Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Hao Wu | 4184 | 96.18% | 4 | 40.00% |
Luwei Kang | 150 | 3.45% | 3 | 30.00% |
Kajol Jain | 12 | 0.28% | 1 | 10.00% |
Rikard Falkeborn | 3 | 0.07% | 1 | 10.00% |
Xu Yilun | 1 | 0.02% | 1 | 10.00% |
Total | 4350 | 10 |
// SPDX-License-Identifier: GPL-2.0 /* * Driver for FPGA Management Engine (FME) Global Performance Reporting * * Copyright 2019 Intel Corporation, Inc. * * Authors: * Kang Luwei <luwei.kang@intel.com> * Xiao Guangrong <guangrong.xiao@linux.intel.com> * Wu Hao <hao.wu@intel.com> * Xu Yilun <yilun.xu@intel.com> * Joseph Grecco <joe.grecco@intel.com> * Enno Luebbers <enno.luebbers@intel.com> * Tim Whisonant <tim.whisonant@intel.com> * Ananda Ravuri <ananda.ravuri@intel.com> * Mitchel, Henry <henry.mitchel@intel.com> */ #include <linux/perf_event.h> #include "dfl.h" #include "dfl-fme.h" /* * Performance Counter Registers for Cache. * * Cache Events are listed below as CACHE_EVNT_*. */ #define CACHE_CTRL 0x8 #define CACHE_RESET_CNTR BIT_ULL(0) #define CACHE_FREEZE_CNTR BIT_ULL(8) #define CACHE_CTRL_EVNT GENMASK_ULL(19, 16) #define CACHE_EVNT_RD_HIT 0x0 #define CACHE_EVNT_WR_HIT 0x1 #define CACHE_EVNT_RD_MISS 0x2 #define CACHE_EVNT_WR_MISS 0x3 #define CACHE_EVNT_RSVD 0x4 #define CACHE_EVNT_HOLD_REQ 0x5 #define CACHE_EVNT_DATA_WR_PORT_CONTEN 0x6 #define CACHE_EVNT_TAG_WR_PORT_CONTEN 0x7 #define CACHE_EVNT_TX_REQ_STALL 0x8 #define CACHE_EVNT_RX_REQ_STALL 0x9 #define CACHE_EVNT_EVICTIONS 0xa #define CACHE_EVNT_MAX CACHE_EVNT_EVICTIONS #define CACHE_CHANNEL_SEL BIT_ULL(20) #define CACHE_CHANNEL_RD 0 #define CACHE_CHANNEL_WR 1 #define CACHE_CNTR0 0x10 #define CACHE_CNTR1 0x18 #define CACHE_CNTR_EVNT_CNTR GENMASK_ULL(47, 0) #define CACHE_CNTR_EVNT GENMASK_ULL(63, 60) /* * Performance Counter Registers for Fabric. * * Fabric Events are listed below as FAB_EVNT_* */ #define FAB_CTRL 0x20 #define FAB_RESET_CNTR BIT_ULL(0) #define FAB_FREEZE_CNTR BIT_ULL(8) #define FAB_CTRL_EVNT GENMASK_ULL(19, 16) #define FAB_EVNT_PCIE0_RD 0x0 #define FAB_EVNT_PCIE0_WR 0x1 #define FAB_EVNT_PCIE1_RD 0x2 #define FAB_EVNT_PCIE1_WR 0x3 #define FAB_EVNT_UPI_RD 0x4 #define FAB_EVNT_UPI_WR 0x5 #define FAB_EVNT_MMIO_RD 0x6 #define FAB_EVNT_MMIO_WR 0x7 #define FAB_EVNT_MAX FAB_EVNT_MMIO_WR #define FAB_PORT_ID GENMASK_ULL(21, 20) #define FAB_PORT_FILTER BIT_ULL(23) #define FAB_PORT_FILTER_DISABLE 0 #define FAB_PORT_FILTER_ENABLE 1 #define FAB_CNTR 0x28 #define FAB_CNTR_EVNT_CNTR GENMASK_ULL(59, 0) #define FAB_CNTR_EVNT GENMASK_ULL(63, 60) /* * Performance Counter Registers for Clock. * * Clock Counter can't be reset or frozen by SW. */ #define CLK_CNTR 0x30 #define BASIC_EVNT_CLK 0x0 #define BASIC_EVNT_MAX BASIC_EVNT_CLK /* * Performance Counter Registers for IOMMU / VT-D. * * VT-D Events are listed below as VTD_EVNT_* and VTD_SIP_EVNT_* */ #define VTD_CTRL 0x38 #define VTD_RESET_CNTR BIT_ULL(0) #define VTD_FREEZE_CNTR BIT_ULL(8) #define VTD_CTRL_EVNT GENMASK_ULL(19, 16) #define VTD_EVNT_AFU_MEM_RD_TRANS 0x0 #define VTD_EVNT_AFU_MEM_WR_TRANS 0x1 #define VTD_EVNT_AFU_DEVTLB_RD_HIT 0x2 #define VTD_EVNT_AFU_DEVTLB_WR_HIT 0x3 #define VTD_EVNT_DEVTLB_4K_FILL 0x4 #define VTD_EVNT_DEVTLB_2M_FILL 0x5 #define VTD_EVNT_DEVTLB_1G_FILL 0x6 #define VTD_EVNT_MAX VTD_EVNT_DEVTLB_1G_FILL #define VTD_CNTR 0x40 #define VTD_CNTR_EVNT_CNTR GENMASK_ULL(47, 0) #define VTD_CNTR_EVNT GENMASK_ULL(63, 60) #define VTD_SIP_CTRL 0x48 #define VTD_SIP_RESET_CNTR BIT_ULL(0) #define VTD_SIP_FREEZE_CNTR BIT_ULL(8) #define VTD_SIP_CTRL_EVNT GENMASK_ULL(19, 16) #define VTD_SIP_EVNT_IOTLB_4K_HIT 0x0 #define VTD_SIP_EVNT_IOTLB_2M_HIT 0x1 #define VTD_SIP_EVNT_IOTLB_1G_HIT 0x2 #define VTD_SIP_EVNT_SLPWC_L3_HIT 0x3 #define VTD_SIP_EVNT_SLPWC_L4_HIT 0x4 #define VTD_SIP_EVNT_RCC_HIT 0x5 #define VTD_SIP_EVNT_IOTLB_4K_MISS 0x6 #define VTD_SIP_EVNT_IOTLB_2M_MISS 0x7 #define VTD_SIP_EVNT_IOTLB_1G_MISS 0x8 #define VTD_SIP_EVNT_SLPWC_L3_MISS 0x9 #define VTD_SIP_EVNT_SLPWC_L4_MISS 0xa #define VTD_SIP_EVNT_RCC_MISS 0xb #define VTD_SIP_EVNT_MAX VTD_SIP_EVNT_SLPWC_L4_MISS #define VTD_SIP_CNTR 0X50 #define VTD_SIP_CNTR_EVNT_CNTR GENMASK_ULL(47, 0) #define VTD_SIP_CNTR_EVNT GENMASK_ULL(63, 60) #define PERF_TIMEOUT 30 #define PERF_MAX_PORT_NUM 1U /** * struct fme_perf_priv - priv data structure for fme perf driver * * @dev: parent device. * @ioaddr: mapped base address of mmio region. * @pmu: pmu data structure for fme perf counters. * @id: id of this fme performance report private feature. * @fab_users: current user number on fabric counters. * @fab_port_id: used to indicate current working mode of fabric counters. * @fab_lock: lock to protect fabric counters working mode. * @cpu: active CPU to which the PMU is bound for accesses. * @cpuhp_node: node for CPU hotplug notifier link. * @cpuhp_state: state for CPU hotplug notification; */ struct fme_perf_priv { struct device *dev; void __iomem *ioaddr; struct pmu pmu; u16 id; u32 fab_users; u32 fab_port_id; spinlock_t fab_lock; unsigned int cpu; struct hlist_node node; enum cpuhp_state cpuhp_state; }; /** * struct fme_perf_event_ops - callbacks for fme perf events * * @event_init: callback invoked during event init. * @event_destroy: callback invoked during event destroy. * @read_counter: callback to read hardware counters. */ struct fme_perf_event_ops { int (*event_init)(struct fme_perf_priv *priv, u32 event, u32 portid); void (*event_destroy)(struct fme_perf_priv *priv, u32 event, u32 portid); u64 (*read_counter)(struct fme_perf_priv *priv, u32 event, u32 portid); }; #define to_fme_perf_priv(_pmu) container_of(_pmu, struct fme_perf_priv, pmu) static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr, char *buf) { struct pmu *pmu = dev_get_drvdata(dev); struct fme_perf_priv *priv; priv = to_fme_perf_priv(pmu); return cpumap_print_to_pagebuf(true, buf, cpumask_of(priv->cpu)); } static DEVICE_ATTR_RO(cpumask); static struct attribute *fme_perf_cpumask_attrs[] = { &dev_attr_cpumask.attr, NULL, }; static const struct attribute_group fme_perf_cpumask_group = { .attrs = fme_perf_cpumask_attrs, }; #define FME_EVENT_MASK GENMASK_ULL(11, 0) #define FME_EVENT_SHIFT 0 #define FME_EVTYPE_MASK GENMASK_ULL(15, 12) #define FME_EVTYPE_SHIFT 12 #define FME_EVTYPE_BASIC 0 #define FME_EVTYPE_CACHE 1 #define FME_EVTYPE_FABRIC 2 #define FME_EVTYPE_VTD 3 #define FME_EVTYPE_VTD_SIP 4 #define FME_EVTYPE_MAX FME_EVTYPE_VTD_SIP #define FME_PORTID_MASK GENMASK_ULL(23, 16) #define FME_PORTID_SHIFT 16 #define FME_PORTID_ROOT (0xffU) #define get_event(_config) FIELD_GET(FME_EVENT_MASK, _config) #define get_evtype(_config) FIELD_GET(FME_EVTYPE_MASK, _config) #define get_portid(_config) FIELD_GET(FME_PORTID_MASK, _config) PMU_FORMAT_ATTR(event, "config:0-11"); PMU_FORMAT_ATTR(evtype, "config:12-15"); PMU_FORMAT_ATTR(portid, "config:16-23"); static struct attribute *fme_perf_format_attrs[] = { &format_attr_event.attr, &format_attr_evtype.attr, &format_attr_portid.attr, NULL, }; static const struct attribute_group fme_perf_format_group = { .name = "format", .attrs = fme_perf_format_attrs, }; /* * There are no default events, but we need to create * "events" group (with empty attrs) before updating * it with detected events (using pmu->attr_update). */ static struct attribute *fme_perf_events_attrs_empty[] = { NULL, }; static const struct attribute_group fme_perf_events_group = { .name = "events", .attrs = fme_perf_events_attrs_empty, }; static const struct attribute_group *fme_perf_groups[] = { &fme_perf_format_group, &fme_perf_cpumask_group, &fme_perf_events_group, NULL, }; static bool is_portid_root(u32 portid) { return portid == FME_PORTID_ROOT; } static bool is_portid_port(u32 portid) { return portid < PERF_MAX_PORT_NUM; } static bool is_portid_root_or_port(u32 portid) { return is_portid_root(portid) || is_portid_port(portid); } static u64 fme_read_perf_cntr_reg(void __iomem *addr) { u32 low; u64 v; /* * For 64bit counter registers, the counter may increases and carries * out of bit [31] between 2 32bit reads. So add extra reads to help * to prevent this issue. This only happens in platforms which don't * support 64bit read - readq is split into 2 readl. */ do { v = readq(addr); low = readl(addr); } while (((u32)v) > low); return v; } static int basic_event_init(struct fme_perf_priv *priv, u32 event, u32 portid) { if (event <= BASIC_EVNT_MAX && is_portid_root(portid)) return 0; return -EINVAL; } static u64 basic_read_event_counter(struct fme_perf_priv *priv, u32 event, u32 portid) { void __iomem *base = priv->ioaddr; return fme_read_perf_cntr_reg(base + CLK_CNTR); } static int cache_event_init(struct fme_perf_priv *priv, u32 event, u32 portid) { if (priv->id == FME_FEATURE_ID_GLOBAL_IPERF && event <= CACHE_EVNT_MAX && is_portid_root(portid)) return 0; return -EINVAL; } static u64 cache_read_event_counter(struct fme_perf_priv *priv, u32 event, u32 portid) { void __iomem *base = priv->ioaddr; u64 v, count; u8 channel; if (event == CACHE_EVNT_WR_HIT || event == CACHE_EVNT_WR_MISS || event == CACHE_EVNT_DATA_WR_PORT_CONTEN || event == CACHE_EVNT_TAG_WR_PORT_CONTEN) channel = CACHE_CHANNEL_WR; else channel = CACHE_CHANNEL_RD; /* set channel access type and cache event code. */ v = readq(base + CACHE_CTRL); v &= ~(CACHE_CHANNEL_SEL | CACHE_CTRL_EVNT); v |= FIELD_PREP(CACHE_CHANNEL_SEL, channel); v |= FIELD_PREP(CACHE_CTRL_EVNT, event); writeq(v, base + CACHE_CTRL); if (readq_poll_timeout_atomic(base + CACHE_CNTR0, v, FIELD_GET(CACHE_CNTR_EVNT, v) == event, 1, PERF_TIMEOUT)) { dev_err(priv->dev, "timeout, unmatched cache event code in counter register.\n"); return 0; } v = fme_read_perf_cntr_reg(base + CACHE_CNTR0); count = FIELD_GET(CACHE_CNTR_EVNT_CNTR, v); v = fme_read_perf_cntr_reg(base + CACHE_CNTR1); count += FIELD_GET(CACHE_CNTR_EVNT_CNTR, v); return count; } static bool is_fabric_event_supported(struct fme_perf_priv *priv, u32 event, u32 portid) { if (event > FAB_EVNT_MAX || !is_portid_root_or_port(portid)) return false; if (priv->id == FME_FEATURE_ID_GLOBAL_DPERF && (event == FAB_EVNT_PCIE1_RD || event == FAB_EVNT_UPI_RD || event == FAB_EVNT_PCIE1_WR || event == FAB_EVNT_UPI_WR)) return false; return true; } static int fabric_event_init(struct fme_perf_priv *priv, u32 event, u32 portid) { void __iomem *base = priv->ioaddr; int ret = 0; u64 v; if (!is_fabric_event_supported(priv, event, portid)) return -EINVAL; /* * as fabric counter set only can be in either overall or port mode. * In overall mode, it counts overall data for FPGA, and in port mode, * it is configured to monitor on one individual port. * * so every time, a new event is initialized, driver checks * current working mode and if someone is using this counter set. */ spin_lock(&priv->fab_lock); if (priv->fab_users && priv->fab_port_id != portid) { dev_dbg(priv->dev, "conflict fabric event monitoring mode.\n"); ret = -EOPNOTSUPP; goto exit; } priv->fab_users++; /* * skip if current working mode matches, otherwise change the working * mode per input port_id, to monitor overall data or another port. */ if (priv->fab_port_id == portid) goto exit; priv->fab_port_id = portid; v = readq(base + FAB_CTRL); v &= ~(FAB_PORT_FILTER | FAB_PORT_ID); if (is_portid_root(portid)) { v |= FIELD_PREP(FAB_PORT_FILTER, FAB_PORT_FILTER_DISABLE); } else { v |= FIELD_PREP(FAB_PORT_FILTER, FAB_PORT_FILTER_ENABLE); v |= FIELD_PREP(FAB_PORT_ID, portid); } writeq(v, base + FAB_CTRL); exit: spin_unlock(&priv->fab_lock); return ret; } static void fabric_event_destroy(struct fme_perf_priv *priv, u32 event, u32 portid) { spin_lock(&priv->fab_lock); priv->fab_users--; spin_unlock(&priv->fab_lock); } static u64 fabric_read_event_counter(struct fme_perf_priv *priv, u32 event, u32 portid) { void __iomem *base = priv->ioaddr; u64 v; v = readq(base + FAB_CTRL); v &= ~FAB_CTRL_EVNT; v |= FIELD_PREP(FAB_CTRL_EVNT, event); writeq(v, base + FAB_CTRL); if (readq_poll_timeout_atomic(base + FAB_CNTR, v, FIELD_GET(FAB_CNTR_EVNT, v) == event, 1, PERF_TIMEOUT)) { dev_err(priv->dev, "timeout, unmatched fab event code in counter register.\n"); return 0; } v = fme_read_perf_cntr_reg(base + FAB_CNTR); return FIELD_GET(FAB_CNTR_EVNT_CNTR, v); } static int vtd_event_init(struct fme_perf_priv *priv, u32 event, u32 portid) { if (priv->id == FME_FEATURE_ID_GLOBAL_IPERF && event <= VTD_EVNT_MAX && is_portid_port(portid)) return 0; return -EINVAL; } static u64 vtd_read_event_counter(struct fme_perf_priv *priv, u32 event, u32 portid) { void __iomem *base = priv->ioaddr; u64 v; event += (portid * (VTD_EVNT_MAX + 1)); v = readq(base + VTD_CTRL); v &= ~VTD_CTRL_EVNT; v |= FIELD_PREP(VTD_CTRL_EVNT, event); writeq(v, base + VTD_CTRL); if (readq_poll_timeout_atomic(base + VTD_CNTR, v, FIELD_GET(VTD_CNTR_EVNT, v) == event, 1, PERF_TIMEOUT)) { dev_err(priv->dev, "timeout, unmatched vtd event code in counter register.\n"); return 0; } v = fme_read_perf_cntr_reg(base + VTD_CNTR); return FIELD_GET(VTD_CNTR_EVNT_CNTR, v); } static int vtd_sip_event_init(struct fme_perf_priv *priv, u32 event, u32 portid) { if (priv->id == FME_FEATURE_ID_GLOBAL_IPERF && event <= VTD_SIP_EVNT_MAX && is_portid_root(portid)) return 0; return -EINVAL; } static u64 vtd_sip_read_event_counter(struct fme_perf_priv *priv, u32 event, u32 portid) { void __iomem *base = priv->ioaddr; u64 v; v = readq(base + VTD_SIP_CTRL); v &= ~VTD_SIP_CTRL_EVNT; v |= FIELD_PREP(VTD_SIP_CTRL_EVNT, event); writeq(v, base + VTD_SIP_CTRL); if (readq_poll_timeout_atomic(base + VTD_SIP_CNTR, v, FIELD_GET(VTD_SIP_CNTR_EVNT, v) == event, 1, PERF_TIMEOUT)) { dev_err(priv->dev, "timeout, unmatched vtd sip event code in counter register\n"); return 0; } v = fme_read_perf_cntr_reg(base + VTD_SIP_CNTR); return FIELD_GET(VTD_SIP_CNTR_EVNT_CNTR, v); } static struct fme_perf_event_ops fme_perf_event_ops[] = { [FME_EVTYPE_BASIC] = {.event_init = basic_event_init, .read_counter = basic_read_event_counter,}, [FME_EVTYPE_CACHE] = {.event_init = cache_event_init, .read_counter = cache_read_event_counter,}, [FME_EVTYPE_FABRIC] = {.event_init = fabric_event_init, .event_destroy = fabric_event_destroy, .read_counter = fabric_read_event_counter,}, [FME_EVTYPE_VTD] = {.event_init = vtd_event_init, .read_counter = vtd_read_event_counter,}, [FME_EVTYPE_VTD_SIP] = {.event_init = vtd_sip_event_init, .read_counter = vtd_sip_read_event_counter,}, }; static ssize_t fme_perf_event_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dev_ext_attribute *eattr; unsigned long config; char *ptr = buf; eattr = container_of(attr, struct dev_ext_attribute, attr); config = (unsigned long)eattr->var; ptr += sprintf(ptr, "event=0x%02x", (unsigned int)get_event(config)); ptr += sprintf(ptr, ",evtype=0x%02x", (unsigned int)get_evtype(config)); if (is_portid_root(get_portid(config))) ptr += sprintf(ptr, ",portid=0x%02x\n", FME_PORTID_ROOT); else ptr += sprintf(ptr, ",portid=?\n"); return (ssize_t)(ptr - buf); } #define FME_EVENT_ATTR(_name) \ __ATTR(_name, 0444, fme_perf_event_show, NULL) #define FME_PORT_EVENT_CONFIG(_event, _type) \ (void *)((((_event) << FME_EVENT_SHIFT) & FME_EVENT_MASK) | \ (((_type) << FME_EVTYPE_SHIFT) & FME_EVTYPE_MASK)) #define FME_EVENT_CONFIG(_event, _type) \ (void *)((((_event) << FME_EVENT_SHIFT) & FME_EVENT_MASK) | \ (((_type) << FME_EVTYPE_SHIFT) & FME_EVTYPE_MASK) | \ (FME_PORTID_ROOT << FME_PORTID_SHIFT)) /* FME Perf Basic Events */ #define FME_EVENT_BASIC(_name, _event) \ static struct dev_ext_attribute fme_perf_event_##_name = { \ .attr = FME_EVENT_ATTR(_name), \ .var = FME_EVENT_CONFIG(_event, FME_EVTYPE_BASIC), \ } FME_EVENT_BASIC(clock, BASIC_EVNT_CLK); static struct attribute *fme_perf_basic_events_attrs[] = { &fme_perf_event_clock.attr.attr, NULL, }; static const struct attribute_group fme_perf_basic_events_group = { .name = "events", .attrs = fme_perf_basic_events_attrs, }; /* FME Perf Cache Events */ #define FME_EVENT_CACHE(_name, _event) \ static struct dev_ext_attribute fme_perf_event_cache_##_name = { \ .attr = FME_EVENT_ATTR(cache_##_name), \ .var = FME_EVENT_CONFIG(_event, FME_EVTYPE_CACHE), \ } FME_EVENT_CACHE(read_hit, CACHE_EVNT_RD_HIT); FME_EVENT_CACHE(read_miss, CACHE_EVNT_RD_MISS); FME_EVENT_CACHE(write_hit, CACHE_EVNT_WR_HIT); FME_EVENT_CACHE(write_miss, CACHE_EVNT_WR_MISS); FME_EVENT_CACHE(hold_request, CACHE_EVNT_HOLD_REQ); FME_EVENT_CACHE(tx_req_stall, CACHE_EVNT_TX_REQ_STALL); FME_EVENT_CACHE(rx_req_stall, CACHE_EVNT_RX_REQ_STALL); FME_EVENT_CACHE(eviction, CACHE_EVNT_EVICTIONS); FME_EVENT_CACHE(data_write_port_contention, CACHE_EVNT_DATA_WR_PORT_CONTEN); FME_EVENT_CACHE(tag_write_port_contention, CACHE_EVNT_TAG_WR_PORT_CONTEN); static struct attribute *fme_perf_cache_events_attrs[] = { &fme_perf_event_cache_read_hit.attr.attr, &fme_perf_event_cache_read_miss.attr.attr, &fme_perf_event_cache_write_hit.attr.attr, &fme_perf_event_cache_write_miss.attr.attr, &fme_perf_event_cache_hold_request.attr.attr, &fme_perf_event_cache_tx_req_stall.attr.attr, &fme_perf_event_cache_rx_req_stall.attr.attr, &fme_perf_event_cache_eviction.attr.attr, &fme_perf_event_cache_data_write_port_contention.attr.attr, &fme_perf_event_cache_tag_write_port_contention.attr.attr, NULL, }; static umode_t fme_perf_events_visible(struct kobject *kobj, struct attribute *attr, int n) { struct pmu *pmu = dev_get_drvdata(kobj_to_dev(kobj)); struct fme_perf_priv *priv = to_fme_perf_priv(pmu); return (priv->id == FME_FEATURE_ID_GLOBAL_IPERF) ? attr->mode : 0; } static const struct attribute_group fme_perf_cache_events_group = { .name = "events", .attrs = fme_perf_cache_events_attrs, .is_visible = fme_perf_events_visible, }; /* FME Perf Fabric Events */ #define FME_EVENT_FABRIC(_name, _event) \ static struct dev_ext_attribute fme_perf_event_fab_##_name = { \ .attr = FME_EVENT_ATTR(fab_##_name), \ .var = FME_EVENT_CONFIG(_event, FME_EVTYPE_FABRIC), \ } #define FME_EVENT_FABRIC_PORT(_name, _event) \ static struct dev_ext_attribute fme_perf_event_fab_port_##_name = { \ .attr = FME_EVENT_ATTR(fab_port_##_name), \ .var = FME_PORT_EVENT_CONFIG(_event, FME_EVTYPE_FABRIC), \ } FME_EVENT_FABRIC(pcie0_read, FAB_EVNT_PCIE0_RD); FME_EVENT_FABRIC(pcie0_write, FAB_EVNT_PCIE0_WR); FME_EVENT_FABRIC(pcie1_read, FAB_EVNT_PCIE1_RD); FME_EVENT_FABRIC(pcie1_write, FAB_EVNT_PCIE1_WR); FME_EVENT_FABRIC(upi_read, FAB_EVNT_UPI_RD); FME_EVENT_FABRIC(upi_write, FAB_EVNT_UPI_WR); FME_EVENT_FABRIC(mmio_read, FAB_EVNT_MMIO_RD); FME_EVENT_FABRIC(mmio_write, FAB_EVNT_MMIO_WR); FME_EVENT_FABRIC_PORT(pcie0_read, FAB_EVNT_PCIE0_RD); FME_EVENT_FABRIC_PORT(pcie0_write, FAB_EVNT_PCIE0_WR); FME_EVENT_FABRIC_PORT(pcie1_read, FAB_EVNT_PCIE1_RD); FME_EVENT_FABRIC_PORT(pcie1_write, FAB_EVNT_PCIE1_WR); FME_EVENT_FABRIC_PORT(upi_read, FAB_EVNT_UPI_RD); FME_EVENT_FABRIC_PORT(upi_write, FAB_EVNT_UPI_WR); FME_EVENT_FABRIC_PORT(mmio_read, FAB_EVNT_MMIO_RD); FME_EVENT_FABRIC_PORT(mmio_write, FAB_EVNT_MMIO_WR); static struct attribute *fme_perf_fabric_events_attrs[] = { &fme_perf_event_fab_pcie0_read.attr.attr, &fme_perf_event_fab_pcie0_write.attr.attr, &fme_perf_event_fab_pcie1_read.attr.attr, &fme_perf_event_fab_pcie1_write.attr.attr, &fme_perf_event_fab_upi_read.attr.attr, &fme_perf_event_fab_upi_write.attr.attr, &fme_perf_event_fab_mmio_read.attr.attr, &fme_perf_event_fab_mmio_write.attr.attr, &fme_perf_event_fab_port_pcie0_read.attr.attr, &fme_perf_event_fab_port_pcie0_write.attr.attr, &fme_perf_event_fab_port_pcie1_read.attr.attr, &fme_perf_event_fab_port_pcie1_write.attr.attr, &fme_perf_event_fab_port_upi_read.attr.attr, &fme_perf_event_fab_port_upi_write.attr.attr, &fme_perf_event_fab_port_mmio_read.attr.attr, &fme_perf_event_fab_port_mmio_write.attr.attr, NULL, }; static umode_t fme_perf_fabric_events_visible(struct kobject *kobj, struct attribute *attr, int n) { struct pmu *pmu = dev_get_drvdata(kobj_to_dev(kobj)); struct fme_perf_priv *priv = to_fme_perf_priv(pmu); struct dev_ext_attribute *eattr; unsigned long var; eattr = container_of(attr, struct dev_ext_attribute, attr.attr); var = (unsigned long)eattr->var; if (is_fabric_event_supported(priv, get_event(var), get_portid(var))) return attr->mode; return 0; } static const struct attribute_group fme_perf_fabric_events_group = { .name = "events", .attrs = fme_perf_fabric_events_attrs, .is_visible = fme_perf_fabric_events_visible, }; /* FME Perf VTD Events */ #define FME_EVENT_VTD_PORT(_name, _event) \ static struct dev_ext_attribute fme_perf_event_vtd_port_##_name = { \ .attr = FME_EVENT_ATTR(vtd_port_##_name), \ .var = FME_PORT_EVENT_CONFIG(_event, FME_EVTYPE_VTD), \ } FME_EVENT_VTD_PORT(read_transaction, VTD_EVNT_AFU_MEM_RD_TRANS); FME_EVENT_VTD_PORT(write_transaction, VTD_EVNT_AFU_MEM_WR_TRANS); FME_EVENT_VTD_PORT(devtlb_read_hit, VTD_EVNT_AFU_DEVTLB_RD_HIT); FME_EVENT_VTD_PORT(devtlb_write_hit, VTD_EVNT_AFU_DEVTLB_WR_HIT); FME_EVENT_VTD_PORT(devtlb_4k_fill, VTD_EVNT_DEVTLB_4K_FILL); FME_EVENT_VTD_PORT(devtlb_2m_fill, VTD_EVNT_DEVTLB_2M_FILL); FME_EVENT_VTD_PORT(devtlb_1g_fill, VTD_EVNT_DEVTLB_1G_FILL); static struct attribute *fme_perf_vtd_events_attrs[] = { &fme_perf_event_vtd_port_read_transaction.attr.attr, &fme_perf_event_vtd_port_write_transaction.attr.attr, &fme_perf_event_vtd_port_devtlb_read_hit.attr.attr, &fme_perf_event_vtd_port_devtlb_write_hit.attr.attr, &fme_perf_event_vtd_port_devtlb_4k_fill.attr.attr, &fme_perf_event_vtd_port_devtlb_2m_fill.attr.attr, &fme_perf_event_vtd_port_devtlb_1g_fill.attr.attr, NULL, }; static const struct attribute_group fme_perf_vtd_events_group = { .name = "events", .attrs = fme_perf_vtd_events_attrs, .is_visible = fme_perf_events_visible, }; /* FME Perf VTD SIP Events */ #define FME_EVENT_VTD_SIP(_name, _event) \ static struct dev_ext_attribute fme_perf_event_vtd_sip_##_name = { \ .attr = FME_EVENT_ATTR(vtd_sip_##_name), \ .var = FME_EVENT_CONFIG(_event, FME_EVTYPE_VTD_SIP), \ } FME_EVENT_VTD_SIP(iotlb_4k_hit, VTD_SIP_EVNT_IOTLB_4K_HIT); FME_EVENT_VTD_SIP(iotlb_2m_hit, VTD_SIP_EVNT_IOTLB_2M_HIT); FME_EVENT_VTD_SIP(iotlb_1g_hit, VTD_SIP_EVNT_IOTLB_1G_HIT); FME_EVENT_VTD_SIP(slpwc_l3_hit, VTD_SIP_EVNT_SLPWC_L3_HIT); FME_EVENT_VTD_SIP(slpwc_l4_hit, VTD_SIP_EVNT_SLPWC_L4_HIT); FME_EVENT_VTD_SIP(rcc_hit, VTD_SIP_EVNT_RCC_HIT); FME_EVENT_VTD_SIP(iotlb_4k_miss, VTD_SIP_EVNT_IOTLB_4K_MISS); FME_EVENT_VTD_SIP(iotlb_2m_miss, VTD_SIP_EVNT_IOTLB_2M_MISS); FME_EVENT_VTD_SIP(iotlb_1g_miss, VTD_SIP_EVNT_IOTLB_1G_MISS); FME_EVENT_VTD_SIP(slpwc_l3_miss, VTD_SIP_EVNT_SLPWC_L3_MISS); FME_EVENT_VTD_SIP(slpwc_l4_miss, VTD_SIP_EVNT_SLPWC_L4_MISS); FME_EVENT_VTD_SIP(rcc_miss, VTD_SIP_EVNT_RCC_MISS); static struct attribute *fme_perf_vtd_sip_events_attrs[] = { &fme_perf_event_vtd_sip_iotlb_4k_hit.attr.attr, &fme_perf_event_vtd_sip_iotlb_2m_hit.attr.attr, &fme_perf_event_vtd_sip_iotlb_1g_hit.attr.attr, &fme_perf_event_vtd_sip_slpwc_l3_hit.attr.attr, &fme_perf_event_vtd_sip_slpwc_l4_hit.attr.attr, &fme_perf_event_vtd_sip_rcc_hit.attr.attr, &fme_perf_event_vtd_sip_iotlb_4k_miss.attr.attr, &fme_perf_event_vtd_sip_iotlb_2m_miss.attr.attr, &fme_perf_event_vtd_sip_iotlb_1g_miss.attr.attr, &fme_perf_event_vtd_sip_slpwc_l3_miss.attr.attr, &fme_perf_event_vtd_sip_slpwc_l4_miss.attr.attr, &fme_perf_event_vtd_sip_rcc_miss.attr.attr, NULL, }; static const struct attribute_group fme_perf_vtd_sip_events_group = { .name = "events", .attrs = fme_perf_vtd_sip_events_attrs, .is_visible = fme_perf_events_visible, }; static const struct attribute_group *fme_perf_events_groups[] = { &fme_perf_basic_events_group, &fme_perf_cache_events_group, &fme_perf_fabric_events_group, &fme_perf_vtd_events_group, &fme_perf_vtd_sip_events_group, NULL, }; static struct fme_perf_event_ops *get_event_ops(u32 evtype) { if (evtype > FME_EVTYPE_MAX) return NULL; return &fme_perf_event_ops[evtype]; } static void fme_perf_event_destroy(struct perf_event *event) { struct fme_perf_event_ops *ops = get_event_ops(event->hw.event_base); struct fme_perf_priv *priv = to_fme_perf_priv(event->pmu); if (ops->event_destroy) ops->event_destroy(priv, event->hw.idx, event->hw.config_base); } static int fme_perf_event_init(struct perf_event *event) { struct fme_perf_priv *priv = to_fme_perf_priv(event->pmu); struct hw_perf_event *hwc = &event->hw; struct fme_perf_event_ops *ops; u32 eventid, evtype, portid; /* test the event attr type check for PMU enumeration */ if (event->attr.type != event->pmu->type) return -ENOENT; /* * fme counters are shared across all cores. * Therefore, it does not support per-process mode. * Also, it does not support event sampling mode. */ if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK) return -EINVAL; if (event->cpu < 0) return -EINVAL; if (event->cpu != priv->cpu) return -EINVAL; eventid = get_event(event->attr.config); portid = get_portid(event->attr.config); evtype = get_evtype(event->attr.config); if (evtype > FME_EVTYPE_MAX) return -EINVAL; hwc->event_base = evtype; hwc->idx = (int)eventid; hwc->config_base = portid; event->destroy = fme_perf_event_destroy; dev_dbg(priv->dev, "%s event=0x%x, evtype=0x%x, portid=0x%x,\n", __func__, eventid, evtype, portid); ops = get_event_ops(evtype); if (ops->event_init) return ops->event_init(priv, eventid, portid); return 0; } static void fme_perf_event_update(struct perf_event *event) { struct fme_perf_event_ops *ops = get_event_ops(event->hw.event_base); struct fme_perf_priv *priv = to_fme_perf_priv(event->pmu); struct hw_perf_event *hwc = &event->hw; u64 now, prev, delta; now = ops->read_counter(priv, (u32)hwc->idx, hwc->config_base); prev = local64_read(&hwc->prev_count); delta = now - prev; local64_add(delta, &event->count); } static void fme_perf_event_start(struct perf_event *event, int flags) { struct fme_perf_event_ops *ops = get_event_ops(event->hw.event_base); struct fme_perf_priv *priv = to_fme_perf_priv(event->pmu); struct hw_perf_event *hwc = &event->hw; u64 count; count = ops->read_counter(priv, (u32)hwc->idx, hwc->config_base); local64_set(&hwc->prev_count, count); } static void fme_perf_event_stop(struct perf_event *event, int flags) { fme_perf_event_update(event); } static int fme_perf_event_add(struct perf_event *event, int flags) { if (flags & PERF_EF_START) fme_perf_event_start(event, flags); return 0; } static void fme_perf_event_del(struct perf_event *event, int flags) { fme_perf_event_stop(event, PERF_EF_UPDATE); } static void fme_perf_event_read(struct perf_event *event) { fme_perf_event_update(event); } static void fme_perf_setup_hardware(struct fme_perf_priv *priv) { void __iomem *base = priv->ioaddr; u64 v; /* read and save current working mode for fabric counters */ v = readq(base + FAB_CTRL); if (FIELD_GET(FAB_PORT_FILTER, v) == FAB_PORT_FILTER_DISABLE) priv->fab_port_id = FME_PORTID_ROOT; else priv->fab_port_id = FIELD_GET(FAB_PORT_ID, v); } static int fme_perf_pmu_register(struct platform_device *pdev, struct fme_perf_priv *priv) { struct pmu *pmu = &priv->pmu; char *name; int ret; spin_lock_init(&priv->fab_lock); fme_perf_setup_hardware(priv); pmu->task_ctx_nr = perf_invalid_context; pmu->attr_groups = fme_perf_groups; pmu->attr_update = fme_perf_events_groups; pmu->event_init = fme_perf_event_init; pmu->add = fme_perf_event_add; pmu->del = fme_perf_event_del; pmu->start = fme_perf_event_start; pmu->stop = fme_perf_event_stop; pmu->read = fme_perf_event_read; pmu->capabilities = PERF_PMU_CAP_NO_INTERRUPT | PERF_PMU_CAP_NO_EXCLUDE; name = devm_kasprintf(priv->dev, GFP_KERNEL, "dfl_fme%d", pdev->id); ret = perf_pmu_register(pmu, name, -1); if (ret) return ret; return 0; } static void fme_perf_pmu_unregister(struct fme_perf_priv *priv) { perf_pmu_unregister(&priv->pmu); } static int fme_perf_offline_cpu(unsigned int cpu, struct hlist_node *node) { struct fme_perf_priv *priv; int target; priv = hlist_entry_safe(node, struct fme_perf_priv, node); if (cpu != priv->cpu) return 0; target = cpumask_any_but(cpu_online_mask, cpu); if (target >= nr_cpu_ids) return 0; priv->cpu = target; perf_pmu_migrate_context(&priv->pmu, cpu, target); return 0; } static int fme_perf_init(struct platform_device *pdev, struct dfl_feature *feature) { struct fme_perf_priv *priv; int ret; priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->dev = &pdev->dev; priv->ioaddr = feature->ioaddr; priv->id = feature->id; priv->cpu = raw_smp_processor_id(); ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "perf/fpga/dfl_fme:online", NULL, fme_perf_offline_cpu); if (ret < 0) return ret; priv->cpuhp_state = ret; /* Register the pmu instance for cpu hotplug */ ret = cpuhp_state_add_instance_nocalls(priv->cpuhp_state, &priv->node); if (ret) goto cpuhp_instance_err; ret = fme_perf_pmu_register(pdev, priv); if (ret) goto pmu_register_err; feature->priv = priv; return 0; pmu_register_err: cpuhp_state_remove_instance_nocalls(priv->cpuhp_state, &priv->node); cpuhp_instance_err: cpuhp_remove_multi_state(priv->cpuhp_state); return ret; } static void fme_perf_uinit(struct platform_device *pdev, struct dfl_feature *feature) { struct fme_perf_priv *priv = feature->priv; fme_perf_pmu_unregister(priv); cpuhp_state_remove_instance_nocalls(priv->cpuhp_state, &priv->node); cpuhp_remove_multi_state(priv->cpuhp_state); } const struct dfl_feature_id fme_perf_id_table[] = { {.id = FME_FEATURE_ID_GLOBAL_IPERF,}, {.id = FME_FEATURE_ID_GLOBAL_DPERF,}, {0,} }; const struct dfl_feature_ops fme_perf_ops = { .init = fme_perf_init, .uinit = fme_perf_uinit, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1