Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Vineet Gupta | 891 | 76.42% | 24 | 57.14% |
Alexey Brodkin | 75 | 6.43% | 1 | 2.38% |
Daniel Lezcano | 74 | 6.35% | 2 | 4.76% |
Noam Camus | 57 | 4.89% | 2 | 4.76% |
Anna-Maria Gleixner | 20 | 1.72% | 1 | 2.38% |
Thomas Gleixner | 14 | 1.20% | 4 | 9.52% |
Viresh Kumar | 11 | 0.94% | 1 | 2.38% |
Rafał Miłecki | 6 | 0.51% | 1 | 2.38% |
Randy Dunlap | 4 | 0.34% | 1 | 2.38% |
Masahiro Yamada | 4 | 0.34% | 1 | 2.38% |
Christoph Lameter | 4 | 0.34% | 1 | 2.38% |
Christian Ruppert | 3 | 0.26% | 1 | 2.38% |
Uwe Kleine-König | 2 | 0.17% | 1 | 2.38% |
Eugeniy Paltsev | 1 | 0.09% | 1 | 2.38% |
Total | 1166 | 42 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2016-17 Synopsys, Inc. (www.synopsys.com) * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) */ /* ARC700 has two 32bit independent prog Timers: TIMER0 and TIMER1, Each can be * programmed to go from @count to @limit and optionally interrupt. * We've designated TIMER0 for clockevents and TIMER1 for clocksource * * ARCv2 based HS38 cores have RTC (in-core) and GFRC (inside ARConnect/MCIP) * which are suitable for UP and SMP based clocksources respectively */ #include <linux/interrupt.h> #include <linux/bits.h> #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/clocksource.h> #include <linux/clockchips.h> #include <linux/cpu.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/sched_clock.h> #include <soc/arc/timers.h> #include <soc/arc/mcip.h> static unsigned long arc_timer_freq; static int noinline arc_get_timer_clk(struct device_node *node) { struct clk *clk; int ret; clk = of_clk_get(node, 0); if (IS_ERR(clk)) { pr_err("timer missing clk\n"); return PTR_ERR(clk); } ret = clk_prepare_enable(clk); if (ret) { pr_err("Couldn't enable parent clk\n"); return ret; } arc_timer_freq = clk_get_rate(clk); return 0; } /********** Clock Source Device *********/ #ifdef CONFIG_ARC_TIMERS_64BIT static u64 arc_read_gfrc(struct clocksource *cs) { unsigned long flags; u32 l, h; /* * From a programming model pov, there seems to be just one instance of * MCIP_CMD/MCIP_READBACK however micro-architecturally there's * an instance PER ARC CORE (not per cluster), and there are dedicated * hardware decode logic (per core) inside ARConnect to handle * simultaneous read/write accesses from cores via those two registers. * So several concurrent commands to ARConnect are OK if they are * trying to access two different sub-components (like GFRC, * inter-core interrupt, etc...). HW also supports simultaneously * accessing GFRC by multiple cores. * That's why it is safe to disable hard interrupts on the local CPU * before access to GFRC instead of taking global MCIP spinlock * defined in arch/arc/kernel/mcip.c */ local_irq_save(flags); __mcip_cmd(CMD_GFRC_READ_LO, 0); l = read_aux_reg(ARC_REG_MCIP_READBACK); __mcip_cmd(CMD_GFRC_READ_HI, 0); h = read_aux_reg(ARC_REG_MCIP_READBACK); local_irq_restore(flags); return (((u64)h) << 32) | l; } static notrace u64 arc_gfrc_clock_read(void) { return arc_read_gfrc(NULL); } static struct clocksource arc_counter_gfrc = { .name = "ARConnect GFRC", .rating = 400, .read = arc_read_gfrc, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static int __init arc_cs_setup_gfrc(struct device_node *node) { struct mcip_bcr mp; int ret; READ_BCR(ARC_REG_MCIP_BCR, mp); if (!mp.gfrc) { pr_warn("Global-64-bit-Ctr clocksource not detected\n"); return -ENXIO; } ret = arc_get_timer_clk(node); if (ret) return ret; sched_clock_register(arc_gfrc_clock_read, 64, arc_timer_freq); return clocksource_register_hz(&arc_counter_gfrc, arc_timer_freq); } TIMER_OF_DECLARE(arc_gfrc, "snps,archs-timer-gfrc", arc_cs_setup_gfrc); #define AUX_RTC_CTRL 0x103 #define AUX_RTC_LOW 0x104 #define AUX_RTC_HIGH 0x105 static u64 arc_read_rtc(struct clocksource *cs) { unsigned long status; u32 l, h; /* * hardware has an internal state machine which tracks readout of * low/high and updates the CTRL.status if * - interrupt/exception taken between the two reads * - high increments after low has been read */ do { l = read_aux_reg(AUX_RTC_LOW); h = read_aux_reg(AUX_RTC_HIGH); status = read_aux_reg(AUX_RTC_CTRL); } while (!(status & BIT(31))); return (((u64)h) << 32) | l; } static notrace u64 arc_rtc_clock_read(void) { return arc_read_rtc(NULL); } static struct clocksource arc_counter_rtc = { .name = "ARCv2 RTC", .rating = 350, .read = arc_read_rtc, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static int __init arc_cs_setup_rtc(struct device_node *node) { struct bcr_timer timer; int ret; READ_BCR(ARC_REG_TIMERS_BCR, timer); if (!timer.rtc) { pr_warn("Local-64-bit-Ctr clocksource not detected\n"); return -ENXIO; } /* Local to CPU hence not usable in SMP */ if (IS_ENABLED(CONFIG_SMP)) { pr_warn("Local-64-bit-Ctr not usable in SMP\n"); return -EINVAL; } ret = arc_get_timer_clk(node); if (ret) return ret; write_aux_reg(AUX_RTC_CTRL, 1); sched_clock_register(arc_rtc_clock_read, 64, arc_timer_freq); return clocksource_register_hz(&arc_counter_rtc, arc_timer_freq); } TIMER_OF_DECLARE(arc_rtc, "snps,archs-timer-rtc", arc_cs_setup_rtc); #endif /* * 32bit TIMER1 to keep counting monotonically and wraparound */ static u64 arc_read_timer1(struct clocksource *cs) { return (u64) read_aux_reg(ARC_REG_TIMER1_CNT); } static notrace u64 arc_timer1_clock_read(void) { return arc_read_timer1(NULL); } static struct clocksource arc_counter_timer1 = { .name = "ARC Timer1", .rating = 300, .read = arc_read_timer1, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static int __init arc_cs_setup_timer1(struct device_node *node) { int ret; /* Local to CPU hence not usable in SMP */ if (IS_ENABLED(CONFIG_SMP)) return -EINVAL; ret = arc_get_timer_clk(node); if (ret) return ret; write_aux_reg(ARC_REG_TIMER1_LIMIT, ARC_TIMERN_MAX); write_aux_reg(ARC_REG_TIMER1_CNT, 0); write_aux_reg(ARC_REG_TIMER1_CTRL, ARC_TIMER_CTRL_NH); sched_clock_register(arc_timer1_clock_read, 32, arc_timer_freq); return clocksource_register_hz(&arc_counter_timer1, arc_timer_freq); } /********** Clock Event Device *********/ static int arc_timer_irq; /* * Arm the timer to interrupt after @cycles * The distinction for oneshot/periodic is done in arc_event_timer_ack() below */ static void arc_timer_event_setup(unsigned int cycles) { write_aux_reg(ARC_REG_TIMER0_LIMIT, cycles); write_aux_reg(ARC_REG_TIMER0_CNT, 0); /* start from 0 */ write_aux_reg(ARC_REG_TIMER0_CTRL, ARC_TIMER_CTRL_IE | ARC_TIMER_CTRL_NH); } static int arc_clkevent_set_next_event(unsigned long delta, struct clock_event_device *dev) { arc_timer_event_setup(delta); return 0; } static int arc_clkevent_set_periodic(struct clock_event_device *dev) { /* * At X Hz, 1 sec = 1000ms -> X cycles; * 10ms -> X / 100 cycles */ arc_timer_event_setup(arc_timer_freq / HZ); return 0; } static DEFINE_PER_CPU(struct clock_event_device, arc_clockevent_device) = { .name = "ARC Timer0", .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC, .rating = 300, .set_next_event = arc_clkevent_set_next_event, .set_state_periodic = arc_clkevent_set_periodic, }; static irqreturn_t timer_irq_handler(int irq, void *dev_id) { /* * Note that generic IRQ core could have passed @evt for @dev_id if * irq_set_chip_and_handler() asked for handle_percpu_devid_irq() */ struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device); int irq_reenable = clockevent_state_periodic(evt); /* * 1. ACK the interrupt * - For ARC700, any write to CTRL reg ACKs it, so just rewrite * Count when [N]ot [H]alted bit. * - For HS3x, it is a bit subtle. On taken count-down interrupt, * IP bit [3] is set, which needs to be cleared for ACK'ing. * The write below can only update the other two bits, hence * explicitly clears IP bit * 2. Re-arm interrupt if periodic by writing to IE bit [0] */ write_aux_reg(ARC_REG_TIMER0_CTRL, irq_reenable | ARC_TIMER_CTRL_NH); evt->event_handler(evt); return IRQ_HANDLED; } static int arc_timer_starting_cpu(unsigned int cpu) { struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device); evt->cpumask = cpumask_of(smp_processor_id()); clockevents_config_and_register(evt, arc_timer_freq, 0, ARC_TIMERN_MAX); enable_percpu_irq(arc_timer_irq, 0); return 0; } static int arc_timer_dying_cpu(unsigned int cpu) { disable_percpu_irq(arc_timer_irq); return 0; } /* * clockevent setup for boot CPU */ static int __init arc_clockevent_setup(struct device_node *node) { struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device); int ret; arc_timer_irq = irq_of_parse_and_map(node, 0); if (arc_timer_irq <= 0) { pr_err("clockevent: missing irq\n"); return -EINVAL; } ret = arc_get_timer_clk(node); if (ret) return ret; /* Needs apriori irq_set_percpu_devid() done in intc map function */ ret = request_percpu_irq(arc_timer_irq, timer_irq_handler, "Timer0 (per-cpu-tick)", evt); if (ret) { pr_err("clockevent: unable to request irq\n"); return ret; } ret = cpuhp_setup_state(CPUHP_AP_ARC_TIMER_STARTING, "clockevents/arc/timer:starting", arc_timer_starting_cpu, arc_timer_dying_cpu); if (ret) { pr_err("Failed to setup hotplug state\n"); return ret; } return 0; } static int __init arc_of_timer_init(struct device_node *np) { static int init_count = 0; int ret; if (!init_count) { init_count = 1; ret = arc_clockevent_setup(np); } else { ret = arc_cs_setup_timer1(np); } return ret; } TIMER_OF_DECLARE(arc_clkevt, "snps,arc-timer", arc_of_timer_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1