Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jan Lübbe | 3147 | 98.34% | 1 | 14.29% |
Chris Packham | 19 | 0.59% | 1 | 14.29% |
Takashi Iwai | 13 | 0.41% | 1 | 14.29% |
Jia He | 9 | 0.28% | 1 | 14.29% |
Christophe Jaillet | 7 | 0.22% | 1 | 14.29% |
Lv Ruyi | 4 | 0.12% | 1 | 14.29% |
Hans Potsch | 1 | 0.03% | 1 | 14.29% |
Total | 3200 | 7 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2017 Pengutronix, Jan Luebbe <kernel@pengutronix.de> */ #include <linux/kernel.h> #include <linux/edac.h> #include <linux/of_platform.h> #include <asm/hardware/cache-l2x0.h> #include <asm/hardware/cache-aurora-l2.h> #include "edac_mc.h" #include "edac_device.h" #include "edac_module.h" /************************ EDAC MC (DDR RAM) ********************************/ #define SDRAM_NUM_CS 4 #define SDRAM_CONFIG_REG 0x0 #define SDRAM_CONFIG_ECC_MASK BIT(18) #define SDRAM_CONFIG_REGISTERED_MASK BIT(17) #define SDRAM_CONFIG_BUS_WIDTH_MASK BIT(15) #define SDRAM_ADDR_CTRL_REG 0x10 #define SDRAM_ADDR_CTRL_SIZE_HIGH_OFFSET(cs) (20+cs) #define SDRAM_ADDR_CTRL_SIZE_HIGH_MASK(cs) (0x1 << SDRAM_ADDR_CTRL_SIZE_HIGH_OFFSET(cs)) #define SDRAM_ADDR_CTRL_ADDR_SEL_MASK(cs) BIT(16+cs) #define SDRAM_ADDR_CTRL_SIZE_LOW_OFFSET(cs) (cs*4+2) #define SDRAM_ADDR_CTRL_SIZE_LOW_MASK(cs) (0x3 << SDRAM_ADDR_CTRL_SIZE_LOW_OFFSET(cs)) #define SDRAM_ADDR_CTRL_STRUCT_OFFSET(cs) (cs*4) #define SDRAM_ADDR_CTRL_STRUCT_MASK(cs) (0x3 << SDRAM_ADDR_CTRL_STRUCT_OFFSET(cs)) #define SDRAM_ERR_DATA_H_REG 0x40 #define SDRAM_ERR_DATA_L_REG 0x44 #define SDRAM_ERR_RECV_ECC_REG 0x48 #define SDRAM_ERR_RECV_ECC_VALUE_MASK 0xff #define SDRAM_ERR_CALC_ECC_REG 0x4c #define SDRAM_ERR_CALC_ECC_ROW_OFFSET 8 #define SDRAM_ERR_CALC_ECC_ROW_MASK (0xffff << SDRAM_ERR_CALC_ECC_ROW_OFFSET) #define SDRAM_ERR_CALC_ECC_VALUE_MASK 0xff #define SDRAM_ERR_ADDR_REG 0x50 #define SDRAM_ERR_ADDR_BANK_OFFSET 23 #define SDRAM_ERR_ADDR_BANK_MASK (0x7 << SDRAM_ERR_ADDR_BANK_OFFSET) #define SDRAM_ERR_ADDR_COL_OFFSET 8 #define SDRAM_ERR_ADDR_COL_MASK (0x7fff << SDRAM_ERR_ADDR_COL_OFFSET) #define SDRAM_ERR_ADDR_CS_OFFSET 1 #define SDRAM_ERR_ADDR_CS_MASK (0x3 << SDRAM_ERR_ADDR_CS_OFFSET) #define SDRAM_ERR_ADDR_TYPE_MASK BIT(0) #define SDRAM_ERR_CTRL_REG 0x54 #define SDRAM_ERR_CTRL_THR_OFFSET 16 #define SDRAM_ERR_CTRL_THR_MASK (0xff << SDRAM_ERR_CTRL_THR_OFFSET) #define SDRAM_ERR_CTRL_PROP_MASK BIT(9) #define SDRAM_ERR_SBE_COUNT_REG 0x58 #define SDRAM_ERR_DBE_COUNT_REG 0x5c #define SDRAM_ERR_CAUSE_ERR_REG 0xd0 #define SDRAM_ERR_CAUSE_MSG_REG 0xd8 #define SDRAM_ERR_CAUSE_DBE_MASK BIT(1) #define SDRAM_ERR_CAUSE_SBE_MASK BIT(0) #define SDRAM_RANK_CTRL_REG 0x1e0 #define SDRAM_RANK_CTRL_EXIST_MASK(cs) BIT(cs) struct axp_mc_drvdata { void __iomem *base; /* width in bytes */ unsigned int width; /* bank interleaving */ bool cs_addr_sel[SDRAM_NUM_CS]; char msg[128]; }; /* derived from "DRAM Address Multiplexing" in the ARMADA XP Functional Spec */ static uint32_t axp_mc_calc_address(struct axp_mc_drvdata *drvdata, uint8_t cs, uint8_t bank, uint16_t row, uint16_t col) { if (drvdata->width == 8) { /* 64 bit */ if (drvdata->cs_addr_sel[cs]) /* bank interleaved */ return (((row & 0xfff8) << 16) | ((bank & 0x7) << 16) | ((row & 0x7) << 13) | ((col & 0x3ff) << 3)); else return (((row & 0xffff << 16) | ((bank & 0x7) << 13) | ((col & 0x3ff)) << 3)); } else if (drvdata->width == 4) { /* 32 bit */ if (drvdata->cs_addr_sel[cs]) /* bank interleaved */ return (((row & 0xfff0) << 15) | ((bank & 0x7) << 16) | ((row & 0xf) << 12) | ((col & 0x3ff) << 2)); else return (((row & 0xffff << 15) | ((bank & 0x7) << 12) | ((col & 0x3ff)) << 2)); } else { /* 16 bit */ if (drvdata->cs_addr_sel[cs]) /* bank interleaved */ return (((row & 0xffe0) << 14) | ((bank & 0x7) << 16) | ((row & 0x1f) << 11) | ((col & 0x3ff) << 1)); else return (((row & 0xffff << 14) | ((bank & 0x7) << 11) | ((col & 0x3ff)) << 1)); } } static void axp_mc_check(struct mem_ctl_info *mci) { struct axp_mc_drvdata *drvdata = mci->pvt_info; uint32_t data_h, data_l, recv_ecc, calc_ecc, addr; uint32_t cnt_sbe, cnt_dbe, cause_err, cause_msg; uint32_t row_val, col_val, bank_val, addr_val; uint8_t syndrome_val, cs_val; char *msg = drvdata->msg; data_h = readl(drvdata->base + SDRAM_ERR_DATA_H_REG); data_l = readl(drvdata->base + SDRAM_ERR_DATA_L_REG); recv_ecc = readl(drvdata->base + SDRAM_ERR_RECV_ECC_REG); calc_ecc = readl(drvdata->base + SDRAM_ERR_CALC_ECC_REG); addr = readl(drvdata->base + SDRAM_ERR_ADDR_REG); cnt_sbe = readl(drvdata->base + SDRAM_ERR_SBE_COUNT_REG); cnt_dbe = readl(drvdata->base + SDRAM_ERR_DBE_COUNT_REG); cause_err = readl(drvdata->base + SDRAM_ERR_CAUSE_ERR_REG); cause_msg = readl(drvdata->base + SDRAM_ERR_CAUSE_MSG_REG); /* clear cause registers */ writel(~(SDRAM_ERR_CAUSE_DBE_MASK | SDRAM_ERR_CAUSE_SBE_MASK), drvdata->base + SDRAM_ERR_CAUSE_ERR_REG); writel(~(SDRAM_ERR_CAUSE_DBE_MASK | SDRAM_ERR_CAUSE_SBE_MASK), drvdata->base + SDRAM_ERR_CAUSE_MSG_REG); /* clear error counter registers */ if (cnt_sbe) writel(0, drvdata->base + SDRAM_ERR_SBE_COUNT_REG); if (cnt_dbe) writel(0, drvdata->base + SDRAM_ERR_DBE_COUNT_REG); if (!cnt_sbe && !cnt_dbe) return; if (!(addr & SDRAM_ERR_ADDR_TYPE_MASK)) { if (cnt_sbe) cnt_sbe--; else dev_warn(mci->pdev, "inconsistent SBE count detected\n"); } else { if (cnt_dbe) cnt_dbe--; else dev_warn(mci->pdev, "inconsistent DBE count detected\n"); } /* report earlier errors */ if (cnt_sbe) edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, cnt_sbe, /* error count */ 0, 0, 0, /* pfn, offset, syndrome */ -1, -1, -1, /* top, mid, low layer */ mci->ctl_name, "details unavailable (multiple errors)"); if (cnt_dbe) edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, cnt_dbe, /* error count */ 0, 0, 0, /* pfn, offset, syndrome */ -1, -1, -1, /* top, mid, low layer */ mci->ctl_name, "details unavailable (multiple errors)"); /* report details for most recent error */ cs_val = (addr & SDRAM_ERR_ADDR_CS_MASK) >> SDRAM_ERR_ADDR_CS_OFFSET; bank_val = (addr & SDRAM_ERR_ADDR_BANK_MASK) >> SDRAM_ERR_ADDR_BANK_OFFSET; row_val = (calc_ecc & SDRAM_ERR_CALC_ECC_ROW_MASK) >> SDRAM_ERR_CALC_ECC_ROW_OFFSET; col_val = (addr & SDRAM_ERR_ADDR_COL_MASK) >> SDRAM_ERR_ADDR_COL_OFFSET; syndrome_val = (recv_ecc ^ calc_ecc) & 0xff; addr_val = axp_mc_calc_address(drvdata, cs_val, bank_val, row_val, col_val); msg += sprintf(msg, "row=0x%04x ", row_val); /* 11 chars */ msg += sprintf(msg, "bank=0x%x ", bank_val); /* 9 chars */ msg += sprintf(msg, "col=0x%04x ", col_val); /* 11 chars */ msg += sprintf(msg, "cs=%d", cs_val); /* 4 chars */ if (!(addr & SDRAM_ERR_ADDR_TYPE_MASK)) { edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, /* error count */ addr_val >> PAGE_SHIFT, addr_val & ~PAGE_MASK, syndrome_val, cs_val, -1, -1, /* top, mid, low layer */ mci->ctl_name, drvdata->msg); } else { edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, /* error count */ addr_val >> PAGE_SHIFT, addr_val & ~PAGE_MASK, syndrome_val, cs_val, -1, -1, /* top, mid, low layer */ mci->ctl_name, drvdata->msg); } } static void axp_mc_read_config(struct mem_ctl_info *mci) { struct axp_mc_drvdata *drvdata = mci->pvt_info; uint32_t config, addr_ctrl, rank_ctrl; unsigned int i, cs_struct, cs_size; struct dimm_info *dimm; config = readl(drvdata->base + SDRAM_CONFIG_REG); if (config & SDRAM_CONFIG_BUS_WIDTH_MASK) /* 64 bit */ drvdata->width = 8; else /* 32 bit */ drvdata->width = 4; addr_ctrl = readl(drvdata->base + SDRAM_ADDR_CTRL_REG); rank_ctrl = readl(drvdata->base + SDRAM_RANK_CTRL_REG); for (i = 0; i < SDRAM_NUM_CS; i++) { dimm = mci->dimms[i]; if (!(rank_ctrl & SDRAM_RANK_CTRL_EXIST_MASK(i))) continue; drvdata->cs_addr_sel[i] = !!(addr_ctrl & SDRAM_ADDR_CTRL_ADDR_SEL_MASK(i)); cs_struct = (addr_ctrl & SDRAM_ADDR_CTRL_STRUCT_MASK(i)) >> SDRAM_ADDR_CTRL_STRUCT_OFFSET(i); cs_size = ((addr_ctrl & SDRAM_ADDR_CTRL_SIZE_HIGH_MASK(i)) >> (SDRAM_ADDR_CTRL_SIZE_HIGH_OFFSET(i) - 2) | ((addr_ctrl & SDRAM_ADDR_CTRL_SIZE_LOW_MASK(i)) >> SDRAM_ADDR_CTRL_SIZE_LOW_OFFSET(i))); switch (cs_size) { case 0: /* 2GBit */ dimm->nr_pages = 524288; break; case 1: /* 256MBit */ dimm->nr_pages = 65536; break; case 2: /* 512MBit */ dimm->nr_pages = 131072; break; case 3: /* 1GBit */ dimm->nr_pages = 262144; break; case 4: /* 4GBit */ dimm->nr_pages = 1048576; break; case 5: /* 8GBit */ dimm->nr_pages = 2097152; break; } dimm->grain = 8; dimm->dtype = cs_struct ? DEV_X16 : DEV_X8; dimm->mtype = (config & SDRAM_CONFIG_REGISTERED_MASK) ? MEM_RDDR3 : MEM_DDR3; dimm->edac_mode = EDAC_SECDED; } } static const struct of_device_id axp_mc_of_match[] = { {.compatible = "marvell,armada-xp-sdram-controller",}, {}, }; MODULE_DEVICE_TABLE(of, axp_mc_of_match); static int axp_mc_probe(struct platform_device *pdev) { struct axp_mc_drvdata *drvdata; struct edac_mc_layer layers[1]; const struct of_device_id *id; struct mem_ctl_info *mci; void __iomem *base; uint32_t config; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) { dev_err(&pdev->dev, "Unable to map regs\n"); return PTR_ERR(base); } config = readl(base + SDRAM_CONFIG_REG); if (!(config & SDRAM_CONFIG_ECC_MASK)) { dev_warn(&pdev->dev, "SDRAM ECC is not enabled\n"); return -EINVAL; } layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; layers[0].size = SDRAM_NUM_CS; layers[0].is_virt_csrow = true; mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*drvdata)); if (!mci) return -ENOMEM; drvdata = mci->pvt_info; drvdata->base = base; mci->pdev = &pdev->dev; platform_set_drvdata(pdev, mci); id = of_match_device(axp_mc_of_match, &pdev->dev); mci->edac_check = axp_mc_check; mci->mtype_cap = MEM_FLAG_DDR3; mci->edac_cap = EDAC_FLAG_SECDED; mci->mod_name = pdev->dev.driver->name; mci->ctl_name = id ? id->compatible : "unknown"; mci->dev_name = dev_name(&pdev->dev); mci->scrub_mode = SCRUB_NONE; axp_mc_read_config(mci); /* These SoCs have a reduced width bus */ if (of_machine_is_compatible("marvell,armada380") || of_machine_is_compatible("marvell,armadaxp-98dx3236")) drvdata->width /= 2; /* configure SBE threshold */ /* it seems that SBEs are not captured otherwise */ writel(1 << SDRAM_ERR_CTRL_THR_OFFSET, drvdata->base + SDRAM_ERR_CTRL_REG); /* clear cause registers */ writel(~(SDRAM_ERR_CAUSE_DBE_MASK | SDRAM_ERR_CAUSE_SBE_MASK), drvdata->base + SDRAM_ERR_CAUSE_ERR_REG); writel(~(SDRAM_ERR_CAUSE_DBE_MASK | SDRAM_ERR_CAUSE_SBE_MASK), drvdata->base + SDRAM_ERR_CAUSE_MSG_REG); /* clear counter registers */ writel(0, drvdata->base + SDRAM_ERR_SBE_COUNT_REG); writel(0, drvdata->base + SDRAM_ERR_DBE_COUNT_REG); if (edac_mc_add_mc(mci)) { edac_mc_free(mci); return -EINVAL; } edac_op_state = EDAC_OPSTATE_POLL; return 0; } static int axp_mc_remove(struct platform_device *pdev) { struct mem_ctl_info *mci = platform_get_drvdata(pdev); edac_mc_del_mc(&pdev->dev); edac_mc_free(mci); platform_set_drvdata(pdev, NULL); return 0; } static struct platform_driver axp_mc_driver = { .probe = axp_mc_probe, .remove = axp_mc_remove, .driver = { .name = "armada_xp_mc_edac", .of_match_table = of_match_ptr(axp_mc_of_match), }, }; /************************ EDAC Device (L2 Cache) ***************************/ struct aurora_l2_drvdata { void __iomem *base; char msg[128]; /* error injection via debugfs */ uint32_t inject_addr; uint32_t inject_mask; uint8_t inject_ctl; struct dentry *debugfs; }; #ifdef CONFIG_EDAC_DEBUG static void aurora_l2_inject(struct aurora_l2_drvdata *drvdata) { drvdata->inject_addr &= AURORA_ERR_INJECT_CTL_ADDR_MASK; drvdata->inject_ctl &= AURORA_ERR_INJECT_CTL_EN_MASK; writel(0, drvdata->base + AURORA_ERR_INJECT_CTL_REG); writel(drvdata->inject_mask, drvdata->base + AURORA_ERR_INJECT_MASK_REG); writel(drvdata->inject_addr | drvdata->inject_ctl, drvdata->base + AURORA_ERR_INJECT_CTL_REG); } #endif static void aurora_l2_check(struct edac_device_ctl_info *dci) { struct aurora_l2_drvdata *drvdata = dci->pvt_info; uint32_t cnt, src, txn, err, attr_cap, addr_cap, way_cap; unsigned int cnt_ce, cnt_ue; char *msg = drvdata->msg; size_t size = sizeof(drvdata->msg); size_t len = 0; cnt = readl(drvdata->base + AURORA_ERR_CNT_REG); attr_cap = readl(drvdata->base + AURORA_ERR_ATTR_CAP_REG); addr_cap = readl(drvdata->base + AURORA_ERR_ADDR_CAP_REG); way_cap = readl(drvdata->base + AURORA_ERR_WAY_CAP_REG); cnt_ce = (cnt & AURORA_ERR_CNT_CE_MASK) >> AURORA_ERR_CNT_CE_OFFSET; cnt_ue = (cnt & AURORA_ERR_CNT_UE_MASK) >> AURORA_ERR_CNT_UE_OFFSET; /* clear error counter registers */ if (cnt_ce || cnt_ue) writel(AURORA_ERR_CNT_CLR, drvdata->base + AURORA_ERR_CNT_REG); if (!(attr_cap & AURORA_ERR_ATTR_CAP_VALID)) goto clear_remaining; src = (attr_cap & AURORA_ERR_ATTR_SRC_MSK) >> AURORA_ERR_ATTR_SRC_OFF; if (src <= 3) len += scnprintf(msg+len, size-len, "src=CPU%d ", src); else len += scnprintf(msg+len, size-len, "src=IO "); txn = (attr_cap & AURORA_ERR_ATTR_TXN_MSK) >> AURORA_ERR_ATTR_TXN_OFF; switch (txn) { case 0: len += scnprintf(msg+len, size-len, "txn=Data-Read "); break; case 1: len += scnprintf(msg+len, size-len, "txn=Isn-Read "); break; case 2: len += scnprintf(msg+len, size-len, "txn=Clean-Flush "); break; case 3: len += scnprintf(msg+len, size-len, "txn=Eviction "); break; case 4: len += scnprintf(msg+len, size-len, "txn=Read-Modify-Write "); break; } err = (attr_cap & AURORA_ERR_ATTR_ERR_MSK) >> AURORA_ERR_ATTR_ERR_OFF; switch (err) { case 0: len += scnprintf(msg+len, size-len, "err=CorrECC "); break; case 1: len += scnprintf(msg+len, size-len, "err=UnCorrECC "); break; case 2: len += scnprintf(msg+len, size-len, "err=TagParity "); break; } len += scnprintf(msg+len, size-len, "addr=0x%x ", addr_cap & AURORA_ERR_ADDR_CAP_ADDR_MASK); len += scnprintf(msg+len, size-len, "index=0x%x ", (way_cap & AURORA_ERR_WAY_IDX_MSK) >> AURORA_ERR_WAY_IDX_OFF); len += scnprintf(msg+len, size-len, "way=0x%x", (way_cap & AURORA_ERR_WAY_CAP_WAY_MASK) >> AURORA_ERR_WAY_CAP_WAY_OFFSET); /* clear error capture registers */ writel(AURORA_ERR_ATTR_CAP_VALID, drvdata->base + AURORA_ERR_ATTR_CAP_REG); if (err) { /* UnCorrECC or TagParity */ if (cnt_ue) cnt_ue--; edac_device_handle_ue(dci, 0, 0, drvdata->msg); } else { if (cnt_ce) cnt_ce--; edac_device_handle_ce(dci, 0, 0, drvdata->msg); } clear_remaining: /* report remaining errors */ while (cnt_ue--) edac_device_handle_ue(dci, 0, 0, "details unavailable (multiple errors)"); while (cnt_ce--) edac_device_handle_ue(dci, 0, 0, "details unavailable (multiple errors)"); } static void aurora_l2_poll(struct edac_device_ctl_info *dci) { #ifdef CONFIG_EDAC_DEBUG struct aurora_l2_drvdata *drvdata = dci->pvt_info; #endif aurora_l2_check(dci); #ifdef CONFIG_EDAC_DEBUG aurora_l2_inject(drvdata); #endif } static const struct of_device_id aurora_l2_of_match[] = { {.compatible = "marvell,aurora-system-cache",}, {}, }; MODULE_DEVICE_TABLE(of, aurora_l2_of_match); static int aurora_l2_probe(struct platform_device *pdev) { struct aurora_l2_drvdata *drvdata; struct edac_device_ctl_info *dci; const struct of_device_id *id; uint32_t l2x0_aux_ctrl; void __iomem *base; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) { dev_err(&pdev->dev, "Unable to map regs\n"); return PTR_ERR(base); } l2x0_aux_ctrl = readl(base + L2X0_AUX_CTRL); if (!(l2x0_aux_ctrl & AURORA_ACR_PARITY_EN)) dev_warn(&pdev->dev, "tag parity is not enabled\n"); if (!(l2x0_aux_ctrl & AURORA_ACR_ECC_EN)) dev_warn(&pdev->dev, "data ECC is not enabled\n"); dci = edac_device_alloc_ctl_info(sizeof(*drvdata), "cpu", 1, "L", 1, 2, NULL, 0, 0); if (!dci) return -ENOMEM; drvdata = dci->pvt_info; drvdata->base = base; dci->dev = &pdev->dev; platform_set_drvdata(pdev, dci); id = of_match_device(aurora_l2_of_match, &pdev->dev); dci->edac_check = aurora_l2_poll; dci->mod_name = pdev->dev.driver->name; dci->ctl_name = id ? id->compatible : "unknown"; dci->dev_name = dev_name(&pdev->dev); /* clear registers */ writel(AURORA_ERR_CNT_CLR, drvdata->base + AURORA_ERR_CNT_REG); writel(AURORA_ERR_ATTR_CAP_VALID, drvdata->base + AURORA_ERR_ATTR_CAP_REG); if (edac_device_add_device(dci)) { edac_device_free_ctl_info(dci); return -EINVAL; } #ifdef CONFIG_EDAC_DEBUG drvdata->debugfs = edac_debugfs_create_dir(dev_name(&pdev->dev)); if (drvdata->debugfs) { edac_debugfs_create_x32("inject_addr", 0644, drvdata->debugfs, &drvdata->inject_addr); edac_debugfs_create_x32("inject_mask", 0644, drvdata->debugfs, &drvdata->inject_mask); edac_debugfs_create_x8("inject_ctl", 0644, drvdata->debugfs, &drvdata->inject_ctl); } #endif return 0; } static int aurora_l2_remove(struct platform_device *pdev) { struct edac_device_ctl_info *dci = platform_get_drvdata(pdev); #ifdef CONFIG_EDAC_DEBUG struct aurora_l2_drvdata *drvdata = dci->pvt_info; edac_debugfs_remove_recursive(drvdata->debugfs); #endif edac_device_del_device(&pdev->dev); edac_device_free_ctl_info(dci); platform_set_drvdata(pdev, NULL); return 0; } static struct platform_driver aurora_l2_driver = { .probe = aurora_l2_probe, .remove = aurora_l2_remove, .driver = { .name = "aurora_l2_edac", .of_match_table = of_match_ptr(aurora_l2_of_match), }, }; /************************ Driver registration ******************************/ static struct platform_driver * const drivers[] = { &axp_mc_driver, &aurora_l2_driver, }; static int __init armada_xp_edac_init(void) { int res; if (ghes_get_devices()) return -EBUSY; /* only polling is supported */ edac_op_state = EDAC_OPSTATE_POLL; res = platform_register_drivers(drivers, ARRAY_SIZE(drivers)); if (res) pr_warn("Armada XP EDAC drivers fail to register\n"); return 0; } module_init(armada_xp_edac_init); static void __exit armada_xp_edac_exit(void) { platform_unregister_drivers(drivers, ARRAY_SIZE(drivers)); } module_exit(armada_xp_edac_exit); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Pengutronix"); MODULE_DESCRIPTION("EDAC Drivers for Marvell Armada XP SDRAM and L2 Cache Controller");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1