Contributors: 5
Author Tokens Token Proportion Commits Commit Proportion
Hao Wu 4184 96.18% 4 40.00%
Luwei Kang 150 3.45% 3 30.00%
Kajol Jain 12 0.28% 1 10.00%
Rikard Falkeborn 3 0.07% 1 10.00%
Xu Yilun 1 0.02% 1 10.00%
Total 4350 10


// SPDX-License-Identifier: GPL-2.0
/*
 * Driver for FPGA Management Engine (FME) Global Performance Reporting
 *
 * Copyright 2019 Intel Corporation, Inc.
 *
 * Authors:
 *   Kang Luwei <luwei.kang@intel.com>
 *   Xiao Guangrong <guangrong.xiao@linux.intel.com>
 *   Wu Hao <hao.wu@intel.com>
 *   Xu Yilun <yilun.xu@intel.com>
 *   Joseph Grecco <joe.grecco@intel.com>
 *   Enno Luebbers <enno.luebbers@intel.com>
 *   Tim Whisonant <tim.whisonant@intel.com>
 *   Ananda Ravuri <ananda.ravuri@intel.com>
 *   Mitchel, Henry <henry.mitchel@intel.com>
 */

#include <linux/perf_event.h>
#include "dfl.h"
#include "dfl-fme.h"

/*
 * Performance Counter Registers for Cache.
 *
 * Cache Events are listed below as CACHE_EVNT_*.
 */
#define CACHE_CTRL			0x8
#define CACHE_RESET_CNTR		BIT_ULL(0)
#define CACHE_FREEZE_CNTR		BIT_ULL(8)
#define CACHE_CTRL_EVNT			GENMASK_ULL(19, 16)
#define CACHE_EVNT_RD_HIT		0x0
#define CACHE_EVNT_WR_HIT		0x1
#define CACHE_EVNT_RD_MISS		0x2
#define CACHE_EVNT_WR_MISS		0x3
#define CACHE_EVNT_RSVD			0x4
#define CACHE_EVNT_HOLD_REQ		0x5
#define CACHE_EVNT_DATA_WR_PORT_CONTEN	0x6
#define CACHE_EVNT_TAG_WR_PORT_CONTEN	0x7
#define CACHE_EVNT_TX_REQ_STALL		0x8
#define CACHE_EVNT_RX_REQ_STALL		0x9
#define CACHE_EVNT_EVICTIONS		0xa
#define CACHE_EVNT_MAX			CACHE_EVNT_EVICTIONS
#define CACHE_CHANNEL_SEL		BIT_ULL(20)
#define CACHE_CHANNEL_RD		0
#define CACHE_CHANNEL_WR		1
#define CACHE_CNTR0			0x10
#define CACHE_CNTR1			0x18
#define CACHE_CNTR_EVNT_CNTR		GENMASK_ULL(47, 0)
#define CACHE_CNTR_EVNT			GENMASK_ULL(63, 60)

/*
 * Performance Counter Registers for Fabric.
 *
 * Fabric Events are listed below as FAB_EVNT_*
 */
#define FAB_CTRL			0x20
#define FAB_RESET_CNTR			BIT_ULL(0)
#define FAB_FREEZE_CNTR			BIT_ULL(8)
#define FAB_CTRL_EVNT			GENMASK_ULL(19, 16)
#define FAB_EVNT_PCIE0_RD		0x0
#define FAB_EVNT_PCIE0_WR		0x1
#define FAB_EVNT_PCIE1_RD		0x2
#define FAB_EVNT_PCIE1_WR		0x3
#define FAB_EVNT_UPI_RD			0x4
#define FAB_EVNT_UPI_WR			0x5
#define FAB_EVNT_MMIO_RD		0x6
#define FAB_EVNT_MMIO_WR		0x7
#define FAB_EVNT_MAX			FAB_EVNT_MMIO_WR
#define FAB_PORT_ID			GENMASK_ULL(21, 20)
#define FAB_PORT_FILTER			BIT_ULL(23)
#define FAB_PORT_FILTER_DISABLE		0
#define FAB_PORT_FILTER_ENABLE		1
#define FAB_CNTR			0x28
#define FAB_CNTR_EVNT_CNTR		GENMASK_ULL(59, 0)
#define FAB_CNTR_EVNT			GENMASK_ULL(63, 60)

/*
 * Performance Counter Registers for Clock.
 *
 * Clock Counter can't be reset or frozen by SW.
 */
#define CLK_CNTR			0x30
#define BASIC_EVNT_CLK			0x0
#define BASIC_EVNT_MAX			BASIC_EVNT_CLK

/*
 * Performance Counter Registers for IOMMU / VT-D.
 *
 * VT-D Events are listed below as VTD_EVNT_* and VTD_SIP_EVNT_*
 */
#define VTD_CTRL			0x38
#define VTD_RESET_CNTR			BIT_ULL(0)
#define VTD_FREEZE_CNTR			BIT_ULL(8)
#define VTD_CTRL_EVNT			GENMASK_ULL(19, 16)
#define VTD_EVNT_AFU_MEM_RD_TRANS	0x0
#define VTD_EVNT_AFU_MEM_WR_TRANS	0x1
#define VTD_EVNT_AFU_DEVTLB_RD_HIT	0x2
#define VTD_EVNT_AFU_DEVTLB_WR_HIT	0x3
#define VTD_EVNT_DEVTLB_4K_FILL		0x4
#define VTD_EVNT_DEVTLB_2M_FILL		0x5
#define VTD_EVNT_DEVTLB_1G_FILL		0x6
#define VTD_EVNT_MAX			VTD_EVNT_DEVTLB_1G_FILL
#define VTD_CNTR			0x40
#define VTD_CNTR_EVNT_CNTR		GENMASK_ULL(47, 0)
#define VTD_CNTR_EVNT			GENMASK_ULL(63, 60)

#define VTD_SIP_CTRL			0x48
#define VTD_SIP_RESET_CNTR		BIT_ULL(0)
#define VTD_SIP_FREEZE_CNTR		BIT_ULL(8)
#define VTD_SIP_CTRL_EVNT		GENMASK_ULL(19, 16)
#define VTD_SIP_EVNT_IOTLB_4K_HIT	0x0
#define VTD_SIP_EVNT_IOTLB_2M_HIT	0x1
#define VTD_SIP_EVNT_IOTLB_1G_HIT	0x2
#define VTD_SIP_EVNT_SLPWC_L3_HIT	0x3
#define VTD_SIP_EVNT_SLPWC_L4_HIT	0x4
#define VTD_SIP_EVNT_RCC_HIT		0x5
#define VTD_SIP_EVNT_IOTLB_4K_MISS	0x6
#define VTD_SIP_EVNT_IOTLB_2M_MISS	0x7
#define VTD_SIP_EVNT_IOTLB_1G_MISS	0x8
#define VTD_SIP_EVNT_SLPWC_L3_MISS	0x9
#define VTD_SIP_EVNT_SLPWC_L4_MISS	0xa
#define VTD_SIP_EVNT_RCC_MISS		0xb
#define VTD_SIP_EVNT_MAX		VTD_SIP_EVNT_SLPWC_L4_MISS
#define VTD_SIP_CNTR			0X50
#define VTD_SIP_CNTR_EVNT_CNTR		GENMASK_ULL(47, 0)
#define VTD_SIP_CNTR_EVNT		GENMASK_ULL(63, 60)

#define PERF_TIMEOUT			30

#define PERF_MAX_PORT_NUM		1U

/**
 * struct fme_perf_priv - priv data structure for fme perf driver
 *
 * @dev: parent device.
 * @ioaddr: mapped base address of mmio region.
 * @pmu: pmu data structure for fme perf counters.
 * @id: id of this fme performance report private feature.
 * @fab_users: current user number on fabric counters.
 * @fab_port_id: used to indicate current working mode of fabric counters.
 * @fab_lock: lock to protect fabric counters working mode.
 * @cpu: active CPU to which the PMU is bound for accesses.
 * @cpuhp_node: node for CPU hotplug notifier link.
 * @cpuhp_state: state for CPU hotplug notification;
 */
struct fme_perf_priv {
	struct device *dev;
	void __iomem *ioaddr;
	struct pmu pmu;
	u16 id;

	u32 fab_users;
	u32 fab_port_id;
	spinlock_t fab_lock;

	unsigned int cpu;
	struct hlist_node node;
	enum cpuhp_state cpuhp_state;
};

/**
 * struct fme_perf_event_ops - callbacks for fme perf events
 *
 * @event_init: callback invoked during event init.
 * @event_destroy: callback invoked during event destroy.
 * @read_counter: callback to read hardware counters.
 */
struct fme_perf_event_ops {
	int (*event_init)(struct fme_perf_priv *priv, u32 event, u32 portid);
	void (*event_destroy)(struct fme_perf_priv *priv, u32 event,
			      u32 portid);
	u64 (*read_counter)(struct fme_perf_priv *priv, u32 event, u32 portid);
};

#define to_fme_perf_priv(_pmu)	container_of(_pmu, struct fme_perf_priv, pmu)

static ssize_t cpumask_show(struct device *dev,
			    struct device_attribute *attr, char *buf)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	struct fme_perf_priv *priv;

	priv = to_fme_perf_priv(pmu);

	return cpumap_print_to_pagebuf(true, buf, cpumask_of(priv->cpu));
}
static DEVICE_ATTR_RO(cpumask);

static struct attribute *fme_perf_cpumask_attrs[] = {
	&dev_attr_cpumask.attr,
	NULL,
};

static const struct attribute_group fme_perf_cpumask_group = {
	.attrs = fme_perf_cpumask_attrs,
};

#define FME_EVENT_MASK		GENMASK_ULL(11, 0)
#define FME_EVENT_SHIFT		0
#define FME_EVTYPE_MASK		GENMASK_ULL(15, 12)
#define FME_EVTYPE_SHIFT	12
#define FME_EVTYPE_BASIC	0
#define FME_EVTYPE_CACHE	1
#define FME_EVTYPE_FABRIC	2
#define FME_EVTYPE_VTD		3
#define FME_EVTYPE_VTD_SIP	4
#define FME_EVTYPE_MAX		FME_EVTYPE_VTD_SIP
#define FME_PORTID_MASK		GENMASK_ULL(23, 16)
#define FME_PORTID_SHIFT	16
#define FME_PORTID_ROOT		(0xffU)

#define get_event(_config)	FIELD_GET(FME_EVENT_MASK, _config)
#define get_evtype(_config)	FIELD_GET(FME_EVTYPE_MASK, _config)
#define get_portid(_config)	FIELD_GET(FME_PORTID_MASK, _config)

PMU_FORMAT_ATTR(event,		"config:0-11");
PMU_FORMAT_ATTR(evtype,		"config:12-15");
PMU_FORMAT_ATTR(portid,		"config:16-23");

static struct attribute *fme_perf_format_attrs[] = {
	&format_attr_event.attr,
	&format_attr_evtype.attr,
	&format_attr_portid.attr,
	NULL,
};

static const struct attribute_group fme_perf_format_group = {
	.name = "format",
	.attrs = fme_perf_format_attrs,
};

/*
 * There are no default events, but we need to create
 * "events" group (with empty attrs) before updating
 * it with detected events (using pmu->attr_update).
 */
static struct attribute *fme_perf_events_attrs_empty[] = {
	NULL,
};

static const struct attribute_group fme_perf_events_group = {
	.name = "events",
	.attrs = fme_perf_events_attrs_empty,
};

static const struct attribute_group *fme_perf_groups[] = {
	&fme_perf_format_group,
	&fme_perf_cpumask_group,
	&fme_perf_events_group,
	NULL,
};

static bool is_portid_root(u32 portid)
{
	return portid == FME_PORTID_ROOT;
}

static bool is_portid_port(u32 portid)
{
	return portid < PERF_MAX_PORT_NUM;
}

static bool is_portid_root_or_port(u32 portid)
{
	return is_portid_root(portid) || is_portid_port(portid);
}

static u64 fme_read_perf_cntr_reg(void __iomem *addr)
{
	u32 low;
	u64 v;

	/*
	 * For 64bit counter registers, the counter may increases and carries
	 * out of bit [31] between 2 32bit reads. So add extra reads to help
	 * to prevent this issue. This only happens in platforms which don't
	 * support 64bit read - readq is split into 2 readl.
	 */
	do {
		v = readq(addr);
		low = readl(addr);
	} while (((u32)v) > low);

	return v;
}

static int basic_event_init(struct fme_perf_priv *priv, u32 event, u32 portid)
{
	if (event <= BASIC_EVNT_MAX && is_portid_root(portid))
		return 0;

	return -EINVAL;
}

static u64 basic_read_event_counter(struct fme_perf_priv *priv,
				    u32 event, u32 portid)
{
	void __iomem *base = priv->ioaddr;

	return fme_read_perf_cntr_reg(base + CLK_CNTR);
}

static int cache_event_init(struct fme_perf_priv *priv, u32 event, u32 portid)
{
	if (priv->id == FME_FEATURE_ID_GLOBAL_IPERF &&
	    event <= CACHE_EVNT_MAX && is_portid_root(portid))
		return 0;

	return -EINVAL;
}

static u64 cache_read_event_counter(struct fme_perf_priv *priv,
				    u32 event, u32 portid)
{
	void __iomem *base = priv->ioaddr;
	u64 v, count;
	u8 channel;

	if (event == CACHE_EVNT_WR_HIT || event == CACHE_EVNT_WR_MISS ||
	    event == CACHE_EVNT_DATA_WR_PORT_CONTEN ||
	    event == CACHE_EVNT_TAG_WR_PORT_CONTEN)
		channel = CACHE_CHANNEL_WR;
	else
		channel = CACHE_CHANNEL_RD;

	/* set channel access type and cache event code. */
	v = readq(base + CACHE_CTRL);
	v &= ~(CACHE_CHANNEL_SEL | CACHE_CTRL_EVNT);
	v |= FIELD_PREP(CACHE_CHANNEL_SEL, channel);
	v |= FIELD_PREP(CACHE_CTRL_EVNT, event);
	writeq(v, base + CACHE_CTRL);

	if (readq_poll_timeout_atomic(base + CACHE_CNTR0, v,
				      FIELD_GET(CACHE_CNTR_EVNT, v) == event,
				      1, PERF_TIMEOUT)) {
		dev_err(priv->dev, "timeout, unmatched cache event code in counter register.\n");
		return 0;
	}

	v = fme_read_perf_cntr_reg(base + CACHE_CNTR0);
	count = FIELD_GET(CACHE_CNTR_EVNT_CNTR, v);
	v = fme_read_perf_cntr_reg(base + CACHE_CNTR1);
	count += FIELD_GET(CACHE_CNTR_EVNT_CNTR, v);

	return count;
}

static bool is_fabric_event_supported(struct fme_perf_priv *priv, u32 event,
				      u32 portid)
{
	if (event > FAB_EVNT_MAX || !is_portid_root_or_port(portid))
		return false;

	if (priv->id == FME_FEATURE_ID_GLOBAL_DPERF &&
	    (event == FAB_EVNT_PCIE1_RD || event == FAB_EVNT_UPI_RD ||
	     event == FAB_EVNT_PCIE1_WR || event == FAB_EVNT_UPI_WR))
		return false;

	return true;
}

static int fabric_event_init(struct fme_perf_priv *priv, u32 event, u32 portid)
{
	void __iomem *base = priv->ioaddr;
	int ret = 0;
	u64 v;

	if (!is_fabric_event_supported(priv, event, portid))
		return -EINVAL;

	/*
	 * as fabric counter set only can be in either overall or port mode.
	 * In overall mode, it counts overall data for FPGA, and in port mode,
	 * it is configured to monitor on one individual port.
	 *
	 * so every time, a new event is initialized, driver checks
	 * current working mode and if someone is using this counter set.
	 */
	spin_lock(&priv->fab_lock);
	if (priv->fab_users && priv->fab_port_id != portid) {
		dev_dbg(priv->dev, "conflict fabric event monitoring mode.\n");
		ret = -EOPNOTSUPP;
		goto exit;
	}

	priv->fab_users++;

	/*
	 * skip if current working mode matches, otherwise change the working
	 * mode per input port_id, to monitor overall data or another port.
	 */
	if (priv->fab_port_id == portid)
		goto exit;

	priv->fab_port_id = portid;

	v = readq(base + FAB_CTRL);
	v &= ~(FAB_PORT_FILTER | FAB_PORT_ID);

	if (is_portid_root(portid)) {
		v |= FIELD_PREP(FAB_PORT_FILTER, FAB_PORT_FILTER_DISABLE);
	} else {
		v |= FIELD_PREP(FAB_PORT_FILTER, FAB_PORT_FILTER_ENABLE);
		v |= FIELD_PREP(FAB_PORT_ID, portid);
	}
	writeq(v, base + FAB_CTRL);

exit:
	spin_unlock(&priv->fab_lock);
	return ret;
}

static void fabric_event_destroy(struct fme_perf_priv *priv, u32 event,
				 u32 portid)
{
	spin_lock(&priv->fab_lock);
	priv->fab_users--;
	spin_unlock(&priv->fab_lock);
}

static u64 fabric_read_event_counter(struct fme_perf_priv *priv, u32 event,
				     u32 portid)
{
	void __iomem *base = priv->ioaddr;
	u64 v;

	v = readq(base + FAB_CTRL);
	v &= ~FAB_CTRL_EVNT;
	v |= FIELD_PREP(FAB_CTRL_EVNT, event);
	writeq(v, base + FAB_CTRL);

	if (readq_poll_timeout_atomic(base + FAB_CNTR, v,
				      FIELD_GET(FAB_CNTR_EVNT, v) == event,
				      1, PERF_TIMEOUT)) {
		dev_err(priv->dev, "timeout, unmatched fab event code in counter register.\n");
		return 0;
	}

	v = fme_read_perf_cntr_reg(base + FAB_CNTR);
	return FIELD_GET(FAB_CNTR_EVNT_CNTR, v);
}

static int vtd_event_init(struct fme_perf_priv *priv, u32 event, u32 portid)
{
	if (priv->id == FME_FEATURE_ID_GLOBAL_IPERF &&
	    event <= VTD_EVNT_MAX && is_portid_port(portid))
		return 0;

	return -EINVAL;
}

static u64 vtd_read_event_counter(struct fme_perf_priv *priv, u32 event,
				  u32 portid)
{
	void __iomem *base = priv->ioaddr;
	u64 v;

	event += (portid * (VTD_EVNT_MAX + 1));

	v = readq(base + VTD_CTRL);
	v &= ~VTD_CTRL_EVNT;
	v |= FIELD_PREP(VTD_CTRL_EVNT, event);
	writeq(v, base + VTD_CTRL);

	if (readq_poll_timeout_atomic(base + VTD_CNTR, v,
				      FIELD_GET(VTD_CNTR_EVNT, v) == event,
				      1, PERF_TIMEOUT)) {
		dev_err(priv->dev, "timeout, unmatched vtd event code in counter register.\n");
		return 0;
	}

	v = fme_read_perf_cntr_reg(base + VTD_CNTR);
	return FIELD_GET(VTD_CNTR_EVNT_CNTR, v);
}

static int vtd_sip_event_init(struct fme_perf_priv *priv, u32 event, u32 portid)
{
	if (priv->id == FME_FEATURE_ID_GLOBAL_IPERF &&
	    event <= VTD_SIP_EVNT_MAX && is_portid_root(portid))
		return 0;

	return -EINVAL;
}

static u64 vtd_sip_read_event_counter(struct fme_perf_priv *priv, u32 event,
				      u32 portid)
{
	void __iomem *base = priv->ioaddr;
	u64 v;

	v = readq(base + VTD_SIP_CTRL);
	v &= ~VTD_SIP_CTRL_EVNT;
	v |= FIELD_PREP(VTD_SIP_CTRL_EVNT, event);
	writeq(v, base + VTD_SIP_CTRL);

	if (readq_poll_timeout_atomic(base + VTD_SIP_CNTR, v,
				      FIELD_GET(VTD_SIP_CNTR_EVNT, v) == event,
				      1, PERF_TIMEOUT)) {
		dev_err(priv->dev, "timeout, unmatched vtd sip event code in counter register\n");
		return 0;
	}

	v = fme_read_perf_cntr_reg(base + VTD_SIP_CNTR);
	return FIELD_GET(VTD_SIP_CNTR_EVNT_CNTR, v);
}

static struct fme_perf_event_ops fme_perf_event_ops[] = {
	[FME_EVTYPE_BASIC]	= {.event_init = basic_event_init,
				   .read_counter = basic_read_event_counter,},
	[FME_EVTYPE_CACHE]	= {.event_init = cache_event_init,
				   .read_counter = cache_read_event_counter,},
	[FME_EVTYPE_FABRIC]	= {.event_init = fabric_event_init,
				   .event_destroy = fabric_event_destroy,
				   .read_counter = fabric_read_event_counter,},
	[FME_EVTYPE_VTD]	= {.event_init = vtd_event_init,
				   .read_counter = vtd_read_event_counter,},
	[FME_EVTYPE_VTD_SIP]	= {.event_init = vtd_sip_event_init,
				   .read_counter = vtd_sip_read_event_counter,},
};

static ssize_t fme_perf_event_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct dev_ext_attribute *eattr;
	unsigned long config;
	char *ptr = buf;

	eattr = container_of(attr, struct dev_ext_attribute, attr);
	config = (unsigned long)eattr->var;

	ptr += sprintf(ptr, "event=0x%02x", (unsigned int)get_event(config));
	ptr += sprintf(ptr, ",evtype=0x%02x", (unsigned int)get_evtype(config));

	if (is_portid_root(get_portid(config)))
		ptr += sprintf(ptr, ",portid=0x%02x\n", FME_PORTID_ROOT);
	else
		ptr += sprintf(ptr, ",portid=?\n");

	return (ssize_t)(ptr - buf);
}

#define FME_EVENT_ATTR(_name) \
	__ATTR(_name, 0444, fme_perf_event_show, NULL)

#define FME_PORT_EVENT_CONFIG(_event, _type)				\
	(void *)((((_event) << FME_EVENT_SHIFT) & FME_EVENT_MASK) |	\
		(((_type) << FME_EVTYPE_SHIFT) & FME_EVTYPE_MASK))

#define FME_EVENT_CONFIG(_event, _type)					\
	(void *)((((_event) << FME_EVENT_SHIFT) & FME_EVENT_MASK) |	\
		(((_type) << FME_EVTYPE_SHIFT) & FME_EVTYPE_MASK) |	\
		(FME_PORTID_ROOT << FME_PORTID_SHIFT))

/* FME Perf Basic Events */
#define FME_EVENT_BASIC(_name, _event)					\
static struct dev_ext_attribute fme_perf_event_##_name = {		\
	.attr = FME_EVENT_ATTR(_name),					\
	.var = FME_EVENT_CONFIG(_event, FME_EVTYPE_BASIC),		\
}

FME_EVENT_BASIC(clock, BASIC_EVNT_CLK);

static struct attribute *fme_perf_basic_events_attrs[] = {
	&fme_perf_event_clock.attr.attr,
	NULL,
};

static const struct attribute_group fme_perf_basic_events_group = {
	.name = "events",
	.attrs = fme_perf_basic_events_attrs,
};

/* FME Perf Cache Events */
#define FME_EVENT_CACHE(_name, _event)					\
static struct dev_ext_attribute fme_perf_event_cache_##_name = {	\
	.attr = FME_EVENT_ATTR(cache_##_name),				\
	.var = FME_EVENT_CONFIG(_event, FME_EVTYPE_CACHE),		\
}

FME_EVENT_CACHE(read_hit,     CACHE_EVNT_RD_HIT);
FME_EVENT_CACHE(read_miss,    CACHE_EVNT_RD_MISS);
FME_EVENT_CACHE(write_hit,    CACHE_EVNT_WR_HIT);
FME_EVENT_CACHE(write_miss,   CACHE_EVNT_WR_MISS);
FME_EVENT_CACHE(hold_request, CACHE_EVNT_HOLD_REQ);
FME_EVENT_CACHE(tx_req_stall, CACHE_EVNT_TX_REQ_STALL);
FME_EVENT_CACHE(rx_req_stall, CACHE_EVNT_RX_REQ_STALL);
FME_EVENT_CACHE(eviction,     CACHE_EVNT_EVICTIONS);
FME_EVENT_CACHE(data_write_port_contention, CACHE_EVNT_DATA_WR_PORT_CONTEN);
FME_EVENT_CACHE(tag_write_port_contention,  CACHE_EVNT_TAG_WR_PORT_CONTEN);

static struct attribute *fme_perf_cache_events_attrs[] = {
	&fme_perf_event_cache_read_hit.attr.attr,
	&fme_perf_event_cache_read_miss.attr.attr,
	&fme_perf_event_cache_write_hit.attr.attr,
	&fme_perf_event_cache_write_miss.attr.attr,
	&fme_perf_event_cache_hold_request.attr.attr,
	&fme_perf_event_cache_tx_req_stall.attr.attr,
	&fme_perf_event_cache_rx_req_stall.attr.attr,
	&fme_perf_event_cache_eviction.attr.attr,
	&fme_perf_event_cache_data_write_port_contention.attr.attr,
	&fme_perf_event_cache_tag_write_port_contention.attr.attr,
	NULL,
};

static umode_t fme_perf_events_visible(struct kobject *kobj,
				       struct attribute *attr, int n)
{
	struct pmu *pmu = dev_get_drvdata(kobj_to_dev(kobj));
	struct fme_perf_priv *priv = to_fme_perf_priv(pmu);

	return (priv->id == FME_FEATURE_ID_GLOBAL_IPERF) ? attr->mode : 0;
}

static const struct attribute_group fme_perf_cache_events_group = {
	.name = "events",
	.attrs = fme_perf_cache_events_attrs,
	.is_visible = fme_perf_events_visible,
};

/* FME Perf Fabric Events */
#define FME_EVENT_FABRIC(_name, _event)					\
static struct dev_ext_attribute fme_perf_event_fab_##_name = {		\
	.attr = FME_EVENT_ATTR(fab_##_name),				\
	.var = FME_EVENT_CONFIG(_event, FME_EVTYPE_FABRIC),		\
}

#define FME_EVENT_FABRIC_PORT(_name, _event)				\
static struct dev_ext_attribute fme_perf_event_fab_port_##_name = {	\
	.attr = FME_EVENT_ATTR(fab_port_##_name),			\
	.var = FME_PORT_EVENT_CONFIG(_event, FME_EVTYPE_FABRIC),	\
}

FME_EVENT_FABRIC(pcie0_read,  FAB_EVNT_PCIE0_RD);
FME_EVENT_FABRIC(pcie0_write, FAB_EVNT_PCIE0_WR);
FME_EVENT_FABRIC(pcie1_read,  FAB_EVNT_PCIE1_RD);
FME_EVENT_FABRIC(pcie1_write, FAB_EVNT_PCIE1_WR);
FME_EVENT_FABRIC(upi_read,    FAB_EVNT_UPI_RD);
FME_EVENT_FABRIC(upi_write,   FAB_EVNT_UPI_WR);
FME_EVENT_FABRIC(mmio_read,   FAB_EVNT_MMIO_RD);
FME_EVENT_FABRIC(mmio_write,  FAB_EVNT_MMIO_WR);

FME_EVENT_FABRIC_PORT(pcie0_read,  FAB_EVNT_PCIE0_RD);
FME_EVENT_FABRIC_PORT(pcie0_write, FAB_EVNT_PCIE0_WR);
FME_EVENT_FABRIC_PORT(pcie1_read,  FAB_EVNT_PCIE1_RD);
FME_EVENT_FABRIC_PORT(pcie1_write, FAB_EVNT_PCIE1_WR);
FME_EVENT_FABRIC_PORT(upi_read,    FAB_EVNT_UPI_RD);
FME_EVENT_FABRIC_PORT(upi_write,   FAB_EVNT_UPI_WR);
FME_EVENT_FABRIC_PORT(mmio_read,   FAB_EVNT_MMIO_RD);
FME_EVENT_FABRIC_PORT(mmio_write,  FAB_EVNT_MMIO_WR);

static struct attribute *fme_perf_fabric_events_attrs[] = {
	&fme_perf_event_fab_pcie0_read.attr.attr,
	&fme_perf_event_fab_pcie0_write.attr.attr,
	&fme_perf_event_fab_pcie1_read.attr.attr,
	&fme_perf_event_fab_pcie1_write.attr.attr,
	&fme_perf_event_fab_upi_read.attr.attr,
	&fme_perf_event_fab_upi_write.attr.attr,
	&fme_perf_event_fab_mmio_read.attr.attr,
	&fme_perf_event_fab_mmio_write.attr.attr,
	&fme_perf_event_fab_port_pcie0_read.attr.attr,
	&fme_perf_event_fab_port_pcie0_write.attr.attr,
	&fme_perf_event_fab_port_pcie1_read.attr.attr,
	&fme_perf_event_fab_port_pcie1_write.attr.attr,
	&fme_perf_event_fab_port_upi_read.attr.attr,
	&fme_perf_event_fab_port_upi_write.attr.attr,
	&fme_perf_event_fab_port_mmio_read.attr.attr,
	&fme_perf_event_fab_port_mmio_write.attr.attr,
	NULL,
};

static umode_t fme_perf_fabric_events_visible(struct kobject *kobj,
					      struct attribute *attr, int n)
{
	struct pmu *pmu = dev_get_drvdata(kobj_to_dev(kobj));
	struct fme_perf_priv *priv = to_fme_perf_priv(pmu);
	struct dev_ext_attribute *eattr;
	unsigned long var;

	eattr = container_of(attr, struct dev_ext_attribute, attr.attr);
	var = (unsigned long)eattr->var;

	if (is_fabric_event_supported(priv, get_event(var), get_portid(var)))
		return attr->mode;

	return 0;
}

static const struct attribute_group fme_perf_fabric_events_group = {
	.name = "events",
	.attrs = fme_perf_fabric_events_attrs,
	.is_visible = fme_perf_fabric_events_visible,
};

/* FME Perf VTD Events */
#define FME_EVENT_VTD_PORT(_name, _event)				\
static struct dev_ext_attribute fme_perf_event_vtd_port_##_name = {	\
	.attr = FME_EVENT_ATTR(vtd_port_##_name),			\
	.var = FME_PORT_EVENT_CONFIG(_event, FME_EVTYPE_VTD),		\
}

FME_EVENT_VTD_PORT(read_transaction,  VTD_EVNT_AFU_MEM_RD_TRANS);
FME_EVENT_VTD_PORT(write_transaction, VTD_EVNT_AFU_MEM_WR_TRANS);
FME_EVENT_VTD_PORT(devtlb_read_hit,   VTD_EVNT_AFU_DEVTLB_RD_HIT);
FME_EVENT_VTD_PORT(devtlb_write_hit,  VTD_EVNT_AFU_DEVTLB_WR_HIT);
FME_EVENT_VTD_PORT(devtlb_4k_fill,    VTD_EVNT_DEVTLB_4K_FILL);
FME_EVENT_VTD_PORT(devtlb_2m_fill,    VTD_EVNT_DEVTLB_2M_FILL);
FME_EVENT_VTD_PORT(devtlb_1g_fill,    VTD_EVNT_DEVTLB_1G_FILL);

static struct attribute *fme_perf_vtd_events_attrs[] = {
	&fme_perf_event_vtd_port_read_transaction.attr.attr,
	&fme_perf_event_vtd_port_write_transaction.attr.attr,
	&fme_perf_event_vtd_port_devtlb_read_hit.attr.attr,
	&fme_perf_event_vtd_port_devtlb_write_hit.attr.attr,
	&fme_perf_event_vtd_port_devtlb_4k_fill.attr.attr,
	&fme_perf_event_vtd_port_devtlb_2m_fill.attr.attr,
	&fme_perf_event_vtd_port_devtlb_1g_fill.attr.attr,
	NULL,
};

static const struct attribute_group fme_perf_vtd_events_group = {
	.name = "events",
	.attrs = fme_perf_vtd_events_attrs,
	.is_visible = fme_perf_events_visible,
};

/* FME Perf VTD SIP Events */
#define FME_EVENT_VTD_SIP(_name, _event)				\
static struct dev_ext_attribute fme_perf_event_vtd_sip_##_name = {	\
	.attr = FME_EVENT_ATTR(vtd_sip_##_name),			\
	.var = FME_EVENT_CONFIG(_event, FME_EVTYPE_VTD_SIP),		\
}

FME_EVENT_VTD_SIP(iotlb_4k_hit,  VTD_SIP_EVNT_IOTLB_4K_HIT);
FME_EVENT_VTD_SIP(iotlb_2m_hit,  VTD_SIP_EVNT_IOTLB_2M_HIT);
FME_EVENT_VTD_SIP(iotlb_1g_hit,  VTD_SIP_EVNT_IOTLB_1G_HIT);
FME_EVENT_VTD_SIP(slpwc_l3_hit,  VTD_SIP_EVNT_SLPWC_L3_HIT);
FME_EVENT_VTD_SIP(slpwc_l4_hit,  VTD_SIP_EVNT_SLPWC_L4_HIT);
FME_EVENT_VTD_SIP(rcc_hit,       VTD_SIP_EVNT_RCC_HIT);
FME_EVENT_VTD_SIP(iotlb_4k_miss, VTD_SIP_EVNT_IOTLB_4K_MISS);
FME_EVENT_VTD_SIP(iotlb_2m_miss, VTD_SIP_EVNT_IOTLB_2M_MISS);
FME_EVENT_VTD_SIP(iotlb_1g_miss, VTD_SIP_EVNT_IOTLB_1G_MISS);
FME_EVENT_VTD_SIP(slpwc_l3_miss, VTD_SIP_EVNT_SLPWC_L3_MISS);
FME_EVENT_VTD_SIP(slpwc_l4_miss, VTD_SIP_EVNT_SLPWC_L4_MISS);
FME_EVENT_VTD_SIP(rcc_miss,      VTD_SIP_EVNT_RCC_MISS);

static struct attribute *fme_perf_vtd_sip_events_attrs[] = {
	&fme_perf_event_vtd_sip_iotlb_4k_hit.attr.attr,
	&fme_perf_event_vtd_sip_iotlb_2m_hit.attr.attr,
	&fme_perf_event_vtd_sip_iotlb_1g_hit.attr.attr,
	&fme_perf_event_vtd_sip_slpwc_l3_hit.attr.attr,
	&fme_perf_event_vtd_sip_slpwc_l4_hit.attr.attr,
	&fme_perf_event_vtd_sip_rcc_hit.attr.attr,
	&fme_perf_event_vtd_sip_iotlb_4k_miss.attr.attr,
	&fme_perf_event_vtd_sip_iotlb_2m_miss.attr.attr,
	&fme_perf_event_vtd_sip_iotlb_1g_miss.attr.attr,
	&fme_perf_event_vtd_sip_slpwc_l3_miss.attr.attr,
	&fme_perf_event_vtd_sip_slpwc_l4_miss.attr.attr,
	&fme_perf_event_vtd_sip_rcc_miss.attr.attr,
	NULL,
};

static const struct attribute_group fme_perf_vtd_sip_events_group = {
	.name = "events",
	.attrs = fme_perf_vtd_sip_events_attrs,
	.is_visible = fme_perf_events_visible,
};

static const struct attribute_group *fme_perf_events_groups[] = {
	&fme_perf_basic_events_group,
	&fme_perf_cache_events_group,
	&fme_perf_fabric_events_group,
	&fme_perf_vtd_events_group,
	&fme_perf_vtd_sip_events_group,
	NULL,
};

static struct fme_perf_event_ops *get_event_ops(u32 evtype)
{
	if (evtype > FME_EVTYPE_MAX)
		return NULL;

	return &fme_perf_event_ops[evtype];
}

static void fme_perf_event_destroy(struct perf_event *event)
{
	struct fme_perf_event_ops *ops = get_event_ops(event->hw.event_base);
	struct fme_perf_priv *priv = to_fme_perf_priv(event->pmu);

	if (ops->event_destroy)
		ops->event_destroy(priv, event->hw.idx, event->hw.config_base);
}

static int fme_perf_event_init(struct perf_event *event)
{
	struct fme_perf_priv *priv = to_fme_perf_priv(event->pmu);
	struct hw_perf_event *hwc = &event->hw;
	struct fme_perf_event_ops *ops;
	u32 eventid, evtype, portid;

	/* test the event attr type check for PMU enumeration */
	if (event->attr.type != event->pmu->type)
		return -ENOENT;

	/*
	 * fme counters are shared across all cores.
	 * Therefore, it does not support per-process mode.
	 * Also, it does not support event sampling mode.
	 */
	if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK)
		return -EINVAL;

	if (event->cpu < 0)
		return -EINVAL;

	if (event->cpu != priv->cpu)
		return -EINVAL;

	eventid = get_event(event->attr.config);
	portid = get_portid(event->attr.config);
	evtype = get_evtype(event->attr.config);
	if (evtype > FME_EVTYPE_MAX)
		return -EINVAL;

	hwc->event_base = evtype;
	hwc->idx = (int)eventid;
	hwc->config_base = portid;

	event->destroy = fme_perf_event_destroy;

	dev_dbg(priv->dev, "%s event=0x%x, evtype=0x%x, portid=0x%x,\n",
		__func__, eventid, evtype, portid);

	ops = get_event_ops(evtype);
	if (ops->event_init)
		return ops->event_init(priv, eventid, portid);

	return 0;
}

static void fme_perf_event_update(struct perf_event *event)
{
	struct fme_perf_event_ops *ops = get_event_ops(event->hw.event_base);
	struct fme_perf_priv *priv = to_fme_perf_priv(event->pmu);
	struct hw_perf_event *hwc = &event->hw;
	u64 now, prev, delta;

	now = ops->read_counter(priv, (u32)hwc->idx, hwc->config_base);
	prev = local64_read(&hwc->prev_count);
	delta = now - prev;

	local64_add(delta, &event->count);
}

static void fme_perf_event_start(struct perf_event *event, int flags)
{
	struct fme_perf_event_ops *ops = get_event_ops(event->hw.event_base);
	struct fme_perf_priv *priv = to_fme_perf_priv(event->pmu);
	struct hw_perf_event *hwc = &event->hw;
	u64 count;

	count = ops->read_counter(priv, (u32)hwc->idx, hwc->config_base);
	local64_set(&hwc->prev_count, count);
}

static void fme_perf_event_stop(struct perf_event *event, int flags)
{
	fme_perf_event_update(event);
}

static int fme_perf_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		fme_perf_event_start(event, flags);

	return 0;
}

static void fme_perf_event_del(struct perf_event *event, int flags)
{
	fme_perf_event_stop(event, PERF_EF_UPDATE);
}

static void fme_perf_event_read(struct perf_event *event)
{
	fme_perf_event_update(event);
}

static void fme_perf_setup_hardware(struct fme_perf_priv *priv)
{
	void __iomem *base = priv->ioaddr;
	u64 v;

	/* read and save current working mode for fabric counters */
	v = readq(base + FAB_CTRL);

	if (FIELD_GET(FAB_PORT_FILTER, v) == FAB_PORT_FILTER_DISABLE)
		priv->fab_port_id = FME_PORTID_ROOT;
	else
		priv->fab_port_id = FIELD_GET(FAB_PORT_ID, v);
}

static int fme_perf_pmu_register(struct platform_device *pdev,
				 struct fme_perf_priv *priv)
{
	struct pmu *pmu = &priv->pmu;
	char *name;
	int ret;

	spin_lock_init(&priv->fab_lock);

	fme_perf_setup_hardware(priv);

	pmu->task_ctx_nr =	perf_invalid_context;
	pmu->attr_groups =	fme_perf_groups;
	pmu->attr_update =	fme_perf_events_groups;
	pmu->event_init =	fme_perf_event_init;
	pmu->add =		fme_perf_event_add;
	pmu->del =		fme_perf_event_del;
	pmu->start =		fme_perf_event_start;
	pmu->stop =		fme_perf_event_stop;
	pmu->read =		fme_perf_event_read;
	pmu->capabilities =	PERF_PMU_CAP_NO_INTERRUPT |
				PERF_PMU_CAP_NO_EXCLUDE;

	name = devm_kasprintf(priv->dev, GFP_KERNEL, "dfl_fme%d", pdev->id);

	ret = perf_pmu_register(pmu, name, -1);
	if (ret)
		return ret;

	return 0;
}

static void fme_perf_pmu_unregister(struct fme_perf_priv *priv)
{
	perf_pmu_unregister(&priv->pmu);
}

static int fme_perf_offline_cpu(unsigned int cpu, struct hlist_node *node)
{
	struct fme_perf_priv *priv;
	int target;

	priv = hlist_entry_safe(node, struct fme_perf_priv, node);

	if (cpu != priv->cpu)
		return 0;

	target = cpumask_any_but(cpu_online_mask, cpu);
	if (target >= nr_cpu_ids)
		return 0;

	priv->cpu = target;
	perf_pmu_migrate_context(&priv->pmu, cpu, target);

	return 0;
}

static int fme_perf_init(struct platform_device *pdev,
			 struct dfl_feature *feature)
{
	struct fme_perf_priv *priv;
	int ret;

	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

	priv->dev = &pdev->dev;
	priv->ioaddr = feature->ioaddr;
	priv->id = feature->id;
	priv->cpu = raw_smp_processor_id();

	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
				      "perf/fpga/dfl_fme:online",
				      NULL, fme_perf_offline_cpu);
	if (ret < 0)
		return ret;

	priv->cpuhp_state = ret;

	/* Register the pmu instance for cpu hotplug */
	ret = cpuhp_state_add_instance_nocalls(priv->cpuhp_state, &priv->node);
	if (ret)
		goto cpuhp_instance_err;

	ret = fme_perf_pmu_register(pdev, priv);
	if (ret)
		goto pmu_register_err;

	feature->priv = priv;
	return 0;

pmu_register_err:
	cpuhp_state_remove_instance_nocalls(priv->cpuhp_state, &priv->node);
cpuhp_instance_err:
	cpuhp_remove_multi_state(priv->cpuhp_state);
	return ret;
}

static void fme_perf_uinit(struct platform_device *pdev,
			   struct dfl_feature *feature)
{
	struct fme_perf_priv *priv = feature->priv;

	fme_perf_pmu_unregister(priv);
	cpuhp_state_remove_instance_nocalls(priv->cpuhp_state, &priv->node);
	cpuhp_remove_multi_state(priv->cpuhp_state);
}

const struct dfl_feature_id fme_perf_id_table[] = {
	{.id = FME_FEATURE_ID_GLOBAL_IPERF,},
	{.id = FME_FEATURE_ID_GLOBAL_DPERF,},
	{0,}
};

const struct dfl_feature_ops fme_perf_ops = {
	.init = fme_perf_init,
	.uinit = fme_perf_uinit,
};