Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Walleij | 7917 | 66.02% | 10 | 7.69% |
Russell King | 1908 | 15.91% | 67 | 51.54% |
Viresh Kumar | 613 | 5.11% | 15 | 11.54% |
Tomasz Figa | 612 | 5.10% | 6 | 4.62% |
Maxime Ripard | 302 | 2.52% | 1 | 0.77% |
Alban Bedel | 285 | 2.38% | 1 | 0.77% |
Mark Brown | 86 | 0.72% | 3 | 2.31% |
Sylwester Nawrocki | 63 | 0.53% | 1 | 0.77% |
Jean-Nicolas Graux | 43 | 0.36% | 1 | 0.77% |
Peter Ujfalusi | 39 | 0.33% | 1 | 0.77% |
Andre Przywara | 36 | 0.30% | 2 | 1.54% |
Kevin Wells | 14 | 0.12% | 1 | 0.77% |
Vinod Koul | 13 | 0.11% | 5 | 3.85% |
Julia Lawall | 12 | 0.10% | 3 | 2.31% |
Gustavo A. R. Silva | 10 | 0.08% | 1 | 0.77% |
Sachin Kamat | 8 | 0.07% | 1 | 0.77% |
Dave P Martin | 7 | 0.06% | 1 | 0.77% |
Akinobu Mita | 5 | 0.04% | 1 | 0.77% |
Alex Bounine | 5 | 0.04% | 1 | 0.77% |
Yangtao Li | 4 | 0.03% | 1 | 0.77% |
Lars-Peter Clausen | 3 | 0.03% | 1 | 0.77% |
Thomas Gleixner | 2 | 0.02% | 1 | 0.77% |
Dan J Williams | 1 | 0.01% | 1 | 0.77% |
Arvind Yadav | 1 | 0.01% | 1 | 0.77% |
Alessandro Rubini | 1 | 0.01% | 1 | 0.77% |
Michael Opdenacker | 1 | 0.01% | 1 | 0.77% |
shaomin Deng | 1 | 0.01% | 1 | 0.77% |
Total | 11992 | 130 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2006 ARM Ltd. * Copyright (c) 2010 ST-Ericsson SA * Copyirght (c) 2017 Linaro Ltd. * * Author: Peter Pearse <peter.pearse@arm.com> * Author: Linus Walleij <linus.walleij@linaro.org> * * Documentation: ARM DDI 0196G == PL080 * Documentation: ARM DDI 0218E == PL081 * Documentation: S3C6410 User's Manual == PL080S * * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any * channel. * * The PL080 has 8 channels available for simultaneous use, and the PL081 * has only two channels. So on these DMA controllers the number of channels * and the number of incoming DMA signals are two totally different things. * It is usually not possible to theoretically handle all physical signals, * so a multiplexing scheme with possible denial of use is necessary. * * The PL080 has a dual bus master, PL081 has a single master. * * PL080S is a version modified by Samsung and used in S3C64xx SoCs. * It differs in following aspects: * - CH_CONFIG register at different offset, * - separate CH_CONTROL2 register for transfer size, * - bigger maximum transfer size, * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word, * - no support for peripheral flow control. * * Memory to peripheral transfer may be visualized as * Get data from memory to DMAC * Until no data left * On burst request from peripheral * Destination burst from DMAC to peripheral * Clear burst request * Raise terminal count interrupt * * For peripherals with a FIFO: * Source burst size == half the depth of the peripheral FIFO * Destination burst size == the depth of the peripheral FIFO * * (Bursts are irrelevant for mem to mem transfers - there are no burst * signals, the DMA controller will simply facilitate its AHB master.) * * ASSUMES default (little) endianness for DMA transfers * * The PL08x has two flow control settings: * - DMAC flow control: the transfer size defines the number of transfers * which occur for the current LLI entry, and the DMAC raises TC at the * end of every LLI entry. Observed behaviour shows the DMAC listening * to both the BREQ and SREQ signals (contrary to documented), * transferring data if either is active. The LBREQ and LSREQ signals * are ignored. * * - Peripheral flow control: the transfer size is ignored (and should be * zero). The data is transferred from the current LLI entry, until * after the final transfer signalled by LBREQ or LSREQ. The DMAC * will then move to the next LLI entry. Unsupported by PL080S. */ #include <linux/amba/bus.h> #include <linux/amba/pl08x.h> #include <linux/debugfs.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/dmaengine.h> #include <linux/dmapool.h> #include <linux/dma-mapping.h> #include <linux/export.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_dma.h> #include <linux/pm_runtime.h> #include <linux/seq_file.h> #include <linux/slab.h> #include <linux/amba/pl080.h> #include "dmaengine.h" #include "virt-dma.h" #define DRIVER_NAME "pl08xdmac" #define PL80X_DMA_BUSWIDTHS \ BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \ BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) static struct amba_driver pl08x_amba_driver; struct pl08x_driver_data; /** * struct vendor_data - vendor-specific config parameters for PL08x derivatives * @config_offset: offset to the configuration register * @channels: the number of channels available in this variant * @signals: the number of request signals available from the hardware * @dualmaster: whether this version supports dual AHB masters or not. * @nomadik: whether this variant is a ST Microelectronics Nomadik, where the * channels have Nomadik security extension bits that need to be checked * for permission before use and some registers are missing * @pl080s: whether this variant is a Samsung PL080S, which has separate * register and LLI word for transfer size. * @ftdmac020: whether this variant is a Faraday Technology FTDMAC020 * @max_transfer_size: the maximum single element transfer size for this * PL08x variant. */ struct vendor_data { u8 config_offset; u8 channels; u8 signals; bool dualmaster; bool nomadik; bool pl080s; bool ftdmac020; u32 max_transfer_size; }; /** * struct pl08x_bus_data - information of source or destination * busses for a transfer * @addr: current address * @maxwidth: the maximum width of a transfer on this bus * @buswidth: the width of this bus in bytes: 1, 2 or 4 */ struct pl08x_bus_data { dma_addr_t addr; u8 maxwidth; u8 buswidth; }; #define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth) /** * struct pl08x_phy_chan - holder for the physical channels * @id: physical index to this channel * @base: memory base address for this physical channel * @reg_config: configuration address for this physical channel * @reg_control: control address for this physical channel * @reg_src: transfer source address register * @reg_dst: transfer destination address register * @reg_lli: transfer LLI address register * @reg_busy: if the variant has a special per-channel busy register, * this contains a pointer to it * @lock: a lock to use when altering an instance of this struct * @serving: the virtual channel currently being served by this physical * channel * @locked: channel unavailable for the system, e.g. dedicated to secure * world * @ftdmac020: channel is on a FTDMAC020 * @pl080s: channel is on a PL08s */ struct pl08x_phy_chan { unsigned int id; void __iomem *base; void __iomem *reg_config; void __iomem *reg_control; void __iomem *reg_src; void __iomem *reg_dst; void __iomem *reg_lli; void __iomem *reg_busy; spinlock_t lock; struct pl08x_dma_chan *serving; bool locked; bool ftdmac020; bool pl080s; }; /** * struct pl08x_sg - structure containing data per sg * @src_addr: src address of sg * @dst_addr: dst address of sg * @len: transfer len in bytes * @node: node for txd's dsg_list */ struct pl08x_sg { dma_addr_t src_addr; dma_addr_t dst_addr; size_t len; struct list_head node; }; /** * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor * @vd: virtual DMA descriptor * @dsg_list: list of children sg's * @llis_bus: DMA memory address (physical) start for the LLIs * @llis_va: virtual memory address start for the LLIs * @cctl: control reg values for current txd * @ccfg: config reg values for current txd * @done: this marks completed descriptors, which should not have their * mux released. * @cyclic: indicate cyclic transfers */ struct pl08x_txd { struct virt_dma_desc vd; struct list_head dsg_list; dma_addr_t llis_bus; u32 *llis_va; /* Default cctl value for LLIs */ u32 cctl; /* * Settings to be put into the physical channel when we * trigger this txd. Other registers are in llis_va[0]. */ u32 ccfg; bool done; bool cyclic; }; /** * enum pl08x_dma_chan_state - holds the PL08x specific virtual channel * states * @PL08X_CHAN_IDLE: the channel is idle * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport * channel and is running a transfer on it * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport * channel, but the transfer is currently paused * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport * channel to become available (only pertains to memcpy channels) */ enum pl08x_dma_chan_state { PL08X_CHAN_IDLE, PL08X_CHAN_RUNNING, PL08X_CHAN_PAUSED, PL08X_CHAN_WAITING, }; /** * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel * @vc: wrapped virtual channel * @phychan: the physical channel utilized by this channel, if there is one * @name: name of channel * @cd: channel platform data * @cfg: slave configuration * @at: active transaction on this channel * @host: a pointer to the host (internal use) * @state: whether the channel is idle, paused, running etc * @slave: whether this channel is a device (slave) or for memcpy * @signal: the physical DMA request signal which this channel is using * @mux_use: count of descriptors using this DMA request signal setting * @waiting_at: time in jiffies when this channel moved to waiting state */ struct pl08x_dma_chan { struct virt_dma_chan vc; struct pl08x_phy_chan *phychan; const char *name; struct pl08x_channel_data *cd; struct dma_slave_config cfg; struct pl08x_txd *at; struct pl08x_driver_data *host; enum pl08x_dma_chan_state state; bool slave; int signal; unsigned mux_use; unsigned long waiting_at; }; /** * struct pl08x_driver_data - the local state holder for the PL08x * @slave: optional slave engine for this instance * @memcpy: memcpy engine for this instance * @has_slave: the PL08x has a slave engine (routed signals) * @base: virtual memory base (remapped) for the PL08x * @adev: the corresponding AMBA (PrimeCell) bus entry * @vd: vendor data for this PL08x variant * @pd: platform data passed in from the platform/machine * @phy_chans: array of data for the physical channels * @pool: a pool for the LLI descriptors * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI * fetches * @mem_buses: set to indicate memory transfers on AHB2. * @lli_words: how many words are used in each LLI item for this variant */ struct pl08x_driver_data { struct dma_device slave; struct dma_device memcpy; bool has_slave; void __iomem *base; struct amba_device *adev; const struct vendor_data *vd; struct pl08x_platform_data *pd; struct pl08x_phy_chan *phy_chans; struct dma_pool *pool; u8 lli_buses; u8 mem_buses; u8 lli_words; }; /* * PL08X specific defines */ /* The order of words in an LLI. */ #define PL080_LLI_SRC 0 #define PL080_LLI_DST 1 #define PL080_LLI_LLI 2 #define PL080_LLI_CCTL 3 #define PL080S_LLI_CCTL2 4 /* Total words in an LLI. */ #define PL080_LLI_WORDS 4 #define PL080S_LLI_WORDS 8 /* * Number of LLIs in each LLI buffer allocated for one transfer * (maximum times we call dma_pool_alloc on this pool without freeing) */ #define MAX_NUM_TSFR_LLIS 512 #define PL08X_ALIGN 8 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan) { return container_of(chan, struct pl08x_dma_chan, vc.chan); } static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx) { return container_of(tx, struct pl08x_txd, vd.tx); } /* * Mux handling. * * This gives us the DMA request input to the PL08x primecell which the * peripheral described by the channel data will be routed to, possibly * via a board/SoC specific external MUX. One important point to note * here is that this does not depend on the physical channel. */ static int pl08x_request_mux(struct pl08x_dma_chan *plchan) { const struct pl08x_platform_data *pd = plchan->host->pd; int ret; if (plchan->mux_use++ == 0 && pd->get_xfer_signal) { ret = pd->get_xfer_signal(plchan->cd); if (ret < 0) { plchan->mux_use = 0; return ret; } plchan->signal = ret; } return 0; } static void pl08x_release_mux(struct pl08x_dma_chan *plchan) { const struct pl08x_platform_data *pd = plchan->host->pd; if (plchan->signal >= 0) { WARN_ON(plchan->mux_use == 0); if (--plchan->mux_use == 0 && pd->put_xfer_signal) { pd->put_xfer_signal(plchan->cd, plchan->signal); plchan->signal = -1; } } } /* * Physical channel handling */ /* Whether a certain channel is busy or not */ static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch) { unsigned int val; /* If we have a special busy register, take a shortcut */ if (ch->reg_busy) { val = readl(ch->reg_busy); return !!(val & BIT(ch->id)); } val = readl(ch->reg_config); return val & PL080_CONFIG_ACTIVE; } /* * pl08x_write_lli() - Write an LLI into the DMA controller. * * The PL08x derivatives support linked lists, but the first item of the * list containing the source, destination, control word and next LLI is * ignored. Instead the driver has to write those values directly into the * SRC, DST, LLI and control registers. On FTDMAC020 also the SIZE * register need to be set up for the first transfer. */ static void pl08x_write_lli(struct pl08x_driver_data *pl08x, struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg) { if (pl08x->vd->pl080s) dev_vdbg(&pl08x->adev->dev, "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, " "clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n", phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST], lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], lli[PL080S_LLI_CCTL2], ccfg); else dev_vdbg(&pl08x->adev->dev, "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, " "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n", phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST], lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg); writel_relaxed(lli[PL080_LLI_SRC], phychan->reg_src); writel_relaxed(lli[PL080_LLI_DST], phychan->reg_dst); writel_relaxed(lli[PL080_LLI_LLI], phychan->reg_lli); /* * The FTMAC020 has a different layout in the CCTL word of the LLI * and the CCTL register which is split in CSR and SIZE registers. * Convert the LLI item CCTL into the proper values to write into * the CSR and SIZE registers. */ if (phychan->ftdmac020) { u32 llictl = lli[PL080_LLI_CCTL]; u32 val = 0; /* Write the transfer size (12 bits) to the size register */ writel_relaxed(llictl & FTDMAC020_LLI_TRANSFER_SIZE_MASK, phychan->base + FTDMAC020_CH_SIZE); /* * Then write the control bits 28..16 to the control register * by shuffleing the bits around to where they are in the * main register. The mapping is as follows: * Bit 28: TC_MSK - mask on all except last LLI * Bit 27..25: SRC_WIDTH * Bit 24..22: DST_WIDTH * Bit 21..20: SRCAD_CTRL * Bit 19..17: DSTAD_CTRL * Bit 17: SRC_SEL * Bit 16: DST_SEL */ if (llictl & FTDMAC020_LLI_TC_MSK) val |= FTDMAC020_CH_CSR_TC_MSK; val |= ((llictl & FTDMAC020_LLI_SRC_WIDTH_MSK) >> (FTDMAC020_LLI_SRC_WIDTH_SHIFT - FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT)); val |= ((llictl & FTDMAC020_LLI_DST_WIDTH_MSK) >> (FTDMAC020_LLI_DST_WIDTH_SHIFT - FTDMAC020_CH_CSR_DST_WIDTH_SHIFT)); val |= ((llictl & FTDMAC020_LLI_SRCAD_CTL_MSK) >> (FTDMAC020_LLI_SRCAD_CTL_SHIFT - FTDMAC020_CH_CSR_SRCAD_CTL_SHIFT)); val |= ((llictl & FTDMAC020_LLI_DSTAD_CTL_MSK) >> (FTDMAC020_LLI_DSTAD_CTL_SHIFT - FTDMAC020_CH_CSR_DSTAD_CTL_SHIFT)); if (llictl & FTDMAC020_LLI_SRC_SEL) val |= FTDMAC020_CH_CSR_SRC_SEL; if (llictl & FTDMAC020_LLI_DST_SEL) val |= FTDMAC020_CH_CSR_DST_SEL; /* * Set up the bits that exist in the CSR but are not * part the LLI, i.e. only gets written to the control * register right here. * * FIXME: do not just handle memcpy, also handle slave DMA. */ switch (pl08x->pd->memcpy_burst_size) { default: case PL08X_BURST_SZ_1: val |= PL080_BSIZE_1 << FTDMAC020_CH_CSR_SRC_SIZE_SHIFT; break; case PL08X_BURST_SZ_4: val |= PL080_BSIZE_4 << FTDMAC020_CH_CSR_SRC_SIZE_SHIFT; break; case PL08X_BURST_SZ_8: val |= PL080_BSIZE_8 << FTDMAC020_CH_CSR_SRC_SIZE_SHIFT; break; case PL08X_BURST_SZ_16: val |= PL080_BSIZE_16 << FTDMAC020_CH_CSR_SRC_SIZE_SHIFT; break; case PL08X_BURST_SZ_32: val |= PL080_BSIZE_32 << FTDMAC020_CH_CSR_SRC_SIZE_SHIFT; break; case PL08X_BURST_SZ_64: val |= PL080_BSIZE_64 << FTDMAC020_CH_CSR_SRC_SIZE_SHIFT; break; case PL08X_BURST_SZ_128: val |= PL080_BSIZE_128 << FTDMAC020_CH_CSR_SRC_SIZE_SHIFT; break; case PL08X_BURST_SZ_256: val |= PL080_BSIZE_256 << FTDMAC020_CH_CSR_SRC_SIZE_SHIFT; break; } /* Protection flags */ if (pl08x->pd->memcpy_prot_buff) val |= FTDMAC020_CH_CSR_PROT2; if (pl08x->pd->memcpy_prot_cache) val |= FTDMAC020_CH_CSR_PROT3; /* We are the kernel, so we are in privileged mode */ val |= FTDMAC020_CH_CSR_PROT1; writel_relaxed(val, phychan->reg_control); } else { /* Bits are just identical */ writel_relaxed(lli[PL080_LLI_CCTL], phychan->reg_control); } /* Second control word on the PL080s */ if (pl08x->vd->pl080s) writel_relaxed(lli[PL080S_LLI_CCTL2], phychan->base + PL080S_CH_CONTROL2); writel(ccfg, phychan->reg_config); } /* * Set the initial DMA register values i.e. those for the first LLI * The next LLI pointer and the configuration interrupt bit have * been set when the LLIs were constructed. Poke them into the hardware * and start the transfer. */ static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan) { struct pl08x_driver_data *pl08x = plchan->host; struct pl08x_phy_chan *phychan = plchan->phychan; struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc); struct pl08x_txd *txd = to_pl08x_txd(&vd->tx); u32 val; list_del(&txd->vd.node); plchan->at = txd; /* Wait for channel inactive */ while (pl08x_phy_channel_busy(phychan)) cpu_relax(); pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg); /* Enable the DMA channel */ /* Do not access config register until channel shows as disabled */ while (readl(pl08x->base + PL080_EN_CHAN) & BIT(phychan->id)) cpu_relax(); /* Do not access config register until channel shows as inactive */ if (phychan->ftdmac020) { val = readl(phychan->reg_config); while (val & FTDMAC020_CH_CFG_BUSY) val = readl(phychan->reg_config); val = readl(phychan->reg_control); while (val & FTDMAC020_CH_CSR_EN) val = readl(phychan->reg_control); writel(val | FTDMAC020_CH_CSR_EN, phychan->reg_control); } else { val = readl(phychan->reg_config); while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE)) val = readl(phychan->reg_config); writel(val | PL080_CONFIG_ENABLE, phychan->reg_config); } } /* * Pause the channel by setting the HALT bit. * * For M->P transfers, pause the DMAC first and then stop the peripheral - * the FIFO can only drain if the peripheral is still requesting data. * (note: this can still timeout if the DMAC FIFO never drains of data.) * * For P->M transfers, disable the peripheral first to stop it filling * the DMAC FIFO, and then pause the DMAC. */ static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch) { u32 val; int timeout; if (ch->ftdmac020) { /* Use the enable bit on the FTDMAC020 */ val = readl(ch->reg_control); val &= ~FTDMAC020_CH_CSR_EN; writel(val, ch->reg_control); return; } /* Set the HALT bit and wait for the FIFO to drain */ val = readl(ch->reg_config); val |= PL080_CONFIG_HALT; writel(val, ch->reg_config); /* Wait for channel inactive */ for (timeout = 1000; timeout; timeout--) { if (!pl08x_phy_channel_busy(ch)) break; udelay(1); } if (pl08x_phy_channel_busy(ch)) pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id); } static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch) { u32 val; /* Use the enable bit on the FTDMAC020 */ if (ch->ftdmac020) { val = readl(ch->reg_control); val |= FTDMAC020_CH_CSR_EN; writel(val, ch->reg_control); return; } /* Clear the HALT bit */ val = readl(ch->reg_config); val &= ~PL080_CONFIG_HALT; writel(val, ch->reg_config); } /* * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and * clears any pending interrupt status. This should not be used for * an on-going transfer, but as a method of shutting down a channel * (eg, when it's no longer used) or terminating a transfer. */ static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x, struct pl08x_phy_chan *ch) { u32 val; /* The layout for the FTDMAC020 is different */ if (ch->ftdmac020) { /* Disable all interrupts */ val = readl(ch->reg_config); val |= (FTDMAC020_CH_CFG_INT_ABT_MASK | FTDMAC020_CH_CFG_INT_ERR_MASK | FTDMAC020_CH_CFG_INT_TC_MASK); writel(val, ch->reg_config); /* Abort and disable channel */ val = readl(ch->reg_control); val &= ~FTDMAC020_CH_CSR_EN; val |= FTDMAC020_CH_CSR_ABT; writel(val, ch->reg_control); /* Clear ABT and ERR interrupt flags */ writel(BIT(ch->id) | BIT(ch->id + 16), pl08x->base + PL080_ERR_CLEAR); writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR); return; } val = readl(ch->reg_config); val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK | PL080_CONFIG_TC_IRQ_MASK); writel(val, ch->reg_config); writel(BIT(ch->id), pl08x->base + PL080_ERR_CLEAR); writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR); } static u32 get_bytes_in_phy_channel(struct pl08x_phy_chan *ch) { u32 val; u32 bytes; if (ch->ftdmac020) { bytes = readl(ch->base + FTDMAC020_CH_SIZE); val = readl(ch->reg_control); val &= FTDMAC020_CH_CSR_SRC_WIDTH_MSK; val >>= FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT; } else if (ch->pl080s) { val = readl(ch->base + PL080S_CH_CONTROL2); bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK; val = readl(ch->reg_control); val &= PL080_CONTROL_SWIDTH_MASK; val >>= PL080_CONTROL_SWIDTH_SHIFT; } else { /* Plain PL08x */ val = readl(ch->reg_control); bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK; val &= PL080_CONTROL_SWIDTH_MASK; val >>= PL080_CONTROL_SWIDTH_SHIFT; } switch (val) { case PL080_WIDTH_8BIT: break; case PL080_WIDTH_16BIT: bytes *= 2; break; case PL080_WIDTH_32BIT: bytes *= 4; break; } return bytes; } static u32 get_bytes_in_lli(struct pl08x_phy_chan *ch, const u32 *llis_va) { u32 val; u32 bytes; if (ch->ftdmac020) { val = llis_va[PL080_LLI_CCTL]; bytes = val & FTDMAC020_LLI_TRANSFER_SIZE_MASK; val = llis_va[PL080_LLI_CCTL]; val &= FTDMAC020_LLI_SRC_WIDTH_MSK; val >>= FTDMAC020_LLI_SRC_WIDTH_SHIFT; } else if (ch->pl080s) { val = llis_va[PL080S_LLI_CCTL2]; bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK; val = llis_va[PL080_LLI_CCTL]; val &= PL080_CONTROL_SWIDTH_MASK; val >>= PL080_CONTROL_SWIDTH_SHIFT; } else { /* Plain PL08x */ val = llis_va[PL080_LLI_CCTL]; bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK; val &= PL080_CONTROL_SWIDTH_MASK; val >>= PL080_CONTROL_SWIDTH_SHIFT; } switch (val) { case PL080_WIDTH_8BIT: break; case PL080_WIDTH_16BIT: bytes *= 2; break; case PL080_WIDTH_32BIT: bytes *= 4; break; } return bytes; } /* The channel should be paused when calling this */ static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan) { struct pl08x_driver_data *pl08x = plchan->host; const u32 *llis_va, *llis_va_limit; struct pl08x_phy_chan *ch; dma_addr_t llis_bus; struct pl08x_txd *txd; u32 llis_max_words; size_t bytes; u32 clli; ch = plchan->phychan; txd = plchan->at; if (!ch || !txd) return 0; /* * Follow the LLIs to get the number of remaining * bytes in the currently active transaction. */ clli = readl(ch->reg_lli) & ~PL080_LLI_LM_AHB2; /* First get the remaining bytes in the active transfer */ bytes = get_bytes_in_phy_channel(ch); if (!clli) return bytes; llis_va = txd->llis_va; llis_bus = txd->llis_bus; llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS; BUG_ON(clli < llis_bus || clli >= llis_bus + sizeof(u32) * llis_max_words); /* * Locate the next LLI - as this is an array, * it's simple maths to find. */ llis_va += (clli - llis_bus) / sizeof(u32); llis_va_limit = llis_va + llis_max_words; for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) { bytes += get_bytes_in_lli(ch, llis_va); /* * A LLI pointer going backward terminates the LLI list */ if (llis_va[PL080_LLI_LLI] <= clli) break; } return bytes; } /* * Allocate a physical channel for a virtual channel * * Try to locate a physical channel to be used for this transfer. If all * are taken return NULL and the requester will have to cope by using * some fallback PIO mode or retrying later. */ static struct pl08x_phy_chan * pl08x_get_phy_channel(struct pl08x_driver_data *pl08x, struct pl08x_dma_chan *virt_chan) { struct pl08x_phy_chan *ch = NULL; unsigned long flags; int i; for (i = 0; i < pl08x->vd->channels; i++) { ch = &pl08x->phy_chans[i]; spin_lock_irqsave(&ch->lock, flags); if (!ch->locked && !ch->serving) { ch->serving = virt_chan; spin_unlock_irqrestore(&ch->lock, flags); break; } spin_unlock_irqrestore(&ch->lock, flags); } if (i == pl08x->vd->channels) { /* No physical channel available, cope with it */ return NULL; } return ch; } /* Mark the physical channel as free. Note, this write is atomic. */ static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x, struct pl08x_phy_chan *ch) { ch->serving = NULL; } /* * Try to allocate a physical channel. When successful, assign it to * this virtual channel, and initiate the next descriptor. The * virtual channel lock must be held at this point. */ static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan) { struct pl08x_driver_data *pl08x = plchan->host; struct pl08x_phy_chan *ch; ch = pl08x_get_phy_channel(pl08x, plchan); if (!ch) { dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name); plchan->state = PL08X_CHAN_WAITING; plchan->waiting_at = jiffies; return; } dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n", ch->id, plchan->name); plchan->phychan = ch; plchan->state = PL08X_CHAN_RUNNING; pl08x_start_next_txd(plchan); } static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch, struct pl08x_dma_chan *plchan) { struct pl08x_driver_data *pl08x = plchan->host; dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n", ch->id, plchan->name); /* * We do this without taking the lock; we're really only concerned * about whether this pointer is NULL or not, and we're guaranteed * that this will only be called when it _already_ is non-NULL. */ ch->serving = plchan; plchan->phychan = ch; plchan->state = PL08X_CHAN_RUNNING; pl08x_start_next_txd(plchan); } /* * Free a physical DMA channel, potentially reallocating it to another * virtual channel if we have any pending. */ static void pl08x_phy_free(struct pl08x_dma_chan *plchan) { struct pl08x_driver_data *pl08x = plchan->host; struct pl08x_dma_chan *p, *next; unsigned long waiting_at; retry: next = NULL; waiting_at = jiffies; /* * Find a waiting virtual channel for the next transfer. * To be fair, time when each channel reached waiting state is compared * to select channel that is waiting for the longest time. */ list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node) if (p->state == PL08X_CHAN_WAITING && p->waiting_at <= waiting_at) { next = p; waiting_at = p->waiting_at; } if (!next && pl08x->has_slave) { list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node) if (p->state == PL08X_CHAN_WAITING && p->waiting_at <= waiting_at) { next = p; waiting_at = p->waiting_at; } } /* Ensure that the physical channel is stopped */ pl08x_terminate_phy_chan(pl08x, plchan->phychan); if (next) { bool success; /* * Eww. We know this isn't going to deadlock * but lockdep probably doesn't. */ spin_lock(&next->vc.lock); /* Re-check the state now that we have the lock */ success = next->state == PL08X_CHAN_WAITING; if (success) pl08x_phy_reassign_start(plchan->phychan, next); spin_unlock(&next->vc.lock); /* If the state changed, try to find another channel */ if (!success) goto retry; } else { /* No more jobs, so free up the physical channel */ pl08x_put_phy_channel(pl08x, plchan->phychan); } plchan->phychan = NULL; plchan->state = PL08X_CHAN_IDLE; } /* * LLI handling */ static inline unsigned int pl08x_get_bytes_for_lli(struct pl08x_driver_data *pl08x, u32 cctl, bool source) { u32 val; if (pl08x->vd->ftdmac020) { if (source) val = (cctl & FTDMAC020_LLI_SRC_WIDTH_MSK) >> FTDMAC020_LLI_SRC_WIDTH_SHIFT; else val = (cctl & FTDMAC020_LLI_DST_WIDTH_MSK) >> FTDMAC020_LLI_DST_WIDTH_SHIFT; } else { if (source) val = (cctl & PL080_CONTROL_SWIDTH_MASK) >> PL080_CONTROL_SWIDTH_SHIFT; else val = (cctl & PL080_CONTROL_DWIDTH_MASK) >> PL080_CONTROL_DWIDTH_SHIFT; } switch (val) { case PL080_WIDTH_8BIT: return 1; case PL080_WIDTH_16BIT: return 2; case PL080_WIDTH_32BIT: return 4; default: break; } BUG(); return 0; } static inline u32 pl08x_lli_control_bits(struct pl08x_driver_data *pl08x, u32 cctl, u8 srcwidth, u8 dstwidth, size_t tsize) { u32 retbits = cctl; /* * Remove all src, dst and transfer size bits, then set the * width and size according to the parameters. The bit offsets * are different in the FTDMAC020 so we need to accound for this. */ if (pl08x->vd->ftdmac020) { retbits &= ~FTDMAC020_LLI_DST_WIDTH_MSK; retbits &= ~FTDMAC020_LLI_SRC_WIDTH_MSK; retbits &= ~FTDMAC020_LLI_TRANSFER_SIZE_MASK; switch (srcwidth) { case 1: retbits |= PL080_WIDTH_8BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT; break; case 2: retbits |= PL080_WIDTH_16BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT; break; case 4: retbits |= PL080_WIDTH_32BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT; break; default: BUG(); break; } switch (dstwidth) { case 1: retbits |= PL080_WIDTH_8BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT; break; case 2: retbits |= PL080_WIDTH_16BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT; break; case 4: retbits |= PL080_WIDTH_32BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT; break; default: BUG(); break; } tsize &= FTDMAC020_LLI_TRANSFER_SIZE_MASK; retbits |= tsize << FTDMAC020_LLI_TRANSFER_SIZE_SHIFT; } else { retbits &= ~PL080_CONTROL_DWIDTH_MASK; retbits &= ~PL080_CONTROL_SWIDTH_MASK; retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK; switch (srcwidth) { case 1: retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT; break; case 2: retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT; break; case 4: retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT; break; default: BUG(); break; } switch (dstwidth) { case 1: retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT; break; case 2: retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT; break; case 4: retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT; break; default: BUG(); break; } tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK; retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT; } return retbits; } struct pl08x_lli_build_data { struct pl08x_txd *txd; struct pl08x_bus_data srcbus; struct pl08x_bus_data dstbus; size_t remainder; u32 lli_bus; }; /* * Autoselect a master bus to use for the transfer. Slave will be the chosen as * victim in case src & dest are not similarly aligned. i.e. If after aligning * masters address with width requirements of transfer (by sending few byte by * byte data), slave is still not aligned, then its width will be reduced to * BYTE. * - prefers the destination bus if both available * - prefers bus with fixed address (i.e. peripheral) */ static void pl08x_choose_master_bus(struct pl08x_driver_data *pl08x, struct pl08x_lli_build_data *bd, struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl) { bool dst_incr; bool src_incr; /* * The FTDMAC020 only supports memory-to-memory transfer, so * source and destination always increase. */ if (pl08x->vd->ftdmac020) { dst_incr = true; src_incr = true; } else { dst_incr = !!(cctl & PL080_CONTROL_DST_INCR); src_incr = !!(cctl & PL080_CONTROL_SRC_INCR); } /* * If either bus is not advancing, i.e. it is a peripheral, that * one becomes master */ if (!dst_incr) { *mbus = &bd->dstbus; *sbus = &bd->srcbus; } else if (!src_incr) { *mbus = &bd->srcbus; *sbus = &bd->dstbus; } else { if (bd->dstbus.buswidth >= bd->srcbus.buswidth) { *mbus = &bd->dstbus; *sbus = &bd->srcbus; } else { *mbus = &bd->srcbus; *sbus = &bd->dstbus; } } } /* * Fills in one LLI for a certain transfer descriptor and advance the counter */ static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x, struct pl08x_lli_build_data *bd, int num_llis, int len, u32 cctl, u32 cctl2) { u32 offset = num_llis * pl08x->lli_words; u32 *llis_va = bd->txd->llis_va + offset; dma_addr_t llis_bus = bd->txd->llis_bus; BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS); /* Advance the offset to next LLI. */ offset += pl08x->lli_words; llis_va[PL080_LLI_SRC] = bd->srcbus.addr; llis_va[PL080_LLI_DST] = bd->dstbus.addr; llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset); llis_va[PL080_LLI_LLI] |= bd->lli_bus; llis_va[PL080_LLI_CCTL] = cctl; if (pl08x->vd->pl080s) llis_va[PL080S_LLI_CCTL2] = cctl2; if (pl08x->vd->ftdmac020) { /* FIXME: only memcpy so far so both increase */ bd->srcbus.addr += len; bd->dstbus.addr += len; } else { if (cctl & PL080_CONTROL_SRC_INCR) bd->srcbus.addr += len; if (cctl & PL080_CONTROL_DST_INCR) bd->dstbus.addr += len; } BUG_ON(bd->remainder < len); bd->remainder -= len; } static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x, struct pl08x_lli_build_data *bd, u32 *cctl, u32 len, int num_llis, size_t *total_bytes) { *cctl = pl08x_lli_control_bits(pl08x, *cctl, 1, 1, len); pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len); (*total_bytes) += len; } #if 1 static void pl08x_dump_lli(struct pl08x_driver_data *pl08x, const u32 *llis_va, int num_llis) { int i; if (pl08x->vd->pl080s) { dev_vdbg(&pl08x->adev->dev, "%-3s %-9s %-10s %-10s %-10s %-10s %s\n", "lli", "", "csrc", "cdst", "clli", "cctl", "cctl2"); for (i = 0; i < num_llis; i++) { dev_vdbg(&pl08x->adev->dev, "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", i, llis_va, llis_va[PL080_LLI_SRC], llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI], llis_va[PL080_LLI_CCTL], llis_va[PL080S_LLI_CCTL2]); llis_va += pl08x->lli_words; } } else { dev_vdbg(&pl08x->adev->dev, "%-3s %-9s %-10s %-10s %-10s %s\n", "lli", "", "csrc", "cdst", "clli", "cctl"); for (i = 0; i < num_llis; i++) { dev_vdbg(&pl08x->adev->dev, "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n", i, llis_va, llis_va[PL080_LLI_SRC], llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI], llis_va[PL080_LLI_CCTL]); llis_va += pl08x->lli_words; } } } #else static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x, const u32 *llis_va, int num_llis) {} #endif /* * This fills in the table of LLIs for the transfer descriptor * Note that we assume we never have to change the burst sizes * Return 0 for error */ static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x, struct pl08x_txd *txd) { struct pl08x_bus_data *mbus, *sbus; struct pl08x_lli_build_data bd; int num_llis = 0; u32 cctl, early_bytes = 0; size_t max_bytes_per_lli, total_bytes; u32 *llis_va, *last_lli; struct pl08x_sg *dsg; txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus); if (!txd->llis_va) { dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__); return 0; } bd.txd = txd; bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0; cctl = txd->cctl; /* Find maximum width of the source bus */ bd.srcbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, true); /* Find maximum width of the destination bus */ bd.dstbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, false); list_for_each_entry(dsg, &txd->dsg_list, node) { total_bytes = 0; cctl = txd->cctl; bd.srcbus.addr = dsg->src_addr; bd.dstbus.addr = dsg->dst_addr; bd.remainder = dsg->len; bd.srcbus.buswidth = bd.srcbus.maxwidth; bd.dstbus.buswidth = bd.dstbus.maxwidth; pl08x_choose_master_bus(pl08x, &bd, &mbus, &sbus, cctl); dev_vdbg(&pl08x->adev->dev, "src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n", (u64)bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "", bd.srcbus.buswidth, (u64)bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "", bd.dstbus.buswidth, bd.remainder); dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n", mbus == &bd.srcbus ? "src" : "dst", sbus == &bd.srcbus ? "src" : "dst"); /* * Zero length is only allowed if all these requirements are * met: * - flow controller is peripheral. * - src.addr is aligned to src.width * - dst.addr is aligned to dst.width * * sg_len == 1 should be true, as there can be two cases here: * * - Memory addresses are contiguous and are not scattered. * Here, Only one sg will be passed by user driver, with * memory address and zero length. We pass this to controller * and after the transfer it will receive the last burst * request from peripheral and so transfer finishes. * * - Memory addresses are scattered and are not contiguous. * Here, Obviously as DMA controller doesn't know when a lli's * transfer gets over, it can't load next lli. So in this * case, there has to be an assumption that only one lli is * supported. Thus, we can't have scattered addresses. */ if (!bd.remainder) { u32 fc; /* FTDMAC020 only does memory-to-memory */ if (pl08x->vd->ftdmac020) fc = PL080_FLOW_MEM2MEM; else fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >> PL080_CONFIG_FLOW_CONTROL_SHIFT; if (!((fc >= PL080_FLOW_SRC2DST_DST) && (fc <= PL080_FLOW_SRC2DST_SRC))) { dev_err(&pl08x->adev->dev, "%s sg len can't be zero", __func__); return 0; } if (!IS_BUS_ALIGNED(&bd.srcbus) || !IS_BUS_ALIGNED(&bd.dstbus)) { dev_err(&pl08x->adev->dev, "%s src & dst address must be aligned to src" " & dst width if peripheral is flow controller", __func__); return 0; } cctl = pl08x_lli_control_bits(pl08x, cctl, bd.srcbus.buswidth, bd.dstbus.buswidth, 0); pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++, 0, cctl, 0); break; } /* * Send byte by byte for following cases * - Less than a bus width available * - until master bus is aligned */ if (bd.remainder < mbus->buswidth) early_bytes = bd.remainder; else if (!IS_BUS_ALIGNED(mbus)) { early_bytes = mbus->buswidth - (mbus->addr & (mbus->buswidth - 1)); if ((bd.remainder - early_bytes) < mbus->buswidth) early_bytes = bd.remainder; } if (early_bytes) { dev_vdbg(&pl08x->adev->dev, "%s byte width LLIs (remain 0x%08zx)\n", __func__, bd.remainder); prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes, num_llis++, &total_bytes); } if (bd.remainder) { /* * Master now aligned * - if slave is not then we must set its width down */ if (!IS_BUS_ALIGNED(sbus)) { dev_dbg(&pl08x->adev->dev, "%s set down bus width to one byte\n", __func__); sbus->buswidth = 1; } /* * Bytes transferred = tsize * src width, not * MIN(buswidths) */ max_bytes_per_lli = bd.srcbus.buswidth * pl08x->vd->max_transfer_size; dev_vdbg(&pl08x->adev->dev, "%s max bytes per lli = %zu\n", __func__, max_bytes_per_lli); /* * Make largest possible LLIs until less than one bus * width left */ while (bd.remainder > (mbus->buswidth - 1)) { size_t lli_len, tsize, width; /* * If enough left try to send max possible, * otherwise try to send the remainder */ lli_len = min(bd.remainder, max_bytes_per_lli); /* * Check against maximum bus alignment: * Calculate actual transfer size in relation to * bus width an get a maximum remainder of the * highest bus width - 1 */ width = max(mbus->buswidth, sbus->buswidth); lli_len = (lli_len / width) * width; tsize = lli_len / bd.srcbus.buswidth; dev_vdbg(&pl08x->adev->dev, "%s fill lli with single lli chunk of " "size 0x%08zx (remainder 0x%08zx)\n", __func__, lli_len, bd.remainder); cctl = pl08x_lli_control_bits(pl08x, cctl, bd.srcbus.buswidth, bd.dstbus.buswidth, tsize); pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++, lli_len, cctl, tsize); total_bytes += lli_len; } /* * Send any odd bytes */ if (bd.remainder) { dev_vdbg(&pl08x->adev->dev, "%s align with boundary, send odd bytes (remain %zu)\n", __func__, bd.remainder); prep_byte_width_lli(pl08x, &bd, &cctl, bd.remainder, num_llis++, &total_bytes); } } if (total_bytes != dsg->len) { dev_err(&pl08x->adev->dev, "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n", __func__, total_bytes, dsg->len); return 0; } if (num_llis >= MAX_NUM_TSFR_LLIS) { dev_err(&pl08x->adev->dev, "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n", __func__, MAX_NUM_TSFR_LLIS); return 0; } } llis_va = txd->llis_va; last_lli = llis_va + (num_llis - 1) * pl08x->lli_words; if (txd->cyclic) { /* Link back to the first LLI. */ last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus; } else { /* The final LLI terminates the LLI. */ last_lli[PL080_LLI_LLI] = 0; /* The final LLI element shall also fire an interrupt. */ if (pl08x->vd->ftdmac020) last_lli[PL080_LLI_CCTL] &= ~FTDMAC020_LLI_TC_MSK; else last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN; } pl08x_dump_lli(pl08x, llis_va, num_llis); return num_llis; } static void pl08x_free_txd(struct pl08x_driver_data *pl08x, struct pl08x_txd *txd) { struct pl08x_sg *dsg, *_dsg; if (txd->llis_va) dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus); list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) { list_del(&dsg->node); kfree(dsg); } kfree(txd); } static void pl08x_desc_free(struct virt_dma_desc *vd) { struct pl08x_txd *txd = to_pl08x_txd(&vd->tx); struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan); dma_descriptor_unmap(&vd->tx); if (!txd->done) pl08x_release_mux(plchan); pl08x_free_txd(plchan->host, txd); } static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x, struct pl08x_dma_chan *plchan) { LIST_HEAD(head); vchan_get_all_descriptors(&plchan->vc, &head); vchan_dma_desc_free_list(&plchan->vc, &head); } /* * The DMA ENGINE API */ static void pl08x_free_chan_resources(struct dma_chan *chan) { /* Ensure all queued descriptors are freed */ vchan_free_chan_resources(to_virt_chan(chan)); } /* * Code accessing dma_async_is_complete() in a tight loop may give problems. * If slaves are relying on interrupts to signal completion this function * must not be called with interrupts disabled. */ static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); struct virt_dma_desc *vd; unsigned long flags; enum dma_status ret; size_t bytes = 0; ret = dma_cookie_status(chan, cookie, txstate); if (ret == DMA_COMPLETE) return ret; /* * There's no point calculating the residue if there's * no txstate to store the value. */ if (!txstate) { if (plchan->state == PL08X_CHAN_PAUSED) ret = DMA_PAUSED; return ret; } spin_lock_irqsave(&plchan->vc.lock, flags); ret = dma_cookie_status(chan, cookie, txstate); if (ret != DMA_COMPLETE) { vd = vchan_find_desc(&plchan->vc, cookie); if (vd) { /* On the issued list, so hasn't been processed yet */ struct pl08x_txd *txd = to_pl08x_txd(&vd->tx); struct pl08x_sg *dsg; list_for_each_entry(dsg, &txd->dsg_list, node) bytes += dsg->len; } else { bytes = pl08x_getbytes_chan(plchan); } } spin_unlock_irqrestore(&plchan->vc.lock, flags); /* * This cookie not complete yet * Get number of bytes left in the active transactions and queue */ dma_set_residue(txstate, bytes); if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS) ret = DMA_PAUSED; /* Whether waiting or running, we're in progress */ return ret; } /* PrimeCell DMA extension */ struct burst_table { u32 burstwords; u32 reg; }; static const struct burst_table burst_sizes[] = { { .burstwords = 256, .reg = PL080_BSIZE_256, }, { .burstwords = 128, .reg = PL080_BSIZE_128, }, { .burstwords = 64, .reg = PL080_BSIZE_64, }, { .burstwords = 32, .reg = PL080_BSIZE_32, }, { .burstwords = 16, .reg = PL080_BSIZE_16, }, { .burstwords = 8, .reg = PL080_BSIZE_8, }, { .burstwords = 4, .reg = PL080_BSIZE_4, }, { .burstwords = 0, .reg = PL080_BSIZE_1, }, }; /* * Given the source and destination available bus masks, select which * will be routed to each port. We try to have source and destination * on separate ports, but always respect the allowable settings. */ static u32 pl08x_select_bus(bool ftdmac020, u8 src, u8 dst) { u32 cctl = 0; u32 dst_ahb2; u32 src_ahb2; /* The FTDMAC020 use different bits to indicate src/dst bus */ if (ftdmac020) { dst_ahb2 = FTDMAC020_LLI_DST_SEL; src_ahb2 = FTDMAC020_LLI_SRC_SEL; } else { dst_ahb2 = PL080_CONTROL_DST_AHB2; src_ahb2 = PL080_CONTROL_SRC_AHB2; } if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1))) cctl |= dst_ahb2; if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2))) cctl |= src_ahb2; return cctl; } static u32 pl08x_cctl(u32 cctl) { cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR | PL080_CONTROL_PROT_MASK); /* Access the cell in privileged mode, non-bufferable, non-cacheable */ return cctl | PL080_CONTROL_PROT_SYS; } static u32 pl08x_width(enum dma_slave_buswidth width) { switch (width) { case DMA_SLAVE_BUSWIDTH_1_BYTE: return PL080_WIDTH_8BIT; case DMA_SLAVE_BUSWIDTH_2_BYTES: return PL080_WIDTH_16BIT; case DMA_SLAVE_BUSWIDTH_4_BYTES: return PL080_WIDTH_32BIT; default: return ~0; } } static u32 pl08x_burst(u32 maxburst) { int i; for (i = 0; i < ARRAY_SIZE(burst_sizes); i++) if (burst_sizes[i].burstwords <= maxburst) break; return burst_sizes[i].reg; } static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan, enum dma_slave_buswidth addr_width, u32 maxburst) { u32 width, burst, cctl = 0; width = pl08x_width(addr_width); if (width == ~0) return ~0; cctl |= width << PL080_CONTROL_SWIDTH_SHIFT; cctl |= width << PL080_CONTROL_DWIDTH_SHIFT; /* * If this channel will only request single transfers, set this * down to ONE element. Also select one element if no maxburst * is specified. */ if (plchan->cd->single) maxburst = 1; burst = pl08x_burst(maxburst); cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT; cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT; return pl08x_cctl(cctl); } /* * Slave transactions callback to the slave device to allow * synchronization of slave DMA signals with the DMAC enable */ static void pl08x_issue_pending(struct dma_chan *chan) { struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); unsigned long flags; spin_lock_irqsave(&plchan->vc.lock, flags); if (vchan_issue_pending(&plchan->vc)) { if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING) pl08x_phy_alloc_and_start(plchan); } spin_unlock_irqrestore(&plchan->vc.lock, flags); } static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan) { struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT); if (txd) INIT_LIST_HEAD(&txd->dsg_list); return txd; } static u32 pl08x_memcpy_cctl(struct pl08x_driver_data *pl08x) { u32 cctl = 0; /* Conjure cctl */ switch (pl08x->pd->memcpy_burst_size) { default: dev_err(&pl08x->adev->dev, "illegal burst size for memcpy, set to 1\n"); fallthrough; case PL08X_BURST_SZ_1: cctl |= PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT | PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT; break; case PL08X_BURST_SZ_4: cctl |= PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT | PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT; break; case PL08X_BURST_SZ_8: cctl |= PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT | PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT; break; case PL08X_BURST_SZ_16: cctl |= PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT | PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT; break; case PL08X_BURST_SZ_32: cctl |= PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT | PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT; break; case PL08X_BURST_SZ_64: cctl |= PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT | PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT; break; case PL08X_BURST_SZ_128: cctl |= PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT | PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT; break; case PL08X_BURST_SZ_256: cctl |= PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT | PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT; break; } switch (pl08x->pd->memcpy_bus_width) { default: dev_err(&pl08x->adev->dev, "illegal bus width for memcpy, set to 8 bits\n"); fallthrough; case PL08X_BUS_WIDTH_8_BITS: cctl |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT | PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT; break; case PL08X_BUS_WIDTH_16_BITS: cctl |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT | PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT; break; case PL08X_BUS_WIDTH_32_BITS: cctl |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT | PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT; break; } /* Protection flags */ if (pl08x->pd->memcpy_prot_buff) cctl |= PL080_CONTROL_PROT_BUFF; if (pl08x->pd->memcpy_prot_cache) cctl |= PL080_CONTROL_PROT_CACHE; /* We are the kernel, so we are in privileged mode */ cctl |= PL080_CONTROL_PROT_SYS; /* Both to be incremented or the code will break */ cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR; if (pl08x->vd->dualmaster) cctl |= pl08x_select_bus(false, pl08x->mem_buses, pl08x->mem_buses); return cctl; } static u32 pl08x_ftdmac020_memcpy_cctl(struct pl08x_driver_data *pl08x) { u32 cctl = 0; /* Conjure cctl */ switch (pl08x->pd->memcpy_bus_width) { default: dev_err(&pl08x->adev->dev, "illegal bus width for memcpy, set to 8 bits\n"); fallthrough; case PL08X_BUS_WIDTH_8_BITS: cctl |= PL080_WIDTH_8BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT | PL080_WIDTH_8BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT; break; case PL08X_BUS_WIDTH_16_BITS: cctl |= PL080_WIDTH_16BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT | PL080_WIDTH_16BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT; break; case PL08X_BUS_WIDTH_32_BITS: cctl |= PL080_WIDTH_32BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT | PL080_WIDTH_32BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT; break; } /* * By default mask the TC IRQ on all LLIs, it will be unmasked on * the last LLI item by other code. */ cctl |= FTDMAC020_LLI_TC_MSK; /* * Both to be incremented so leave bits FTDMAC020_LLI_SRCAD_CTL * and FTDMAC020_LLI_DSTAD_CTL as zero */ if (pl08x->vd->dualmaster) cctl |= pl08x_select_bus(true, pl08x->mem_buses, pl08x->mem_buses); return cctl; } /* * Initialize a descriptor to be used by memcpy submit */ static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy( struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, size_t len, unsigned long flags) { struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); struct pl08x_driver_data *pl08x = plchan->host; struct pl08x_txd *txd; struct pl08x_sg *dsg; int ret; txd = pl08x_get_txd(plchan); if (!txd) { dev_err(&pl08x->adev->dev, "%s no memory for descriptor\n", __func__); return NULL; } dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT); if (!dsg) { pl08x_free_txd(pl08x, txd); return NULL; } list_add_tail(&dsg->node, &txd->dsg_list); dsg->src_addr = src; dsg->dst_addr = dest; dsg->len = len; if (pl08x->vd->ftdmac020) { /* Writing CCFG zero ENABLES all interrupts */ txd->ccfg = 0; txd->cctl = pl08x_ftdmac020_memcpy_cctl(pl08x); } else { txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK | PL080_CONFIG_TC_IRQ_MASK | PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT; txd->cctl = pl08x_memcpy_cctl(pl08x); } ret = pl08x_fill_llis_for_desc(plchan->host, txd); if (!ret) { pl08x_free_txd(pl08x, txd); return NULL; } return vchan_tx_prep(&plchan->vc, &txd->vd, flags); } static struct pl08x_txd *pl08x_init_txd( struct dma_chan *chan, enum dma_transfer_direction direction, dma_addr_t *slave_addr) { struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); struct pl08x_driver_data *pl08x = plchan->host; struct pl08x_txd *txd; enum dma_slave_buswidth addr_width; int ret, tmp; u8 src_buses, dst_buses; u32 maxburst, cctl; txd = pl08x_get_txd(plchan); if (!txd) { dev_err(&pl08x->adev->dev, "%s no txd\n", __func__); return NULL; } /* * Set up addresses, the PrimeCell configured address * will take precedence since this may configure the * channel target address dynamically at runtime. */ if (direction == DMA_MEM_TO_DEV) { cctl = PL080_CONTROL_SRC_INCR; *slave_addr = plchan->cfg.dst_addr; addr_width = plchan->cfg.dst_addr_width; maxburst = plchan->cfg.dst_maxburst; src_buses = pl08x->mem_buses; dst_buses = plchan->cd->periph_buses; } else if (direction == DMA_DEV_TO_MEM) { cctl = PL080_CONTROL_DST_INCR; *slave_addr = plchan->cfg.src_addr; addr_width = plchan->cfg.src_addr_width; maxburst = plchan->cfg.src_maxburst; src_buses = plchan->cd->periph_buses; dst_buses = pl08x->mem_buses; } else { pl08x_free_txd(pl08x, txd); dev_err(&pl08x->adev->dev, "%s direction unsupported\n", __func__); return NULL; } cctl |= pl08x_get_cctl(plchan, addr_width, maxburst); if (cctl == ~0) { pl08x_free_txd(pl08x, txd); dev_err(&pl08x->adev->dev, "DMA slave configuration botched?\n"); return NULL; } txd->cctl = cctl | pl08x_select_bus(false, src_buses, dst_buses); if (plchan->cfg.device_fc) tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER : PL080_FLOW_PER2MEM_PER; else tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER : PL080_FLOW_PER2MEM; txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK | PL080_CONFIG_TC_IRQ_MASK | tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT; ret = pl08x_request_mux(plchan); if (ret < 0) { pl08x_free_txd(pl08x, txd); dev_dbg(&pl08x->adev->dev, "unable to mux for transfer on %s due to platform restrictions\n", plchan->name); return NULL; } dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n", plchan->signal, plchan->name); /* Assign the flow control signal to this channel */ if (direction == DMA_MEM_TO_DEV) txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT; else txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT; return txd; } static int pl08x_tx_add_sg(struct pl08x_txd *txd, enum dma_transfer_direction direction, dma_addr_t slave_addr, dma_addr_t buf_addr, unsigned int len) { struct pl08x_sg *dsg; dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT); if (!dsg) return -ENOMEM; list_add_tail(&dsg->node, &txd->dsg_list); dsg->len = len; if (direction == DMA_MEM_TO_DEV) { dsg->src_addr = buf_addr; dsg->dst_addr = slave_addr; } else { dsg->src_addr = slave_addr; dsg->dst_addr = buf_addr; } return 0; } static struct dma_async_tx_descriptor *pl08x_prep_slave_sg( struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction direction, unsigned long flags, void *context) { struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); struct pl08x_driver_data *pl08x = plchan->host; struct pl08x_txd *txd; struct scatterlist *sg; int ret, tmp; dma_addr_t slave_addr; dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n", __func__, sg_dma_len(sgl), plchan->name); txd = pl08x_init_txd(chan, direction, &slave_addr); if (!txd) return NULL; for_each_sg(sgl, sg, sg_len, tmp) { ret = pl08x_tx_add_sg(txd, direction, slave_addr, sg_dma_address(sg), sg_dma_len(sg)); if (ret) { pl08x_release_mux(plchan); pl08x_free_txd(pl08x, txd); dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n", __func__); return NULL; } } ret = pl08x_fill_llis_for_desc(plchan->host, txd); if (!ret) { pl08x_release_mux(plchan); pl08x_free_txd(pl08x, txd); return NULL; } return vchan_tx_prep(&plchan->vc, &txd->vd, flags); } static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic( struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction direction, unsigned long flags) { struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); struct pl08x_driver_data *pl08x = plchan->host; struct pl08x_txd *txd; int ret, tmp; dma_addr_t slave_addr; dev_dbg(&pl08x->adev->dev, "%s prepare cyclic transaction of %zd/%zd bytes %s %s\n", __func__, period_len, buf_len, direction == DMA_MEM_TO_DEV ? "to" : "from", plchan->name); txd = pl08x_init_txd(chan, direction, &slave_addr); if (!txd) return NULL; txd->cyclic = true; txd->cctl |= PL080_CONTROL_TC_IRQ_EN; for (tmp = 0; tmp < buf_len; tmp += period_len) { ret = pl08x_tx_add_sg(txd, direction, slave_addr, buf_addr + tmp, period_len); if (ret) { pl08x_release_mux(plchan); pl08x_free_txd(pl08x, txd); return NULL; } } ret = pl08x_fill_llis_for_desc(plchan->host, txd); if (!ret) { pl08x_release_mux(plchan); pl08x_free_txd(pl08x, txd); return NULL; } return vchan_tx_prep(&plchan->vc, &txd->vd, flags); } static int pl08x_config(struct dma_chan *chan, struct dma_slave_config *config) { struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); struct pl08x_driver_data *pl08x = plchan->host; if (!plchan->slave) return -EINVAL; /* Reject definitely invalid configurations */ if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES || config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES) return -EINVAL; if (config->device_fc && pl08x->vd->pl080s) { dev_err(&pl08x->adev->dev, "%s: PL080S does not support peripheral flow control\n", __func__); return -EINVAL; } plchan->cfg = *config; return 0; } static int pl08x_terminate_all(struct dma_chan *chan) { struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); struct pl08x_driver_data *pl08x = plchan->host; unsigned long flags; spin_lock_irqsave(&plchan->vc.lock, flags); if (!plchan->phychan && !plchan->at) { spin_unlock_irqrestore(&plchan->vc.lock, flags); return 0; } plchan->state = PL08X_CHAN_IDLE; if (plchan->phychan) { /* * Mark physical channel as free and free any slave * signal */ pl08x_phy_free(plchan); } /* Dequeue jobs and free LLIs */ if (plchan->at) { vchan_terminate_vdesc(&plchan->at->vd); plchan->at = NULL; } /* Dequeue jobs not yet fired as well */ pl08x_free_txd_list(pl08x, plchan); spin_unlock_irqrestore(&plchan->vc.lock, flags); return 0; } static void pl08x_synchronize(struct dma_chan *chan) { struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); vchan_synchronize(&plchan->vc); } static int pl08x_pause(struct dma_chan *chan) { struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); unsigned long flags; /* * Anything succeeds on channels with no physical allocation and * no queued transfers. */ spin_lock_irqsave(&plchan->vc.lock, flags); if (!plchan->phychan && !plchan->at) { spin_unlock_irqrestore(&plchan->vc.lock, flags); return 0; } pl08x_pause_phy_chan(plchan->phychan); plchan->state = PL08X_CHAN_PAUSED; spin_unlock_irqrestore(&plchan->vc.lock, flags); return 0; } static int pl08x_resume(struct dma_chan *chan) { struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); unsigned long flags; /* * Anything succeeds on channels with no physical allocation and * no queued transfers. */ spin_lock_irqsave(&plchan->vc.lock, flags); if (!plchan->phychan && !plchan->at) { spin_unlock_irqrestore(&plchan->vc.lock, flags); return 0; } pl08x_resume_phy_chan(plchan->phychan); plchan->state = PL08X_CHAN_RUNNING; spin_unlock_irqrestore(&plchan->vc.lock, flags); return 0; } bool pl08x_filter_id(struct dma_chan *chan, void *chan_id) { struct pl08x_dma_chan *plchan; char *name = chan_id; /* Reject channels for devices not bound to this driver */ if (chan->device->dev->driver != &pl08x_amba_driver.drv) return false; plchan = to_pl08x_chan(chan); /* Check that the channel is not taken! */ if (!strcmp(plchan->name, name)) return true; return false; } EXPORT_SYMBOL_GPL(pl08x_filter_id); static bool pl08x_filter_fn(struct dma_chan *chan, void *chan_id) { struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); return plchan->cd == chan_id; } /* * Just check that the device is there and active * TODO: turn this bit on/off depending on the number of physical channels * actually used, if it is zero... well shut it off. That will save some * power. Cut the clock at the same time. */ static void pl08x_ensure_on(struct pl08x_driver_data *pl08x) { /* The Nomadik variant does not have the config register */ if (pl08x->vd->nomadik) return; /* The FTDMAC020 variant does this in another register */ if (pl08x->vd->ftdmac020) { writel(PL080_CONFIG_ENABLE, pl08x->base + FTDMAC020_CSR); return; } writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG); } static irqreturn_t pl08x_irq(int irq, void *dev) { struct pl08x_driver_data *pl08x = dev; u32 mask = 0, err, tc, i; /* check & clear - ERR & TC interrupts */ err = readl(pl08x->base + PL080_ERR_STATUS); if (err) { dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n", __func__, err); writel(err, pl08x->base + PL080_ERR_CLEAR); } tc = readl(pl08x->base + PL080_TC_STATUS); if (tc) writel(tc, pl08x->base + PL080_TC_CLEAR); if (!err && !tc) return IRQ_NONE; for (i = 0; i < pl08x->vd->channels; i++) { if ((BIT(i) & err) || (BIT(i) & tc)) { /* Locate physical channel */ struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i]; struct pl08x_dma_chan *plchan = phychan->serving; struct pl08x_txd *tx; if (!plchan) { dev_err(&pl08x->adev->dev, "%s Error TC interrupt on unused channel: 0x%08x\n", __func__, i); continue; } spin_lock(&plchan->vc.lock); tx = plchan->at; if (tx && tx->cyclic) { vchan_cyclic_callback(&tx->vd); } else if (tx) { plchan->at = NULL; /* * This descriptor is done, release its mux * reservation. */ pl08x_release_mux(plchan); tx->done = true; vchan_cookie_complete(&tx->vd); /* * And start the next descriptor (if any), * otherwise free this channel. */ if (vchan_next_desc(&plchan->vc)) pl08x_start_next_txd(plchan); else pl08x_phy_free(plchan); } spin_unlock(&plchan->vc.lock); mask |= BIT(i); } } return mask ? IRQ_HANDLED : IRQ_NONE; } static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan) { chan->slave = true; chan->name = chan->cd->bus_id; chan->cfg.src_addr = chan->cd->addr; chan->cfg.dst_addr = chan->cd->addr; } /* * Initialise the DMAC memcpy/slave channels. * Make a local wrapper to hold required data */ static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x, struct dma_device *dmadev, unsigned int channels, bool slave) { struct pl08x_dma_chan *chan; int i; INIT_LIST_HEAD(&dmadev->channels); /* * Register as many memcpy as we have physical channels, * we won't always be able to use all but the code will have * to cope with that situation. */ for (i = 0; i < channels; i++) { chan = kzalloc(sizeof(*chan), GFP_KERNEL); if (!chan) return -ENOMEM; chan->host = pl08x; chan->state = PL08X_CHAN_IDLE; chan->signal = -1; if (slave) { chan->cd = &pl08x->pd->slave_channels[i]; /* * Some implementations have muxed signals, whereas some * use a mux in front of the signals and need dynamic * assignment of signals. */ chan->signal = i; pl08x_dma_slave_init(chan); } else { chan->cd = kzalloc(sizeof(*chan->cd), GFP_KERNEL); if (!chan->cd) { kfree(chan); return -ENOMEM; } chan->cd->bus_id = "memcpy"; chan->cd->periph_buses = pl08x->pd->mem_buses; chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i); if (!chan->name) { kfree(chan->cd); kfree(chan); return -ENOMEM; } } dev_dbg(&pl08x->adev->dev, "initialize virtual channel \"%s\"\n", chan->name); chan->vc.desc_free = pl08x_desc_free; vchan_init(&chan->vc, dmadev); } dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n", i, slave ? "slave" : "memcpy"); return i; } static void pl08x_free_virtual_channels(struct dma_device *dmadev) { struct pl08x_dma_chan *chan = NULL; struct pl08x_dma_chan *next; list_for_each_entry_safe(chan, next, &dmadev->channels, vc.chan.device_node) { list_del(&chan->vc.chan.device_node); kfree(chan); } } #ifdef CONFIG_DEBUG_FS static const char *pl08x_state_str(enum pl08x_dma_chan_state state) { switch (state) { case PL08X_CHAN_IDLE: return "idle"; case PL08X_CHAN_RUNNING: return "running"; case PL08X_CHAN_PAUSED: return "paused"; case PL08X_CHAN_WAITING: return "waiting"; default: break; } return "UNKNOWN STATE"; } static int pl08x_debugfs_show(struct seq_file *s, void *data) { struct pl08x_driver_data *pl08x = s->private; struct pl08x_dma_chan *chan; struct pl08x_phy_chan *ch; unsigned long flags; int i; seq_printf(s, "PL08x physical channels:\n"); seq_printf(s, "CHANNEL:\tUSER:\n"); seq_printf(s, "--------\t-----\n"); for (i = 0; i < pl08x->vd->channels; i++) { struct pl08x_dma_chan *virt_chan; ch = &pl08x->phy_chans[i]; spin_lock_irqsave(&ch->lock, flags); virt_chan = ch->serving; seq_printf(s, "%d\t\t%s%s\n", ch->id, virt_chan ? virt_chan->name : "(none)", ch->locked ? " LOCKED" : ""); spin_unlock_irqrestore(&ch->lock, flags); } seq_printf(s, "\nPL08x virtual memcpy channels:\n"); seq_printf(s, "CHANNEL:\tSTATE:\n"); seq_printf(s, "--------\t------\n"); list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) { seq_printf(s, "%s\t\t%s\n", chan->name, pl08x_state_str(chan->state)); } if (pl08x->has_slave) { seq_printf(s, "\nPL08x virtual slave channels:\n"); seq_printf(s, "CHANNEL:\tSTATE:\n"); seq_printf(s, "--------\t------\n"); list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) { seq_printf(s, "%s\t\t%s\n", chan->name, pl08x_state_str(chan->state)); } } return 0; } DEFINE_SHOW_ATTRIBUTE(pl08x_debugfs); static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x) { /* Expose a simple debugfs interface to view all clocks */ debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO, NULL, pl08x, &pl08x_debugfs_fops); } #else static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x) { } #endif #ifdef CONFIG_OF static struct dma_chan *pl08x_find_chan_id(struct pl08x_driver_data *pl08x, u32 id) { struct pl08x_dma_chan *chan; /* Trying to get a slave channel from something with no slave support */ if (!pl08x->has_slave) return NULL; list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) { if (chan->signal == id) return &chan->vc.chan; } return NULL; } static struct dma_chan *pl08x_of_xlate(struct of_phandle_args *dma_spec, struct of_dma *ofdma) { struct pl08x_driver_data *pl08x = ofdma->of_dma_data; struct dma_chan *dma_chan; struct pl08x_dma_chan *plchan; if (!pl08x) return NULL; if (dma_spec->args_count != 2) { dev_err(&pl08x->adev->dev, "DMA channel translation requires two cells\n"); return NULL; } dma_chan = pl08x_find_chan_id(pl08x, dma_spec->args[0]); if (!dma_chan) { dev_err(&pl08x->adev->dev, "DMA slave channel not found\n"); return NULL; } plchan = to_pl08x_chan(dma_chan); dev_dbg(&pl08x->adev->dev, "translated channel for signal %d\n", dma_spec->args[0]); /* Augment channel data for applicable AHB buses */ plchan->cd->periph_buses = dma_spec->args[1]; return dma_get_slave_channel(dma_chan); } static int pl08x_of_probe(struct amba_device *adev, struct pl08x_driver_data *pl08x, struct device_node *np) { struct pl08x_platform_data *pd; struct pl08x_channel_data *chanp = NULL; u32 val; int ret; int i; pd = devm_kzalloc(&adev->dev, sizeof(*pd), GFP_KERNEL); if (!pd) return -ENOMEM; /* Eligible bus masters for fetching LLIs */ if (of_property_read_bool(np, "lli-bus-interface-ahb1")) pd->lli_buses |= PL08X_AHB1; if (of_property_read_bool(np, "lli-bus-interface-ahb2")) pd->lli_buses |= PL08X_AHB2; if (!pd->lli_buses) { dev_info(&adev->dev, "no bus masters for LLIs stated, assume all\n"); pd->lli_buses |= PL08X_AHB1 | PL08X_AHB2; } /* Eligible bus masters for memory access */ if (of_property_read_bool(np, "mem-bus-interface-ahb1")) pd->mem_buses |= PL08X_AHB1; if (of_property_read_bool(np, "mem-bus-interface-ahb2")) pd->mem_buses |= PL08X_AHB2; if (!pd->mem_buses) { dev_info(&adev->dev, "no bus masters for memory stated, assume all\n"); pd->mem_buses |= PL08X_AHB1 | PL08X_AHB2; } /* Parse the memcpy channel properties */ ret = of_property_read_u32(np, "memcpy-burst-size", &val); if (ret) { dev_info(&adev->dev, "no memcpy burst size specified, using 1 byte\n"); val = 1; } switch (val) { default: dev_err(&adev->dev, "illegal burst size for memcpy, set to 1\n"); fallthrough; case 1: pd->memcpy_burst_size = PL08X_BURST_SZ_1; break; case 4: pd->memcpy_burst_size = PL08X_BURST_SZ_4; break; case 8: pd->memcpy_burst_size = PL08X_BURST_SZ_8; break; case 16: pd->memcpy_burst_size = PL08X_BURST_SZ_16; break; case 32: pd->memcpy_burst_size = PL08X_BURST_SZ_32; break; case 64: pd->memcpy_burst_size = PL08X_BURST_SZ_64; break; case 128: pd->memcpy_burst_size = PL08X_BURST_SZ_128; break; case 256: pd->memcpy_burst_size = PL08X_BURST_SZ_256; break; } ret = of_property_read_u32(np, "memcpy-bus-width", &val); if (ret) { dev_info(&adev->dev, "no memcpy bus width specified, using 8 bits\n"); val = 8; } switch (val) { default: dev_err(&adev->dev, "illegal bus width for memcpy, set to 8 bits\n"); fallthrough; case 8: pd->memcpy_bus_width = PL08X_BUS_WIDTH_8_BITS; break; case 16: pd->memcpy_bus_width = PL08X_BUS_WIDTH_16_BITS; break; case 32: pd->memcpy_bus_width = PL08X_BUS_WIDTH_32_BITS; break; } /* * Allocate channel data for all possible slave channels (one * for each possible signal), channels will then be allocated * for a device and have it's AHB interfaces set up at * translation time. */ if (pl08x->vd->signals) { chanp = devm_kcalloc(&adev->dev, pl08x->vd->signals, sizeof(struct pl08x_channel_data), GFP_KERNEL); if (!chanp) return -ENOMEM; pd->slave_channels = chanp; for (i = 0; i < pl08x->vd->signals; i++) { /* * chanp->periph_buses will be assigned at translation */ chanp->bus_id = kasprintf(GFP_KERNEL, "slave%d", i); chanp++; } pd->num_slave_channels = pl08x->vd->signals; } pl08x->pd = pd; return of_dma_controller_register(adev->dev.of_node, pl08x_of_xlate, pl08x); } #else static inline int pl08x_of_probe(struct amba_device *adev, struct pl08x_driver_data *pl08x, struct device_node *np) { return -EINVAL; } #endif static int pl08x_probe(struct amba_device *adev, const struct amba_id *id) { struct pl08x_driver_data *pl08x; struct vendor_data *vd = id->data; struct device_node *np = adev->dev.of_node; u32 tsfr_size; int ret = 0; int i; ret = amba_request_regions(adev, NULL); if (ret) return ret; /* Ensure that we can do DMA */ ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32)); if (ret) goto out_no_pl08x; /* Create the driver state holder */ pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL); if (!pl08x) { ret = -ENOMEM; goto out_no_pl08x; } /* Assign useful pointers to the driver state */ pl08x->adev = adev; pl08x->vd = vd; pl08x->base = ioremap(adev->res.start, resource_size(&adev->res)); if (!pl08x->base) { ret = -ENOMEM; goto out_no_ioremap; } if (vd->ftdmac020) { u32 val; val = readl(pl08x->base + FTDMAC020_REVISION); dev_info(&pl08x->adev->dev, "FTDMAC020 %d.%d rel %d\n", (val >> 16) & 0xff, (val >> 8) & 0xff, val & 0xff); val = readl(pl08x->base + FTDMAC020_FEATURE); dev_info(&pl08x->adev->dev, "FTDMAC020 %d channels, " "%s built-in bridge, %s, %s linked lists\n", (val >> 12) & 0x0f, (val & BIT(10)) ? "no" : "has", (val & BIT(9)) ? "AHB0 and AHB1" : "AHB0", (val & BIT(8)) ? "supports" : "does not support"); /* Vendor data from feature register */ if (!(val & BIT(8))) dev_warn(&pl08x->adev->dev, "linked lists not supported, required\n"); vd->channels = (val >> 12) & 0x0f; vd->dualmaster = !!(val & BIT(9)); } /* Initialize memcpy engine */ dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask); pl08x->memcpy.dev = &adev->dev; pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources; pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy; pl08x->memcpy.device_tx_status = pl08x_dma_tx_status; pl08x->memcpy.device_issue_pending = pl08x_issue_pending; pl08x->memcpy.device_config = pl08x_config; pl08x->memcpy.device_pause = pl08x_pause; pl08x->memcpy.device_resume = pl08x_resume; pl08x->memcpy.device_terminate_all = pl08x_terminate_all; pl08x->memcpy.device_synchronize = pl08x_synchronize; pl08x->memcpy.src_addr_widths = PL80X_DMA_BUSWIDTHS; pl08x->memcpy.dst_addr_widths = PL80X_DMA_BUSWIDTHS; pl08x->memcpy.directions = BIT(DMA_MEM_TO_MEM); pl08x->memcpy.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; if (vd->ftdmac020) pl08x->memcpy.copy_align = DMAENGINE_ALIGN_4_BYTES; /* * Initialize slave engine, if the block has no signals, that means * we have no slave support. */ if (vd->signals) { pl08x->has_slave = true; dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask); dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask); pl08x->slave.dev = &adev->dev; pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources; pl08x->slave.device_tx_status = pl08x_dma_tx_status; pl08x->slave.device_issue_pending = pl08x_issue_pending; pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg; pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic; pl08x->slave.device_config = pl08x_config; pl08x->slave.device_pause = pl08x_pause; pl08x->slave.device_resume = pl08x_resume; pl08x->slave.device_terminate_all = pl08x_terminate_all; pl08x->slave.device_synchronize = pl08x_synchronize; pl08x->slave.src_addr_widths = PL80X_DMA_BUSWIDTHS; pl08x->slave.dst_addr_widths = PL80X_DMA_BUSWIDTHS; pl08x->slave.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); pl08x->slave.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; } /* Get the platform data */ pl08x->pd = dev_get_platdata(&adev->dev); if (!pl08x->pd) { if (np) { ret = pl08x_of_probe(adev, pl08x, np); if (ret) goto out_no_platdata; } else { dev_err(&adev->dev, "no platform data supplied\n"); ret = -EINVAL; goto out_no_platdata; } } else { pl08x->slave.filter.map = pl08x->pd->slave_map; pl08x->slave.filter.mapcnt = pl08x->pd->slave_map_len; pl08x->slave.filter.fn = pl08x_filter_fn; } /* By default, AHB1 only. If dualmaster, from platform */ pl08x->lli_buses = PL08X_AHB1; pl08x->mem_buses = PL08X_AHB1; if (pl08x->vd->dualmaster) { pl08x->lli_buses = pl08x->pd->lli_buses; pl08x->mem_buses = pl08x->pd->mem_buses; } if (vd->pl080s) pl08x->lli_words = PL080S_LLI_WORDS; else pl08x->lli_words = PL080_LLI_WORDS; tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32); /* A DMA memory pool for LLIs, align on 1-byte boundary */ pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev, tsfr_size, PL08X_ALIGN, 0); if (!pl08x->pool) { ret = -ENOMEM; goto out_no_lli_pool; } /* Turn on the PL08x */ pl08x_ensure_on(pl08x); /* Clear any pending interrupts */ if (vd->ftdmac020) /* This variant has error IRQs in bits 16-19 */ writel(0x0000FFFF, pl08x->base + PL080_ERR_CLEAR); else writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR); writel(0x000000FF, pl08x->base + PL080_TC_CLEAR); /* Attach the interrupt handler */ ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x); if (ret) { dev_err(&adev->dev, "%s failed to request interrupt %d\n", __func__, adev->irq[0]); goto out_no_irq; } /* Initialize physical channels */ pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)), GFP_KERNEL); if (!pl08x->phy_chans) { ret = -ENOMEM; goto out_no_phychans; } for (i = 0; i < vd->channels; i++) { struct pl08x_phy_chan *ch = &pl08x->phy_chans[i]; ch->id = i; ch->base = pl08x->base + PL080_Cx_BASE(i); if (vd->ftdmac020) { /* FTDMA020 has a special channel busy register */ ch->reg_busy = ch->base + FTDMAC020_CH_BUSY; ch->reg_config = ch->base + FTDMAC020_CH_CFG; ch->reg_control = ch->base + FTDMAC020_CH_CSR; ch->reg_src = ch->base + FTDMAC020_CH_SRC_ADDR; ch->reg_dst = ch->base + FTDMAC020_CH_DST_ADDR; ch->reg_lli = ch->base + FTDMAC020_CH_LLP; ch->ftdmac020 = true; } else { ch->reg_config = ch->base + vd->config_offset; ch->reg_control = ch->base + PL080_CH_CONTROL; ch->reg_src = ch->base + PL080_CH_SRC_ADDR; ch->reg_dst = ch->base + PL080_CH_DST_ADDR; ch->reg_lli = ch->base + PL080_CH_LLI; } if (vd->pl080s) ch->pl080s = true; spin_lock_init(&ch->lock); /* * Nomadik variants can have channels that are locked * down for the secure world only. Lock up these channels * by perpetually serving a dummy virtual channel. */ if (vd->nomadik) { u32 val; val = readl(ch->reg_config); if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) { dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i); ch->locked = true; } } dev_dbg(&adev->dev, "physical channel %d is %s\n", i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE"); } /* Register as many memcpy channels as there are physical channels */ ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy, pl08x->vd->channels, false); if (ret <= 0) { dev_warn(&pl08x->adev->dev, "%s failed to enumerate memcpy channels - %d\n", __func__, ret); goto out_no_memcpy; } /* Register slave channels */ if (pl08x->has_slave) { ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave, pl08x->pd->num_slave_channels, true); if (ret < 0) { dev_warn(&pl08x->adev->dev, "%s failed to enumerate slave channels - %d\n", __func__, ret); goto out_no_slave; } } ret = dma_async_device_register(&pl08x->memcpy); if (ret) { dev_warn(&pl08x->adev->dev, "%s failed to register memcpy as an async device - %d\n", __func__, ret); goto out_no_memcpy_reg; } if (pl08x->has_slave) { ret = dma_async_device_register(&pl08x->slave); if (ret) { dev_warn(&pl08x->adev->dev, "%s failed to register slave as an async device - %d\n", __func__, ret); goto out_no_slave_reg; } } amba_set_drvdata(adev, pl08x); init_pl08x_debugfs(pl08x); dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n", amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev), (unsigned long long)adev->res.start, adev->irq[0]); return 0; out_no_slave_reg: dma_async_device_unregister(&pl08x->memcpy); out_no_memcpy_reg: if (pl08x->has_slave) pl08x_free_virtual_channels(&pl08x->slave); out_no_slave: pl08x_free_virtual_channels(&pl08x->memcpy); out_no_memcpy: kfree(pl08x->phy_chans); out_no_phychans: free_irq(adev->irq[0], pl08x); out_no_irq: dma_pool_destroy(pl08x->pool); out_no_lli_pool: out_no_platdata: iounmap(pl08x->base); out_no_ioremap: kfree(pl08x); out_no_pl08x: amba_release_regions(adev); return ret; } /* PL080 has 8 channels and the PL080 have just 2 */ static struct vendor_data vendor_pl080 = { .config_offset = PL080_CH_CONFIG, .channels = 8, .signals = 16, .dualmaster = true, .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK, }; static struct vendor_data vendor_nomadik = { .config_offset = PL080_CH_CONFIG, .channels = 8, .signals = 32, .dualmaster = true, .nomadik = true, .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK, }; static struct vendor_data vendor_pl080s = { .config_offset = PL080S_CH_CONFIG, .channels = 8, .signals = 32, .pl080s = true, .max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK, }; static struct vendor_data vendor_pl081 = { .config_offset = PL080_CH_CONFIG, .channels = 2, .signals = 16, .dualmaster = false, .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK, }; static struct vendor_data vendor_ftdmac020 = { .config_offset = PL080_CH_CONFIG, .ftdmac020 = true, .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK, }; static const struct amba_id pl08x_ids[] = { /* Samsung PL080S variant */ { .id = 0x0a141080, .mask = 0xffffffff, .data = &vendor_pl080s, }, /* PL080 */ { .id = 0x00041080, .mask = 0x000fffff, .data = &vendor_pl080, }, /* PL081 */ { .id = 0x00041081, .mask = 0x000fffff, .data = &vendor_pl081, }, /* Nomadik 8815 PL080 variant */ { .id = 0x00280080, .mask = 0x00ffffff, .data = &vendor_nomadik, }, /* Faraday Technology FTDMAC020 */ { .id = 0x0003b080, .mask = 0x000fffff, .data = &vendor_ftdmac020, }, { 0, 0 }, }; MODULE_DEVICE_TABLE(amba, pl08x_ids); static struct amba_driver pl08x_amba_driver = { .drv.name = DRIVER_NAME, .id_table = pl08x_ids, .probe = pl08x_probe, }; static int __init pl08x_init(void) { int retval; retval = amba_driver_register(&pl08x_amba_driver); if (retval) printk(KERN_WARNING DRIVER_NAME "failed to register as an AMBA device (%d)\n", retval); return retval; } subsys_initcall(pl08x_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1