Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mukul Joshi | 2633 | 88.83% | 3 | 8.57% |
Oded Gabbay | 137 | 4.62% | 5 | 14.29% |
Felix Kuhling | 68 | 2.29% | 9 | 25.71% |
Graham Sider | 38 | 1.28% | 4 | 11.43% |
Ben Goz | 35 | 1.18% | 3 | 8.57% |
Tao Zhou | 15 | 0.51% | 3 | 8.57% |
Philip Cox | 14 | 0.47% | 2 | 5.71% |
Yair Shachar | 10 | 0.34% | 1 | 2.86% |
Andres Rodriguez | 7 | 0.24% | 1 | 2.86% |
Amber Lin | 3 | 0.10% | 1 | 2.86% |
Oak Zeng | 2 | 0.07% | 1 | 2.86% |
Shaoyun Liu | 1 | 0.03% | 1 | 2.86% |
Yifan Zha | 1 | 0.03% | 1 | 2.86% |
Total | 2964 | 35 |
/* * Copyright 2021 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include <linux/mmu_context.h> #include "amdgpu.h" #include "amdgpu_amdkfd.h" #include "gc/gc_11_0_0_offset.h" #include "gc/gc_11_0_0_sh_mask.h" #include "oss/osssys_6_0_0_offset.h" #include "oss/osssys_6_0_0_sh_mask.h" #include "soc15_common.h" #include "soc15d.h" #include "v11_structs.h" #include "soc21.h" enum hqd_dequeue_request_type { NO_ACTION = 0, DRAIN_PIPE, RESET_WAVES, SAVE_WAVES }; static void lock_srbm(struct amdgpu_device *adev, uint32_t mec, uint32_t pipe, uint32_t queue, uint32_t vmid) { mutex_lock(&adev->srbm_mutex); soc21_grbm_select(adev, mec, pipe, queue, vmid); } static void unlock_srbm(struct amdgpu_device *adev) { soc21_grbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); } static void acquire_queue(struct amdgpu_device *adev, uint32_t pipe_id, uint32_t queue_id) { uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); lock_srbm(adev, mec, pipe, queue_id, 0); } static uint64_t get_queue_mask(struct amdgpu_device *adev, uint32_t pipe_id, uint32_t queue_id) { unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe + queue_id; return 1ull << bit; } static void release_queue(struct amdgpu_device *adev) { unlock_srbm(adev); } static void program_sh_mem_settings_v11(struct amdgpu_device *adev, uint32_t vmid, uint32_t sh_mem_config, uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases) { lock_srbm(adev, 0, 0, 0, vmid); WREG32(SOC15_REG_OFFSET(GC, 0, regSH_MEM_CONFIG), sh_mem_config); WREG32(SOC15_REG_OFFSET(GC, 0, regSH_MEM_BASES), sh_mem_bases); unlock_srbm(adev); } static int set_pasid_vmid_mapping_v11(struct amdgpu_device *adev, unsigned int pasid, unsigned int vmid) { uint32_t value = pasid << IH_VMID_0_LUT__PASID__SHIFT; /* Mapping vmid to pasid also for IH block */ pr_debug("mapping vmid %d -> pasid %d in IH block for GFX client\n", vmid, pasid); WREG32(SOC15_REG_OFFSET(OSSSYS, 0, regIH_VMID_0_LUT) + vmid, value); return 0; } static int init_interrupts_v11(struct amdgpu_device *adev, uint32_t pipe_id) { uint32_t mec; uint32_t pipe; mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); lock_srbm(adev, mec, pipe, 0, 0); WREG32_SOC15(GC, 0, regCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK | CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK); unlock_srbm(adev); return 0; } static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev, unsigned int engine_id, unsigned int queue_id) { uint32_t sdma_engine_reg_base = 0; uint32_t sdma_rlc_reg_offset; switch (engine_id) { case 0: sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA0, 0, regSDMA0_QUEUE0_RB_CNTL) - regSDMA0_QUEUE0_RB_CNTL; break; case 1: sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA1, 0, regSDMA1_QUEUE0_RB_CNTL) - regSDMA0_QUEUE0_RB_CNTL; break; default: BUG(); } sdma_rlc_reg_offset = sdma_engine_reg_base + queue_id * (regSDMA0_QUEUE1_RB_CNTL - regSDMA0_QUEUE0_RB_CNTL); pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id, queue_id, sdma_rlc_reg_offset); return sdma_rlc_reg_offset; } static inline struct v11_compute_mqd *get_mqd(void *mqd) { return (struct v11_compute_mqd *)mqd; } static inline struct v11_sdma_mqd *get_sdma_mqd(void *mqd) { return (struct v11_sdma_mqd *)mqd; } static int hqd_load_v11(struct amdgpu_device *adev, void *mqd, uint32_t pipe_id, uint32_t queue_id, uint32_t __user *wptr, uint32_t wptr_shift, uint32_t wptr_mask, struct mm_struct *mm) { struct v11_compute_mqd *m; uint32_t *mqd_hqd; uint32_t reg, hqd_base, data; m = get_mqd(mqd); pr_debug("Load hqd of pipe %d queue %d\n", pipe_id, queue_id); acquire_queue(adev, pipe_id, queue_id); /* HIQ is set during driver init period with vmid set to 0*/ if (m->cp_hqd_vmid == 0) { uint32_t value, mec, pipe; mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n", mec, pipe, queue_id); value = RREG32(SOC15_REG_OFFSET(GC, 0, regRLC_CP_SCHEDULERS)); value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1, ((mec << 5) | (pipe << 3) | queue_id | 0x80)); WREG32(SOC15_REG_OFFSET(GC, 0, regRLC_CP_SCHEDULERS), value); } /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */ mqd_hqd = &m->cp_mqd_base_addr_lo; hqd_base = SOC15_REG_OFFSET(GC, 0, regCP_MQD_BASE_ADDR); for (reg = hqd_base; reg <= SOC15_REG_OFFSET(GC, 0, regCP_HQD_PQ_WPTR_HI); reg++) WREG32(reg, mqd_hqd[reg - hqd_base]); /* Activate doorbell logic before triggering WPTR poll. */ data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1); WREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_PQ_DOORBELL_CONTROL), data); if (wptr) { /* Don't read wptr with get_user because the user * context may not be accessible (if this function * runs in a work queue). Instead trigger a one-shot * polling read from memory in the CP. This assumes * that wptr is GPU-accessible in the queue's VMID via * ATC or SVM. WPTR==RPTR before starting the poll so * the CP starts fetching new commands from the right * place. * * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit * tricky. Assume that the queue didn't overflow. The * number of valid bits in the 32-bit RPTR depends on * the queue size. The remaining bits are taken from * the saved 64-bit WPTR. If the WPTR wrapped, add the * queue size. */ uint32_t queue_size = 2 << REG_GET_FIELD(m->cp_hqd_pq_control, CP_HQD_PQ_CONTROL, QUEUE_SIZE); uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1); if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr) guessed_wptr += queue_size; guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1); guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32; WREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_PQ_WPTR_LO), lower_32_bits(guessed_wptr)); WREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_PQ_WPTR_HI), upper_32_bits(guessed_wptr)); WREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_PQ_WPTR_POLL_ADDR), lower_32_bits((uint64_t)wptr)); WREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_PQ_WPTR_POLL_ADDR_HI), upper_32_bits((uint64_t)wptr)); pr_debug("%s setting CP_PQ_WPTR_POLL_CNTL1 to %x\n", __func__, (uint32_t)get_queue_mask(adev, pipe_id, queue_id)); WREG32(SOC15_REG_OFFSET(GC, 0, regCP_PQ_WPTR_POLL_CNTL1), (uint32_t)get_queue_mask(adev, pipe_id, queue_id)); } /* Start the EOP fetcher */ WREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_EOP_RPTR), REG_SET_FIELD(m->cp_hqd_eop_rptr, CP_HQD_EOP_RPTR, INIT_FETCHER, 1)); data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1); WREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_ACTIVE), data); release_queue(adev); return 0; } static int hiq_mqd_load_v11(struct amdgpu_device *adev, void *mqd, uint32_t pipe_id, uint32_t queue_id, uint32_t doorbell_off) { struct amdgpu_ring *kiq_ring = &adev->gfx.kiq.ring; struct v11_compute_mqd *m; uint32_t mec, pipe; int r; m = get_mqd(mqd); acquire_queue(adev, pipe_id, queue_id); mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n", mec, pipe, queue_id); spin_lock(&adev->gfx.kiq.ring_lock); r = amdgpu_ring_alloc(kiq_ring, 7); if (r) { pr_err("Failed to alloc KIQ (%d).\n", r); goto out_unlock; } amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5)); amdgpu_ring_write(kiq_ring, PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */ PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */ PACKET3_MAP_QUEUES_QUEUE(queue_id) | PACKET3_MAP_QUEUES_PIPE(pipe) | PACKET3_MAP_QUEUES_ME((mec - 1)) | PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */ PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */ PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */ PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */ amdgpu_ring_write(kiq_ring, PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off)); amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo); amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi); amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo); amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi); amdgpu_ring_commit(kiq_ring); out_unlock: spin_unlock(&adev->gfx.kiq.ring_lock); release_queue(adev); return r; } static int hqd_dump_v11(struct amdgpu_device *adev, uint32_t pipe_id, uint32_t queue_id, uint32_t (**dump)[2], uint32_t *n_regs) { uint32_t i = 0, reg; #define HQD_N_REGS 56 #define DUMP_REG(addr) do { \ if (WARN_ON_ONCE(i >= HQD_N_REGS)) \ break; \ (*dump)[i][0] = (addr) << 2; \ (*dump)[i++][1] = RREG32(addr); \ } while (0) *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL); if (*dump == NULL) return -ENOMEM; acquire_queue(adev, pipe_id, queue_id); for (reg = SOC15_REG_OFFSET(GC, 0, regCP_MQD_BASE_ADDR); reg <= SOC15_REG_OFFSET(GC, 0, regCP_HQD_PQ_WPTR_HI); reg++) DUMP_REG(reg); release_queue(adev); WARN_ON_ONCE(i != HQD_N_REGS); *n_regs = i; return 0; } static int hqd_sdma_load_v11(struct amdgpu_device *adev, void *mqd, uint32_t __user *wptr, struct mm_struct *mm) { struct v11_sdma_mqd *m; uint32_t sdma_rlc_reg_offset; unsigned long end_jiffies; uint32_t data; uint64_t data64; uint64_t __user *wptr64 = (uint64_t __user *)wptr; m = get_sdma_mqd(mqd); sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id, m->sdma_queue_id); WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_CNTL, m->sdmax_rlcx_rb_cntl & (~SDMA0_QUEUE0_RB_CNTL__RB_ENABLE_MASK)); end_jiffies = msecs_to_jiffies(2000) + jiffies; while (true) { data = RREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_CONTEXT_STATUS); if (data & SDMA0_QUEUE0_CONTEXT_STATUS__IDLE_MASK) break; if (time_after(jiffies, end_jiffies)) { pr_err("SDMA RLC not idle in %s\n", __func__); return -ETIME; } usleep_range(500, 1000); } WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_DOORBELL_OFFSET, m->sdmax_rlcx_doorbell_offset); data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_QUEUE0_DOORBELL, ENABLE, 1); WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_DOORBELL, data); WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_RPTR, m->sdmax_rlcx_rb_rptr); WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_RPTR_HI, m->sdmax_rlcx_rb_rptr_hi); WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_MINOR_PTR_UPDATE, 1); if (read_user_wptr(mm, wptr64, data64)) { WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_WPTR, lower_32_bits(data64)); WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_WPTR_HI, upper_32_bits(data64)); } else { WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_WPTR, m->sdmax_rlcx_rb_rptr); WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_WPTR_HI, m->sdmax_rlcx_rb_rptr_hi); } WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_MINOR_PTR_UPDATE, 0); WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_BASE, m->sdmax_rlcx_rb_base); WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_BASE_HI, m->sdmax_rlcx_rb_base_hi); WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_RPTR_ADDR_LO, m->sdmax_rlcx_rb_rptr_addr_lo); WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_RPTR_ADDR_HI, m->sdmax_rlcx_rb_rptr_addr_hi); data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_QUEUE0_RB_CNTL, RB_ENABLE, 1); WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_CNTL, data); return 0; } static int hqd_sdma_dump_v11(struct amdgpu_device *adev, uint32_t engine_id, uint32_t queue_id, uint32_t (**dump)[2], uint32_t *n_regs) { uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, engine_id, queue_id); uint32_t i = 0, reg; #undef HQD_N_REGS #define HQD_N_REGS (7+11+1+12+12) *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL); if (*dump == NULL) return -ENOMEM; for (reg = regSDMA0_QUEUE0_RB_CNTL; reg <= regSDMA0_QUEUE0_RB_WPTR_HI; reg++) DUMP_REG(sdma_rlc_reg_offset + reg); for (reg = regSDMA0_QUEUE0_RB_RPTR_ADDR_HI; reg <= regSDMA0_QUEUE0_DOORBELL; reg++) DUMP_REG(sdma_rlc_reg_offset + reg); for (reg = regSDMA0_QUEUE0_DOORBELL_LOG; reg <= regSDMA0_QUEUE0_DOORBELL_LOG; reg++) DUMP_REG(sdma_rlc_reg_offset + reg); for (reg = regSDMA0_QUEUE0_DOORBELL_OFFSET; reg <= regSDMA0_QUEUE0_RB_PREEMPT; reg++) DUMP_REG(sdma_rlc_reg_offset + reg); for (reg = regSDMA0_QUEUE0_MIDCMD_DATA0; reg <= regSDMA0_QUEUE0_MIDCMD_CNTL; reg++) DUMP_REG(sdma_rlc_reg_offset + reg); WARN_ON_ONCE(i != HQD_N_REGS); *n_regs = i; return 0; } static bool hqd_is_occupied_v11(struct amdgpu_device *adev, uint64_t queue_address, uint32_t pipe_id, uint32_t queue_id) { uint32_t act; bool retval = false; uint32_t low, high; acquire_queue(adev, pipe_id, queue_id); act = RREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_ACTIVE)); if (act) { low = lower_32_bits(queue_address >> 8); high = upper_32_bits(queue_address >> 8); if (low == RREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_PQ_BASE)) && high == RREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_PQ_BASE_HI))) retval = true; } release_queue(adev); return retval; } static bool hqd_sdma_is_occupied_v11(struct amdgpu_device *adev, void *mqd) { struct v11_sdma_mqd *m; uint32_t sdma_rlc_reg_offset; uint32_t sdma_rlc_rb_cntl; m = get_sdma_mqd(mqd); sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id, m->sdma_queue_id); sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_CNTL); if (sdma_rlc_rb_cntl & SDMA0_QUEUE0_RB_CNTL__RB_ENABLE_MASK) return true; return false; } static int hqd_destroy_v11(struct amdgpu_device *adev, void *mqd, enum kfd_preempt_type reset_type, unsigned int utimeout, uint32_t pipe_id, uint32_t queue_id) { enum hqd_dequeue_request_type type; unsigned long end_jiffies; uint32_t temp; struct v11_compute_mqd *m = get_mqd(mqd); acquire_queue(adev, pipe_id, queue_id); if (m->cp_hqd_vmid == 0) WREG32_FIELD15_PREREG(GC, 0, RLC_CP_SCHEDULERS, scheduler1, 0); switch (reset_type) { case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN: type = DRAIN_PIPE; break; case KFD_PREEMPT_TYPE_WAVEFRONT_RESET: type = RESET_WAVES; break; default: type = DRAIN_PIPE; break; } WREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_DEQUEUE_REQUEST), type); end_jiffies = (utimeout * HZ / 1000) + jiffies; while (true) { temp = RREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_ACTIVE)); if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK)) break; if (time_after(jiffies, end_jiffies)) { pr_err("cp queue pipe %d queue %d preemption failed\n", pipe_id, queue_id); release_queue(adev); return -ETIME; } usleep_range(500, 1000); } release_queue(adev); return 0; } static int hqd_sdma_destroy_v11(struct amdgpu_device *adev, void *mqd, unsigned int utimeout) { struct v11_sdma_mqd *m; uint32_t sdma_rlc_reg_offset; uint32_t temp; unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies; m = get_sdma_mqd(mqd); sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id, m->sdma_queue_id); temp = RREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_CNTL); temp = temp & ~SDMA0_QUEUE0_RB_CNTL__RB_ENABLE_MASK; WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_CNTL, temp); while (true) { temp = RREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_CONTEXT_STATUS); if (temp & SDMA0_QUEUE0_CONTEXT_STATUS__IDLE_MASK) break; if (time_after(jiffies, end_jiffies)) { pr_err("SDMA RLC not idle in %s\n", __func__); return -ETIME; } usleep_range(500, 1000); } WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_DOORBELL, 0); WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_CNTL, RREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_CNTL) | SDMA0_QUEUE0_RB_CNTL__RB_ENABLE_MASK); m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_RPTR); m->sdmax_rlcx_rb_rptr_hi = RREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_RPTR_HI); return 0; } static int wave_control_execute_v11(struct amdgpu_device *adev, uint32_t gfx_index_val, uint32_t sq_cmd) { uint32_t data = 0; mutex_lock(&adev->grbm_idx_mutex); WREG32(SOC15_REG_OFFSET(GC, 0, regGRBM_GFX_INDEX), gfx_index_val); WREG32(SOC15_REG_OFFSET(GC, 0, regSQ_CMD), sq_cmd); data = REG_SET_FIELD(data, GRBM_GFX_INDEX, INSTANCE_BROADCAST_WRITES, 1); data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SA_BROADCAST_WRITES, 1); data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SE_BROADCAST_WRITES, 1); WREG32(SOC15_REG_OFFSET(GC, 0, regGRBM_GFX_INDEX), data); mutex_unlock(&adev->grbm_idx_mutex); return 0; } static void set_vm_context_page_table_base_v11(struct amdgpu_device *adev, uint32_t vmid, uint64_t page_table_base) { if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) { pr_err("trying to set page table base for wrong VMID %u\n", vmid); return; } /* SDMA is on gfxhub as well for gfx11 adapters */ adev->gfxhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base); } const struct kfd2kgd_calls gfx_v11_kfd2kgd = { .program_sh_mem_settings = program_sh_mem_settings_v11, .set_pasid_vmid_mapping = set_pasid_vmid_mapping_v11, .init_interrupts = init_interrupts_v11, .hqd_load = hqd_load_v11, .hiq_mqd_load = hiq_mqd_load_v11, .hqd_sdma_load = hqd_sdma_load_v11, .hqd_dump = hqd_dump_v11, .hqd_sdma_dump = hqd_sdma_dump_v11, .hqd_is_occupied = hqd_is_occupied_v11, .hqd_sdma_is_occupied = hqd_sdma_is_occupied_v11, .hqd_destroy = hqd_destroy_v11, .hqd_sdma_destroy = hqd_sdma_destroy_v11, .wave_control_execute = wave_control_execute_v11, .get_atc_vmid_pasid_mapping_info = NULL, .set_vm_context_page_table_base = set_vm_context_page_table_base_v11, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1