock, flags); if (!enable) return 0; if (!priv->info->has_clk_mon_regs) return 0; for (i = 1000; i > 0; --i) { if (((readl(priv->base + CLK_MON_R(reg))) & bitmask)) break; cpu_relax(); } if (!i) { dev_err(dev, "Failed to enable CLK_ON %p\n", priv->base + CLK_ON_R(reg)); return -ETIMEDOUT; } return 0; } static int rzg2l_mod_clock_enable(struct clk_hw *hw) { struct mstp_clock *clock = to_mod_clock(hw); if (clock->sibling) { struct rzg2l_cpg_priv *priv = clock->priv; unsigned long flags; bool enabled; spin_lock_irqsave(&priv->rmw_lock, flags); enabled = clock->sibling->enabled; clock->enabled = true; spin_unlock_irqrestore(&priv->rmw_lock, flags); if (enabled) return 0; } return rzg2l_mod_clock_endisable(hw, true); } static void rzg2l_mod_clock_disable(struct clk_hw *hw) { struct mstp_clock *clock = to_mod_clock(hw); if (clock->sibling) { struct rzg2l_cpg_priv *priv = clock->priv; unsigned long flags; bool enabled; spin_lock_irqsave(&priv->rmw_lock, flags); enabled = clock->sibling->enabled; clock->enabled = false; spin_unlock_irqrestore(&priv->rmw_lock, flags); if (enabled) return; } rzg2l_mod_clock_endisable(hw, false); } static int rzg2l_mod_clock_is_enabled(struct clk_hw *hw) { struct mstp_clock *clock = to_mod_clock(hw); struct rzg2l_cpg_priv *priv = clock->priv; u32 bitmask = BIT(clock->bit); u32 value; if (!clock->off) { dev_dbg(priv->dev, "%pC does not support ON/OFF\n", hw->clk); return 1; } if (clock->sibling) return clock->enabled; if (priv->info->has_clk_mon_regs) value = readl(priv->base + CLK_MON_R(clock->off)); else value = readl(priv->base + clock->off); return value & bitmask; } static const struct clk_ops rzg2l_mod_clock_ops = { .enable = rzg2l_mod_clock_enable, .disable = rzg2l_mod_clock_disable, .is_enabled = rzg2l_mod_clock_is_enabled, }; static struct mstp_clock *rzg2l_mod_clock_get_sibling(struct mstp_clock *clock, struct rzg2l_cpg_priv *priv) { struct clk_hw *hw; unsigned int i; for (i = 0; i < priv->num_mod_clks; i++) { struct mstp_clock *clk; if (priv->clks[priv->num_core_clks + i] == ERR_PTR(-ENOENT)) continue; hw = __clk_get_hw(priv->clks[priv->num_core_clks + i]); clk = to_mod_clock(hw); if (clock->off == clk->off && clock->bit == clk->bit) return clk; } return NULL; } static void __init rzg2l_cpg_register_mod_clk(const struct rzg2l_mod_clk *mod, const struct rzg2l_cpg_info *info, struct rzg2l_cpg_priv *priv) { struct mstp_clock *clock = NULL; struct device *dev = priv->dev; unsigned int id = mod->id; struct clk_init_data init; struct clk *parent, *clk; const char *parent_name; unsigned int i; WARN_DEBUG(id < priv->num_core_clks); WARN_DEBUG(id >= priv->num_core_clks + priv->num_mod_clks); WARN_DEBUG(mod->parent >= priv->num_core_clks + priv->num_mod_clks); WARN_DEBUG(PTR_ERR(priv->clks[id]) != -ENOENT); if (!mod->name) { /* Skip NULLified clock */ return; } parent = priv->clks[mod->parent]; if (IS_ERR(parent)) { clk = parent; goto fail; } clock = devm_kzalloc(dev, sizeof(*clock), GFP_KERNEL); if (!clock) { clk = ERR_PTR(-ENOMEM); goto fail; } init.name = mod->name; init.ops = &rzg2l_mod_clock_ops; init.flags = CLK_SET_RATE_PARENT; for (i = 0; i < info->num_crit_mod_clks; i++) if (id == info->crit_mod_clks[i]) { dev_dbg(dev, "CPG %s setting CLK_IS_CRITICAL\n", mod->name); init.flags |= CLK_IS_CRITICAL; break; } parent_name = __clk_get_name(parent); init.parent_names = &parent_name; init.num_parents = 1; clock->off = mod->off; clock->bit = mod->bit; clock->priv = priv; clock->hw.init = &init; clk = clk_register(NULL, &clock->hw); if (IS_ERR(clk)) goto fail; dev_dbg(dev, "Module clock %pC at %lu Hz\n", clk, clk_get_rate(clk)); priv->clks[id] = clk; if (mod->is_coupled) { struct mstp_clock *sibling; clock->enabled = rzg2l_mod_clock_is_enabled(&clock->hw); sibling = rzg2l_mod_clock_get_sibling(clock, priv); if (sibling) { clock->sibling = sibling; sibling->sibling = clock; } } return; fail: dev_err(dev, "Failed to register %s clock %s: %ld\n", "module", mod->name, PTR_ERR(clk)); } #define rcdev_to_priv(x) container_of(x, struct rzg2l_cpg_priv, rcdev) static int rzg2l_cpg_reset(struct reset_controller_dev *rcdev, unsigned long id) { struct rzg2l_cpg_priv *priv = rcdev_to_priv(rcdev); const struct rzg2l_cpg_info *info = priv->info; unsigned int reg = info->resets[id].off; u32 dis = BIT(info->resets[id].bit); u32 we = dis << 16; dev_dbg(rcdev->dev, "reset id:%ld offset:0x%x\n", id, CLK_RST_R(reg)); /* Reset module */ writel(we, priv->base + CLK_RST_R(reg)); /* Wait for at least one cycle of the RCLK clock (@ ca. 32 kHz) */ udelay(35); /* Release module from reset state */ writel(we | dis, priv->base + CLK_RST_R(reg)); return 0; } static int rzg2l_cpg_assert(struct reset_controller_dev *rcdev, unsigned long id) { struct rzg2l_cpg_priv *priv = rcdev_to_priv(rcdev); const struct rzg2l_cpg_info *info = priv->info; unsigned int reg = info->resets[id].off; u32 value = BIT(info->resets[id].bit) << 16; dev_dbg(rcdev->dev, "assert id:%ld offset:0x%x\n", id, CLK_RST_R(reg)); writel(value, priv->base + CLK_RST_R(reg)); return 0; } static int rzg2l_cpg_deassert(struct reset_controller_dev *rcdev, unsigned long id) { struct rzg2l_cpg_priv *priv = rcdev_to_priv(rcdev); const struct rzg2l_cpg_info *info = priv->info; unsigned int reg = info->resets[id].off; u32 dis = BIT(info->resets[id].bit); u32 value = (dis << 16) | dis; dev_dbg(rcdev->dev, "deassert id:%ld offset:0x%x\n", id, CLK_RST_R(reg)); writel(value, priv->base + CLK_RST_R(reg)); return 0; } static int rzg2l_cpg_status(struct reset_controller_dev *rcdev, unsigned long id) { struct rzg2l_cpg_priv *priv = rcdev_to_priv(rcdev); const struct rzg2l_cpg_info *info = priv->info; unsigned int reg = info->resets[id].off; u32 bitmask = BIT(info->resets[id].bit); s8 monbit = info->resets[id].monbit; if (info->has_clk_mon_regs) { return !!(readl(priv->base + CLK_MRST_R(reg)) & bitmask); } else if (monbit >= 0) { u32 monbitmask = BIT(monbit); return !!(readl(priv->base + CPG_RST_MON) & monbitmask); } return -ENOTSUPP; } static const struct reset_control_ops rzg2l_cpg_reset_ops = { .reset = rzg2l_cpg_reset, .assert = rzg2l_cpg_assert, .deassert = rzg2l_cpg_deassert, .status = rzg2l_cpg_status, }; static int rzg2l_cpg_reset_xlate(struct reset_controller_dev *rcdev, const struct of_phandle_args *reset_spec) { struct rzg2l_cpg_priv *priv = rcdev_to_priv(rcdev); const struct rzg2l_cpg_info *info = priv->info; unsigned int id = reset_spec->args[0]; if (id >= rcdev->nr_resets || !info->resets[id].off) { dev_err(rcdev->dev, "Invalid reset index %u\n", id); return -EINVAL; } return id; } static int rzg2l_cpg_reset_controller_register(struct rzg2l_cpg_priv *priv) { priv->rcdev.ops = &rzg2l_cpg_reset_ops; priv->rcdev.of_node = priv->dev->of_node; priv->rcdev.dev = priv->dev; priv->rcdev.of_reset_n_cells = 1; priv->rcdev.of_xlate = rzg2l_cpg_reset_xlate; priv->rcdev.nr_resets = priv->num_resets; return devm_reset_controller_register(priv->dev, &priv->rcdev); } static bool rzg2l_cpg_is_pm_clk(struct rzg2l_cpg_priv *priv, const struct of_phandle_args *clkspec) { const struct rzg2l_cpg_info *info = priv->info; unsigned int id; unsigned int i; if (clkspec->args_count != 2) return false; if (clkspec->args[0] != CPG_MOD) return false; id = clkspec->args[1] + info->num_total_core_clks; for (i = 0; i < info->num_no_pm_mod_clks; i++) { if (info->no_pm_mod_clks[i] == id) return false; } return true; } static int rzg2l_cpg_attach_dev(struct generic_pm_domain *domain, struct device *dev) { struct rzg2l_cpg_priv *priv = container_of(domain, struct rzg2l_cpg_priv, genpd); struct device_node *np = dev->of_node; struct of_phandle_args clkspec; bool once = true; struct clk *clk; int error; int i = 0; while (!of_parse_phandle_with_args(np, "clocks", "#clock-cells", i, &clkspec)) { if (rzg2l_cpg_is_pm_clk(priv, &clkspec)) { if (once) { once = false; error = pm_clk_create(dev); if (error) { of_node_put(clkspec.np); goto err; } } clk = of_clk_get_from_provider(&clkspec); of_node_put(clkspec.np); if (IS_ERR(clk)) { error = PTR_ERR(clk); goto fail_destroy; } error = pm_clk_add_clk(dev, clk); if (error) { dev_err(dev, "pm_clk_add_clk failed %d\n", error); goto fail_put; } } else { of_node_put(clkspec.np); } i++; } return 0; fail_put: clk_put(clk); fail_destroy: pm_clk_destroy(dev); err: return error; } static void rzg2l_cpg_detach_dev(struct generic_pm_domain *unused, struct device *dev) { if (!pm_clk_no_clocks(dev)) pm_clk_destroy(dev); } static void rzg2l_cpg_genpd_remove(void *data) { pm_genpd_remove(data); } static int __init rzg2l_cpg_add_clk_domain(struct rzg2l_cpg_priv *priv) { struct device *dev = priv->dev; struct device_node *np = dev->of_node; struct generic_pm_domain *genpd = &priv->genpd; int ret; genpd->name = np->name; genpd->flags = GENPD_FLAG_PM_CLK | GENPD_FLAG_ALWAYS_ON | GENPD_FLAG_ACTIVE_WAKEUP; genpd->attach_dev = rzg2l_cpg_attach_dev; genpd->detach_dev = rzg2l_cpg_detach_dev; ret = pm_genpd_init(genpd, &pm_domain_always_on_gov, false); if (ret) return ret; ret = devm_add_action_or_reset(dev, rzg2l_cpg_genpd_remove, genpd); if (ret) return ret; return of_genpd_add_provider_simple(np, genpd); } static int __init rzg2l_cpg_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; const struct rzg2l_cpg_info *info; struct rzg2l_cpg_priv *priv; unsigned int nclks, i; struct clk **clks; int error; info = of_device_get_match_data(dev); priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->dev = dev; priv->info = info; spin_lock_init(&priv->rmw_lock); priv->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(priv->base)) return PTR_ERR(priv->base); nclks = info->num_total_core_clks + info->num_hw_mod_clks; clks = devm_kmalloc_array(dev, nclks, sizeof(*clks), GFP_KERNEL); if (!clks) return -ENOMEM; dev_set_drvdata(dev, priv); priv->clks = clks; priv->num_core_clks = info->num_total_core_clks; priv->num_mod_clks = info->num_hw_mod_clks; priv->num_resets = info->num_resets; priv->last_dt_core_clk = info->last_dt_core_clk; for (i = 0; i < nclks; i++) clks[i] = ERR_PTR(-ENOENT); for (i = 0; i < info->num_core_clks; i++) rzg2l_cpg_register_core_clk(&info->core_clks[i], info, priv); for (i = 0; i < info->num_mod_clks; i++) rzg2l_cpg_register_mod_clk(&info->mod_clks[i], info, priv); error = of_clk_add_provider(np, rzg2l_cpg_clk_src_twocell_get, priv); if (error) return error; error = devm_add_action_or_reset(dev, rzg2l_cpg_del_clk_provider, np); if (error) return error; error = rzg2l_cpg_add_clk_domain(priv); if (error) return error; error = rzg2l_cpg_reset_controller_register(priv); if (error) return error; return 0; } static const struct of_device_id rzg2l_cpg_match[] = { #ifdef CONFIG_CLK_R9A07G043 { .compatible = "renesas,r9a07g043-cpg", .data = &r9a07g043_cpg_info, }, #endif #ifdef CONFIG_CLK_R9A07G044 { .compatible = "renesas,r9a07g044-cpg", .data = &r9a07g044_cpg_info, }, #endif #ifdef CONFIG_CLK_R9A07G054 { .compatible = "renesas,r9a07g054-cpg", .data = &r9a07g054_cpg_info, }, #endif #ifdef CONFIG_CLK_R9A09G011 { .compatible = "renesas,r9a09g011-cpg", .data = &r9a09g011_cpg_info, }, #endif { /* sentinel */ } }; static struct platform_driver rzg2l_cpg_driver = { .driver = { .name = "rzg2l-cpg", .of_match_table = rzg2l_cpg_match, }, }; static int __init rzg2l_cpg_init(void) { return platform_driver_probe(&rzg2l_cpg_driver, rzg2l_cpg_probe); } subsys_initcall(rzg2l_cpg_init); MODULE_DESCRIPTION("Renesas RZ/G2L CPG Driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1