Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Peter Griffin | 4436 | 99.31% | 1 | 11.11% |
Arnd Bergmann | 15 | 0.34% | 1 | 11.11% |
Gustavo A. R. Silva | 5 | 0.11% | 1 | 11.11% |
Wei Yongjun | 3 | 0.07% | 1 | 11.11% |
Huang Shijie | 2 | 0.04% | 1 | 11.11% |
Linus Torvalds (pre-git) | 2 | 0.04% | 1 | 11.11% |
Thomas Gleixner | 2 | 0.04% | 1 | 11.11% |
Alyssa Ross | 1 | 0.02% | 1 | 11.11% |
Linus Torvalds | 1 | 0.02% | 1 | 11.11% |
Total | 4467 | 9 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * DMA driver for STMicroelectronics STi FDMA controller * * Copyright (C) 2014 STMicroelectronics * * Author: Ludovic Barre <Ludovic.barre@st.com> * Peter Griffin <peter.griffin@linaro.org> */ #include <linux/init.h> #include <linux/module.h> #include <linux/of_device.h> #include <linux/of_dma.h> #include <linux/platform_device.h> #include <linux/interrupt.h> #include <linux/remoteproc.h> #include <linux/slab.h> #include "st_fdma.h" static inline struct st_fdma_chan *to_st_fdma_chan(struct dma_chan *c) { return container_of(c, struct st_fdma_chan, vchan.chan); } static struct st_fdma_desc *to_st_fdma_desc(struct virt_dma_desc *vd) { return container_of(vd, struct st_fdma_desc, vdesc); } static int st_fdma_dreq_get(struct st_fdma_chan *fchan) { struct st_fdma_dev *fdev = fchan->fdev; u32 req_line_cfg = fchan->cfg.req_line; u32 dreq_line; int try = 0; /* * dreq_mask is shared for n channels of fdma, so all accesses must be * atomic. if the dreq_mask is changed between ffz and set_bit, * we retry */ do { if (fdev->dreq_mask == ~0L) { dev_err(fdev->dev, "No req lines available\n"); return -EINVAL; } if (try || req_line_cfg >= ST_FDMA_NR_DREQS) { dev_err(fdev->dev, "Invalid or used req line\n"); return -EINVAL; } else { dreq_line = req_line_cfg; } try++; } while (test_and_set_bit(dreq_line, &fdev->dreq_mask)); dev_dbg(fdev->dev, "get dreq_line:%d mask:%#lx\n", dreq_line, fdev->dreq_mask); return dreq_line; } static void st_fdma_dreq_put(struct st_fdma_chan *fchan) { struct st_fdma_dev *fdev = fchan->fdev; dev_dbg(fdev->dev, "put dreq_line:%#x\n", fchan->dreq_line); clear_bit(fchan->dreq_line, &fdev->dreq_mask); } static void st_fdma_xfer_desc(struct st_fdma_chan *fchan) { struct virt_dma_desc *vdesc; unsigned long nbytes, ch_cmd, cmd; vdesc = vchan_next_desc(&fchan->vchan); if (!vdesc) return; fchan->fdesc = to_st_fdma_desc(vdesc); nbytes = fchan->fdesc->node[0].desc->nbytes; cmd = FDMA_CMD_START(fchan->vchan.chan.chan_id); ch_cmd = fchan->fdesc->node[0].pdesc | FDMA_CH_CMD_STA_START; /* start the channel for the descriptor */ fnode_write(fchan, nbytes, FDMA_CNTN_OFST); fchan_write(fchan, ch_cmd, FDMA_CH_CMD_OFST); writel(cmd, fchan->fdev->slim_rproc->peri + FDMA_CMD_SET_OFST); dev_dbg(fchan->fdev->dev, "start chan:%d\n", fchan->vchan.chan.chan_id); } static void st_fdma_ch_sta_update(struct st_fdma_chan *fchan, unsigned long int_sta) { unsigned long ch_sta, ch_err; int ch_id = fchan->vchan.chan.chan_id; struct st_fdma_dev *fdev = fchan->fdev; ch_sta = fchan_read(fchan, FDMA_CH_CMD_OFST); ch_err = ch_sta & FDMA_CH_CMD_ERR_MASK; ch_sta &= FDMA_CH_CMD_STA_MASK; if (int_sta & FDMA_INT_STA_ERR) { dev_warn(fdev->dev, "chan:%d, error:%ld\n", ch_id, ch_err); fchan->status = DMA_ERROR; return; } switch (ch_sta) { case FDMA_CH_CMD_STA_PAUSED: fchan->status = DMA_PAUSED; break; case FDMA_CH_CMD_STA_RUNNING: fchan->status = DMA_IN_PROGRESS; break; } } static irqreturn_t st_fdma_irq_handler(int irq, void *dev_id) { struct st_fdma_dev *fdev = dev_id; irqreturn_t ret = IRQ_NONE; struct st_fdma_chan *fchan = &fdev->chans[0]; unsigned long int_sta, clr; int_sta = fdma_read(fdev, FDMA_INT_STA_OFST); clr = int_sta; for (; int_sta != 0 ; int_sta >>= 2, fchan++) { if (!(int_sta & (FDMA_INT_STA_CH | FDMA_INT_STA_ERR))) continue; spin_lock(&fchan->vchan.lock); st_fdma_ch_sta_update(fchan, int_sta); if (fchan->fdesc) { if (!fchan->fdesc->iscyclic) { list_del(&fchan->fdesc->vdesc.node); vchan_cookie_complete(&fchan->fdesc->vdesc); fchan->fdesc = NULL; fchan->status = DMA_COMPLETE; } else { vchan_cyclic_callback(&fchan->fdesc->vdesc); } /* Start the next descriptor (if available) */ if (!fchan->fdesc) st_fdma_xfer_desc(fchan); } spin_unlock(&fchan->vchan.lock); ret = IRQ_HANDLED; } fdma_write(fdev, clr, FDMA_INT_CLR_OFST); return ret; } static struct dma_chan *st_fdma_of_xlate(struct of_phandle_args *dma_spec, struct of_dma *ofdma) { struct st_fdma_dev *fdev = ofdma->of_dma_data; struct dma_chan *chan; struct st_fdma_chan *fchan; int ret; if (dma_spec->args_count < 1) return ERR_PTR(-EINVAL); if (fdev->dma_device.dev->of_node != dma_spec->np) return ERR_PTR(-EINVAL); ret = rproc_boot(fdev->slim_rproc->rproc); if (ret == -ENOENT) return ERR_PTR(-EPROBE_DEFER); else if (ret) return ERR_PTR(ret); chan = dma_get_any_slave_channel(&fdev->dma_device); if (!chan) goto err_chan; fchan = to_st_fdma_chan(chan); fchan->cfg.of_node = dma_spec->np; fchan->cfg.req_line = dma_spec->args[0]; fchan->cfg.req_ctrl = 0; fchan->cfg.type = ST_FDMA_TYPE_FREE_RUN; if (dma_spec->args_count > 1) fchan->cfg.req_ctrl = dma_spec->args[1] & FDMA_REQ_CTRL_CFG_MASK; if (dma_spec->args_count > 2) fchan->cfg.type = dma_spec->args[2]; if (fchan->cfg.type == ST_FDMA_TYPE_FREE_RUN) { fchan->dreq_line = 0; } else { fchan->dreq_line = st_fdma_dreq_get(fchan); if (IS_ERR_VALUE(fchan->dreq_line)) { chan = ERR_PTR(fchan->dreq_line); goto err_chan; } } dev_dbg(fdev->dev, "xlate req_line:%d type:%d req_ctrl:%#lx\n", fchan->cfg.req_line, fchan->cfg.type, fchan->cfg.req_ctrl); return chan; err_chan: rproc_shutdown(fdev->slim_rproc->rproc); return chan; } static void st_fdma_free_desc(struct virt_dma_desc *vdesc) { struct st_fdma_desc *fdesc; int i; fdesc = to_st_fdma_desc(vdesc); for (i = 0; i < fdesc->n_nodes; i++) dma_pool_free(fdesc->fchan->node_pool, fdesc->node[i].desc, fdesc->node[i].pdesc); kfree(fdesc); } static struct st_fdma_desc *st_fdma_alloc_desc(struct st_fdma_chan *fchan, int sg_len) { struct st_fdma_desc *fdesc; int i; fdesc = kzalloc(struct_size(fdesc, node, sg_len), GFP_NOWAIT); if (!fdesc) return NULL; fdesc->fchan = fchan; fdesc->n_nodes = sg_len; for (i = 0; i < sg_len; i++) { fdesc->node[i].desc = dma_pool_alloc(fchan->node_pool, GFP_NOWAIT, &fdesc->node[i].pdesc); if (!fdesc->node[i].desc) goto err; } return fdesc; err: while (--i >= 0) dma_pool_free(fchan->node_pool, fdesc->node[i].desc, fdesc->node[i].pdesc); kfree(fdesc); return NULL; } static int st_fdma_alloc_chan_res(struct dma_chan *chan) { struct st_fdma_chan *fchan = to_st_fdma_chan(chan); /* Create the dma pool for descriptor allocation */ fchan->node_pool = dma_pool_create(dev_name(&chan->dev->device), fchan->fdev->dev, sizeof(struct st_fdma_hw_node), __alignof__(struct st_fdma_hw_node), 0); if (!fchan->node_pool) { dev_err(fchan->fdev->dev, "unable to allocate desc pool\n"); return -ENOMEM; } dev_dbg(fchan->fdev->dev, "alloc ch_id:%d type:%d\n", fchan->vchan.chan.chan_id, fchan->cfg.type); return 0; } static void st_fdma_free_chan_res(struct dma_chan *chan) { struct st_fdma_chan *fchan = to_st_fdma_chan(chan); struct rproc *rproc = fchan->fdev->slim_rproc->rproc; unsigned long flags; dev_dbg(fchan->fdev->dev, "%s: freeing chan:%d\n", __func__, fchan->vchan.chan.chan_id); if (fchan->cfg.type != ST_FDMA_TYPE_FREE_RUN) st_fdma_dreq_put(fchan); spin_lock_irqsave(&fchan->vchan.lock, flags); fchan->fdesc = NULL; spin_unlock_irqrestore(&fchan->vchan.lock, flags); dma_pool_destroy(fchan->node_pool); fchan->node_pool = NULL; memset(&fchan->cfg, 0, sizeof(struct st_fdma_cfg)); rproc_shutdown(rproc); } static struct dma_async_tx_descriptor *st_fdma_prep_dma_memcpy( struct dma_chan *chan, dma_addr_t dst, dma_addr_t src, size_t len, unsigned long flags) { struct st_fdma_chan *fchan; struct st_fdma_desc *fdesc; struct st_fdma_hw_node *hw_node; if (!len) return NULL; fchan = to_st_fdma_chan(chan); /* We only require a single descriptor */ fdesc = st_fdma_alloc_desc(fchan, 1); if (!fdesc) { dev_err(fchan->fdev->dev, "no memory for desc\n"); return NULL; } hw_node = fdesc->node[0].desc; hw_node->next = 0; hw_node->control = FDMA_NODE_CTRL_REQ_MAP_FREE_RUN; hw_node->control |= FDMA_NODE_CTRL_SRC_INCR; hw_node->control |= FDMA_NODE_CTRL_DST_INCR; hw_node->control |= FDMA_NODE_CTRL_INT_EON; hw_node->nbytes = len; hw_node->saddr = src; hw_node->daddr = dst; hw_node->generic.length = len; hw_node->generic.sstride = 0; hw_node->generic.dstride = 0; return vchan_tx_prep(&fchan->vchan, &fdesc->vdesc, flags); } static int config_reqctrl(struct st_fdma_chan *fchan, enum dma_transfer_direction direction) { u32 maxburst = 0, addr = 0; enum dma_slave_buswidth width; int ch_id = fchan->vchan.chan.chan_id; struct st_fdma_dev *fdev = fchan->fdev; switch (direction) { case DMA_DEV_TO_MEM: fchan->cfg.req_ctrl &= ~FDMA_REQ_CTRL_WNR; maxburst = fchan->scfg.src_maxburst; width = fchan->scfg.src_addr_width; addr = fchan->scfg.src_addr; break; case DMA_MEM_TO_DEV: fchan->cfg.req_ctrl |= FDMA_REQ_CTRL_WNR; maxburst = fchan->scfg.dst_maxburst; width = fchan->scfg.dst_addr_width; addr = fchan->scfg.dst_addr; break; default: return -EINVAL; } fchan->cfg.req_ctrl &= ~FDMA_REQ_CTRL_OPCODE_MASK; switch (width) { case DMA_SLAVE_BUSWIDTH_1_BYTE: fchan->cfg.req_ctrl |= FDMA_REQ_CTRL_OPCODE_LD_ST1; break; case DMA_SLAVE_BUSWIDTH_2_BYTES: fchan->cfg.req_ctrl |= FDMA_REQ_CTRL_OPCODE_LD_ST2; break; case DMA_SLAVE_BUSWIDTH_4_BYTES: fchan->cfg.req_ctrl |= FDMA_REQ_CTRL_OPCODE_LD_ST4; break; case DMA_SLAVE_BUSWIDTH_8_BYTES: fchan->cfg.req_ctrl |= FDMA_REQ_CTRL_OPCODE_LD_ST8; break; default: return -EINVAL; } fchan->cfg.req_ctrl &= ~FDMA_REQ_CTRL_NUM_OPS_MASK; fchan->cfg.req_ctrl |= FDMA_REQ_CTRL_NUM_OPS(maxburst-1); dreq_write(fchan, fchan->cfg.req_ctrl, FDMA_REQ_CTRL_OFST); fchan->cfg.dev_addr = addr; fchan->cfg.dir = direction; dev_dbg(fdev->dev, "chan:%d config_reqctrl:%#x req_ctrl:%#lx\n", ch_id, addr, fchan->cfg.req_ctrl); return 0; } static void fill_hw_node(struct st_fdma_hw_node *hw_node, struct st_fdma_chan *fchan, enum dma_transfer_direction direction) { if (direction == DMA_MEM_TO_DEV) { hw_node->control |= FDMA_NODE_CTRL_SRC_INCR; hw_node->control |= FDMA_NODE_CTRL_DST_STATIC; hw_node->daddr = fchan->cfg.dev_addr; } else { hw_node->control |= FDMA_NODE_CTRL_SRC_STATIC; hw_node->control |= FDMA_NODE_CTRL_DST_INCR; hw_node->saddr = fchan->cfg.dev_addr; } hw_node->generic.sstride = 0; hw_node->generic.dstride = 0; } static inline struct st_fdma_chan *st_fdma_prep_common(struct dma_chan *chan, size_t len, enum dma_transfer_direction direction) { struct st_fdma_chan *fchan; if (!chan || !len) return NULL; fchan = to_st_fdma_chan(chan); if (!is_slave_direction(direction)) { dev_err(fchan->fdev->dev, "bad direction?\n"); return NULL; } return fchan; } static struct dma_async_tx_descriptor *st_fdma_prep_dma_cyclic( struct dma_chan *chan, dma_addr_t buf_addr, size_t len, size_t period_len, enum dma_transfer_direction direction, unsigned long flags) { struct st_fdma_chan *fchan; struct st_fdma_desc *fdesc; int sg_len, i; fchan = st_fdma_prep_common(chan, len, direction); if (!fchan) return NULL; if (!period_len) return NULL; if (config_reqctrl(fchan, direction)) { dev_err(fchan->fdev->dev, "bad width or direction\n"); return NULL; } /* the buffer length must be a multiple of period_len */ if (len % period_len != 0) { dev_err(fchan->fdev->dev, "len is not multiple of period\n"); return NULL; } sg_len = len / period_len; fdesc = st_fdma_alloc_desc(fchan, sg_len); if (!fdesc) { dev_err(fchan->fdev->dev, "no memory for desc\n"); return NULL; } fdesc->iscyclic = true; for (i = 0; i < sg_len; i++) { struct st_fdma_hw_node *hw_node = fdesc->node[i].desc; hw_node->next = fdesc->node[(i + 1) % sg_len].pdesc; hw_node->control = FDMA_NODE_CTRL_REQ_MAP_DREQ(fchan->dreq_line); hw_node->control |= FDMA_NODE_CTRL_INT_EON; fill_hw_node(hw_node, fchan, direction); if (direction == DMA_MEM_TO_DEV) hw_node->saddr = buf_addr + (i * period_len); else hw_node->daddr = buf_addr + (i * period_len); hw_node->nbytes = period_len; hw_node->generic.length = period_len; } return vchan_tx_prep(&fchan->vchan, &fdesc->vdesc, flags); } static struct dma_async_tx_descriptor *st_fdma_prep_slave_sg( struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction direction, unsigned long flags, void *context) { struct st_fdma_chan *fchan; struct st_fdma_desc *fdesc; struct st_fdma_hw_node *hw_node; struct scatterlist *sg; int i; fchan = st_fdma_prep_common(chan, sg_len, direction); if (!fchan) return NULL; if (!sgl) return NULL; fdesc = st_fdma_alloc_desc(fchan, sg_len); if (!fdesc) { dev_err(fchan->fdev->dev, "no memory for desc\n"); return NULL; } fdesc->iscyclic = false; for_each_sg(sgl, sg, sg_len, i) { hw_node = fdesc->node[i].desc; hw_node->next = fdesc->node[(i + 1) % sg_len].pdesc; hw_node->control = FDMA_NODE_CTRL_REQ_MAP_DREQ(fchan->dreq_line); fill_hw_node(hw_node, fchan, direction); if (direction == DMA_MEM_TO_DEV) hw_node->saddr = sg_dma_address(sg); else hw_node->daddr = sg_dma_address(sg); hw_node->nbytes = sg_dma_len(sg); hw_node->generic.length = sg_dma_len(sg); } /* interrupt at end of last node */ hw_node->control |= FDMA_NODE_CTRL_INT_EON; return vchan_tx_prep(&fchan->vchan, &fdesc->vdesc, flags); } static size_t st_fdma_desc_residue(struct st_fdma_chan *fchan, struct virt_dma_desc *vdesc, bool in_progress) { struct st_fdma_desc *fdesc = fchan->fdesc; size_t residue = 0; dma_addr_t cur_addr = 0; int i; if (in_progress) { cur_addr = fchan_read(fchan, FDMA_CH_CMD_OFST); cur_addr &= FDMA_CH_CMD_DATA_MASK; } for (i = fchan->fdesc->n_nodes - 1 ; i >= 0; i--) { if (cur_addr == fdesc->node[i].pdesc) { residue += fnode_read(fchan, FDMA_CNTN_OFST); break; } residue += fdesc->node[i].desc->nbytes; } return residue; } static enum dma_status st_fdma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct st_fdma_chan *fchan = to_st_fdma_chan(chan); struct virt_dma_desc *vd; enum dma_status ret; unsigned long flags; ret = dma_cookie_status(chan, cookie, txstate); if (ret == DMA_COMPLETE || !txstate) return ret; spin_lock_irqsave(&fchan->vchan.lock, flags); vd = vchan_find_desc(&fchan->vchan, cookie); if (fchan->fdesc && cookie == fchan->fdesc->vdesc.tx.cookie) txstate->residue = st_fdma_desc_residue(fchan, vd, true); else if (vd) txstate->residue = st_fdma_desc_residue(fchan, vd, false); else txstate->residue = 0; spin_unlock_irqrestore(&fchan->vchan.lock, flags); return ret; } static void st_fdma_issue_pending(struct dma_chan *chan) { struct st_fdma_chan *fchan = to_st_fdma_chan(chan); unsigned long flags; spin_lock_irqsave(&fchan->vchan.lock, flags); if (vchan_issue_pending(&fchan->vchan) && !fchan->fdesc) st_fdma_xfer_desc(fchan); spin_unlock_irqrestore(&fchan->vchan.lock, flags); } static int st_fdma_pause(struct dma_chan *chan) { unsigned long flags; struct st_fdma_chan *fchan = to_st_fdma_chan(chan); int ch_id = fchan->vchan.chan.chan_id; unsigned long cmd = FDMA_CMD_PAUSE(ch_id); dev_dbg(fchan->fdev->dev, "pause chan:%d\n", ch_id); spin_lock_irqsave(&fchan->vchan.lock, flags); if (fchan->fdesc) fdma_write(fchan->fdev, cmd, FDMA_CMD_SET_OFST); spin_unlock_irqrestore(&fchan->vchan.lock, flags); return 0; } static int st_fdma_resume(struct dma_chan *chan) { unsigned long flags; unsigned long val; struct st_fdma_chan *fchan = to_st_fdma_chan(chan); int ch_id = fchan->vchan.chan.chan_id; dev_dbg(fchan->fdev->dev, "resume chan:%d\n", ch_id); spin_lock_irqsave(&fchan->vchan.lock, flags); if (fchan->fdesc) { val = fchan_read(fchan, FDMA_CH_CMD_OFST); val &= FDMA_CH_CMD_DATA_MASK; fchan_write(fchan, val, FDMA_CH_CMD_OFST); } spin_unlock_irqrestore(&fchan->vchan.lock, flags); return 0; } static int st_fdma_terminate_all(struct dma_chan *chan) { unsigned long flags; LIST_HEAD(head); struct st_fdma_chan *fchan = to_st_fdma_chan(chan); int ch_id = fchan->vchan.chan.chan_id; unsigned long cmd = FDMA_CMD_PAUSE(ch_id); dev_dbg(fchan->fdev->dev, "terminate chan:%d\n", ch_id); spin_lock_irqsave(&fchan->vchan.lock, flags); fdma_write(fchan->fdev, cmd, FDMA_CMD_SET_OFST); fchan->fdesc = NULL; vchan_get_all_descriptors(&fchan->vchan, &head); spin_unlock_irqrestore(&fchan->vchan.lock, flags); vchan_dma_desc_free_list(&fchan->vchan, &head); return 0; } static int st_fdma_slave_config(struct dma_chan *chan, struct dma_slave_config *slave_cfg) { struct st_fdma_chan *fchan = to_st_fdma_chan(chan); memcpy(&fchan->scfg, slave_cfg, sizeof(fchan->scfg)); return 0; } static const struct st_fdma_driverdata fdma_mpe31_stih407_11 = { .name = "STiH407", .id = 0, }; static const struct st_fdma_driverdata fdma_mpe31_stih407_12 = { .name = "STiH407", .id = 1, }; static const struct st_fdma_driverdata fdma_mpe31_stih407_13 = { .name = "STiH407", .id = 2, }; static const struct of_device_id st_fdma_match[] = { { .compatible = "st,stih407-fdma-mpe31-11" , .data = &fdma_mpe31_stih407_11 }, { .compatible = "st,stih407-fdma-mpe31-12" , .data = &fdma_mpe31_stih407_12 }, { .compatible = "st,stih407-fdma-mpe31-13" , .data = &fdma_mpe31_stih407_13 }, {}, }; MODULE_DEVICE_TABLE(of, st_fdma_match); static int st_fdma_parse_dt(struct platform_device *pdev, const struct st_fdma_driverdata *drvdata, struct st_fdma_dev *fdev) { snprintf(fdev->fw_name, FW_NAME_SIZE, "fdma_%s_%d.elf", drvdata->name, drvdata->id); return of_property_read_u32(pdev->dev.of_node, "dma-channels", &fdev->nr_channels); } #define FDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \ BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) static void st_fdma_free(struct st_fdma_dev *fdev) { struct st_fdma_chan *fchan; int i; for (i = 0; i < fdev->nr_channels; i++) { fchan = &fdev->chans[i]; list_del(&fchan->vchan.chan.device_node); tasklet_kill(&fchan->vchan.task); } } static int st_fdma_probe(struct platform_device *pdev) { struct st_fdma_dev *fdev; const struct of_device_id *match; struct device_node *np = pdev->dev.of_node; const struct st_fdma_driverdata *drvdata; int ret, i; match = of_match_device((st_fdma_match), &pdev->dev); if (!match || !match->data) { dev_err(&pdev->dev, "No device match found\n"); return -ENODEV; } drvdata = match->data; fdev = devm_kzalloc(&pdev->dev, sizeof(*fdev), GFP_KERNEL); if (!fdev) return -ENOMEM; ret = st_fdma_parse_dt(pdev, drvdata, fdev); if (ret) { dev_err(&pdev->dev, "unable to find platform data\n"); goto err; } fdev->chans = devm_kcalloc(&pdev->dev, fdev->nr_channels, sizeof(struct st_fdma_chan), GFP_KERNEL); if (!fdev->chans) return -ENOMEM; fdev->dev = &pdev->dev; fdev->drvdata = drvdata; platform_set_drvdata(pdev, fdev); fdev->irq = platform_get_irq(pdev, 0); if (fdev->irq < 0) return -EINVAL; ret = devm_request_irq(&pdev->dev, fdev->irq, st_fdma_irq_handler, 0, dev_name(&pdev->dev), fdev); if (ret) { dev_err(&pdev->dev, "Failed to request irq (%d)\n", ret); goto err; } fdev->slim_rproc = st_slim_rproc_alloc(pdev, fdev->fw_name); if (IS_ERR(fdev->slim_rproc)) { ret = PTR_ERR(fdev->slim_rproc); dev_err(&pdev->dev, "slim_rproc_alloc failed (%d)\n", ret); goto err; } /* Initialise list of FDMA channels */ INIT_LIST_HEAD(&fdev->dma_device.channels); for (i = 0; i < fdev->nr_channels; i++) { struct st_fdma_chan *fchan = &fdev->chans[i]; fchan->fdev = fdev; fchan->vchan.desc_free = st_fdma_free_desc; vchan_init(&fchan->vchan, &fdev->dma_device); } /* Initialise the FDMA dreq (reserve 0 & 31 for FDMA use) */ fdev->dreq_mask = BIT(0) | BIT(31); dma_cap_set(DMA_SLAVE, fdev->dma_device.cap_mask); dma_cap_set(DMA_CYCLIC, fdev->dma_device.cap_mask); dma_cap_set(DMA_MEMCPY, fdev->dma_device.cap_mask); fdev->dma_device.dev = &pdev->dev; fdev->dma_device.device_alloc_chan_resources = st_fdma_alloc_chan_res; fdev->dma_device.device_free_chan_resources = st_fdma_free_chan_res; fdev->dma_device.device_prep_dma_cyclic = st_fdma_prep_dma_cyclic; fdev->dma_device.device_prep_slave_sg = st_fdma_prep_slave_sg; fdev->dma_device.device_prep_dma_memcpy = st_fdma_prep_dma_memcpy; fdev->dma_device.device_tx_status = st_fdma_tx_status; fdev->dma_device.device_issue_pending = st_fdma_issue_pending; fdev->dma_device.device_terminate_all = st_fdma_terminate_all; fdev->dma_device.device_config = st_fdma_slave_config; fdev->dma_device.device_pause = st_fdma_pause; fdev->dma_device.device_resume = st_fdma_resume; fdev->dma_device.src_addr_widths = FDMA_DMA_BUSWIDTHS; fdev->dma_device.dst_addr_widths = FDMA_DMA_BUSWIDTHS; fdev->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); fdev->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; ret = dmaenginem_async_device_register(&fdev->dma_device); if (ret) { dev_err(&pdev->dev, "Failed to register DMA device (%d)\n", ret); goto err_rproc; } ret = of_dma_controller_register(np, st_fdma_of_xlate, fdev); if (ret) { dev_err(&pdev->dev, "Failed to register controller (%d)\n", ret); goto err_rproc; } dev_info(&pdev->dev, "ST FDMA engine driver, irq:%d\n", fdev->irq); return 0; err_rproc: st_fdma_free(fdev); st_slim_rproc_put(fdev->slim_rproc); err: return ret; } static int st_fdma_remove(struct platform_device *pdev) { struct st_fdma_dev *fdev = platform_get_drvdata(pdev); devm_free_irq(&pdev->dev, fdev->irq, fdev); st_slim_rproc_put(fdev->slim_rproc); of_dma_controller_free(pdev->dev.of_node); return 0; } static struct platform_driver st_fdma_platform_driver = { .driver = { .name = DRIVER_NAME, .of_match_table = st_fdma_match, }, .probe = st_fdma_probe, .remove = st_fdma_remove, }; module_platform_driver(st_fdma_platform_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("STMicroelectronics FDMA engine driver"); MODULE_AUTHOR("Ludovic.barre <Ludovic.barre@st.com>"); MODULE_AUTHOR("Peter Griffin <peter.griffin@linaro.org>"); MODULE_ALIAS("platform:" DRIVER_NAME);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1