Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Christian König | 5076 | 59.85% | 112 | 56.57% |
Alex Deucher | 1186 | 13.98% | 2 | 1.01% |
Junwei (Martin) Zhang | 592 | 6.98% | 2 | 1.01% |
Marek Olšák | 330 | 3.89% | 4 | 2.02% |
Chunming Zhou | 326 | 3.84% | 10 | 5.05% |
Dave Airlie | 196 | 2.31% | 6 | 3.03% |
Andrey Grodzovsky | 164 | 1.93% | 7 | 3.54% |
John Brooks | 100 | 1.18% | 1 | 0.51% |
Philip Yang | 82 | 0.97% | 3 | 1.52% |
Dan Carpenter | 74 | 0.87% | 2 | 1.01% |
Monk Liu | 72 | 0.85% | 10 | 5.05% |
Andres Rodriguez | 53 | 0.62% | 2 | 1.01% |
Jammy Zhou | 36 | 0.42% | 1 | 0.51% |
Luben Tuikov | 25 | 0.29% | 2 | 1.01% |
Roger He | 17 | 0.20% | 2 | 1.01% |
Emily Deng | 17 | 0.20% | 2 | 1.01% |
Jason Gunthorpe | 16 | 0.19% | 1 | 0.51% |
Chris Wilson | 12 | 0.14% | 1 | 0.51% |
Huang Rui | 11 | 0.13% | 2 | 1.01% |
Nicolai Hähnle | 10 | 0.12% | 1 | 0.51% |
Ken Xue | 9 | 0.11% | 1 | 0.51% |
Nirmoy Das | 9 | 0.11% | 2 | 1.01% |
Dong Chenchen | 8 | 0.09% | 1 | 0.51% |
Kevin Wang | 8 | 0.09% | 1 | 0.51% |
Michel Dänzer | 6 | 0.07% | 2 | 1.01% |
Michal Hocko | 6 | 0.07% | 1 | 0.51% |
Li Chen | 5 | 0.06% | 1 | 0.51% |
Christophe Jaillet | 5 | 0.06% | 1 | 0.51% |
Daniel Vetter | 5 | 0.06% | 1 | 0.51% |
Gerd Hoffmann | 3 | 0.04% | 1 | 0.51% |
Sam Ravnborg | 3 | 0.04% | 1 | 0.51% |
Samuel Pitoiset | 3 | 0.04% | 1 | 0.51% |
xinhui pan | 3 | 0.04% | 1 | 0.51% |
Bert Karwatzki | 2 | 0.02% | 1 | 0.51% |
Stephen Rothwell | 2 | 0.02% | 1 | 0.51% |
Lee Jones | 2 | 0.02% | 1 | 0.51% |
Lucas Stach | 1 | 0.01% | 1 | 0.51% |
Alex Xie | 1 | 0.01% | 1 | 0.51% |
Kent Russell | 1 | 0.01% | 1 | 0.51% |
Harry Wentland | 1 | 0.01% | 1 | 0.51% |
Julia Lawall | 1 | 0.01% | 1 | 0.51% |
Emil Velikov | 1 | 0.01% | 1 | 0.51% |
Bas Nieuwenhuizen | 1 | 0.01% | 1 | 0.51% |
Total | 8481 | 198 |
/* * Copyright 2008 Jerome Glisse. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Jerome Glisse <glisse@freedesktop.org> */ #include <linux/file.h> #include <linux/pagemap.h> #include <linux/sync_file.h> #include <linux/dma-buf.h> #include <drm/amdgpu_drm.h> #include <drm/drm_syncobj.h> #include "amdgpu_cs.h" #include "amdgpu.h" #include "amdgpu_trace.h" #include "amdgpu_gmc.h" #include "amdgpu_gem.h" #include "amdgpu_ras.h" static int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p, struct amdgpu_device *adev, struct drm_file *filp, union drm_amdgpu_cs *cs) { struct amdgpu_fpriv *fpriv = filp->driver_priv; if (cs->in.num_chunks == 0) return -EINVAL; memset(p, 0, sizeof(*p)); p->adev = adev; p->filp = filp; p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id); if (!p->ctx) return -EINVAL; if (atomic_read(&p->ctx->guilty)) { amdgpu_ctx_put(p->ctx); return -ECANCELED; } amdgpu_sync_create(&p->sync); return 0; } static int amdgpu_cs_job_idx(struct amdgpu_cs_parser *p, struct drm_amdgpu_cs_chunk_ib *chunk_ib) { struct drm_sched_entity *entity; unsigned int i; int r; r = amdgpu_ctx_get_entity(p->ctx, chunk_ib->ip_type, chunk_ib->ip_instance, chunk_ib->ring, &entity); if (r) return r; /* * Abort if there is no run queue associated with this entity. * Possibly because of disabled HW IP. */ if (entity->rq == NULL) return -EINVAL; /* Check if we can add this IB to some existing job */ for (i = 0; i < p->gang_size; ++i) if (p->entities[i] == entity) return i; /* If not increase the gang size if possible */ if (i == AMDGPU_CS_GANG_SIZE) return -EINVAL; p->entities[i] = entity; p->gang_size = i + 1; return i; } static int amdgpu_cs_p1_ib(struct amdgpu_cs_parser *p, struct drm_amdgpu_cs_chunk_ib *chunk_ib, unsigned int *num_ibs) { int r; r = amdgpu_cs_job_idx(p, chunk_ib); if (r < 0) return r; ++(num_ibs[r]); p->gang_leader_idx = r; return 0; } static int amdgpu_cs_p1_user_fence(struct amdgpu_cs_parser *p, struct drm_amdgpu_cs_chunk_fence *data, uint32_t *offset) { struct drm_gem_object *gobj; struct amdgpu_bo *bo; unsigned long size; int r; gobj = drm_gem_object_lookup(p->filp, data->handle); if (gobj == NULL) return -EINVAL; bo = amdgpu_bo_ref(gem_to_amdgpu_bo(gobj)); p->uf_entry.priority = 0; p->uf_entry.tv.bo = &bo->tbo; /* One for TTM and two for the CS job */ p->uf_entry.tv.num_shared = 3; drm_gem_object_put(gobj); size = amdgpu_bo_size(bo); if (size != PAGE_SIZE || (data->offset + 8) > size) { r = -EINVAL; goto error_unref; } if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { r = -EINVAL; goto error_unref; } *offset = data->offset; return 0; error_unref: amdgpu_bo_unref(&bo); return r; } static int amdgpu_cs_p1_bo_handles(struct amdgpu_cs_parser *p, struct drm_amdgpu_bo_list_in *data) { struct drm_amdgpu_bo_list_entry *info; int r; r = amdgpu_bo_create_list_entry_array(data, &info); if (r) return r; r = amdgpu_bo_list_create(p->adev, p->filp, info, data->bo_number, &p->bo_list); if (r) goto error_free; kvfree(info); return 0; error_free: kvfree(info); return r; } /* Copy the data from userspace and go over it the first time */ static int amdgpu_cs_pass1(struct amdgpu_cs_parser *p, union drm_amdgpu_cs *cs) { struct amdgpu_fpriv *fpriv = p->filp->driver_priv; unsigned int num_ibs[AMDGPU_CS_GANG_SIZE] = { }; struct amdgpu_vm *vm = &fpriv->vm; uint64_t *chunk_array_user; uint64_t *chunk_array; uint32_t uf_offset = 0; unsigned int size; int ret; int i; chunk_array = kvmalloc_array(cs->in.num_chunks, sizeof(uint64_t), GFP_KERNEL); if (!chunk_array) return -ENOMEM; /* get chunks */ chunk_array_user = u64_to_user_ptr(cs->in.chunks); if (copy_from_user(chunk_array, chunk_array_user, sizeof(uint64_t)*cs->in.num_chunks)) { ret = -EFAULT; goto free_chunk; } p->nchunks = cs->in.num_chunks; p->chunks = kvmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk), GFP_KERNEL); if (!p->chunks) { ret = -ENOMEM; goto free_chunk; } for (i = 0; i < p->nchunks; i++) { struct drm_amdgpu_cs_chunk __user **chunk_ptr = NULL; struct drm_amdgpu_cs_chunk user_chunk; uint32_t __user *cdata; chunk_ptr = u64_to_user_ptr(chunk_array[i]); if (copy_from_user(&user_chunk, chunk_ptr, sizeof(struct drm_amdgpu_cs_chunk))) { ret = -EFAULT; i--; goto free_partial_kdata; } p->chunks[i].chunk_id = user_chunk.chunk_id; p->chunks[i].length_dw = user_chunk.length_dw; size = p->chunks[i].length_dw; cdata = u64_to_user_ptr(user_chunk.chunk_data); p->chunks[i].kdata = kvmalloc_array(size, sizeof(uint32_t), GFP_KERNEL); if (p->chunks[i].kdata == NULL) { ret = -ENOMEM; i--; goto free_partial_kdata; } size *= sizeof(uint32_t); if (copy_from_user(p->chunks[i].kdata, cdata, size)) { ret = -EFAULT; goto free_partial_kdata; } /* Assume the worst on the following checks */ ret = -EINVAL; switch (p->chunks[i].chunk_id) { case AMDGPU_CHUNK_ID_IB: if (size < sizeof(struct drm_amdgpu_cs_chunk_ib)) goto free_partial_kdata; ret = amdgpu_cs_p1_ib(p, p->chunks[i].kdata, num_ibs); if (ret) goto free_partial_kdata; break; case AMDGPU_CHUNK_ID_FENCE: if (size < sizeof(struct drm_amdgpu_cs_chunk_fence)) goto free_partial_kdata; ret = amdgpu_cs_p1_user_fence(p, p->chunks[i].kdata, &uf_offset); if (ret) goto free_partial_kdata; break; case AMDGPU_CHUNK_ID_BO_HANDLES: if (size < sizeof(struct drm_amdgpu_bo_list_in)) goto free_partial_kdata; ret = amdgpu_cs_p1_bo_handles(p, p->chunks[i].kdata); if (ret) goto free_partial_kdata; break; case AMDGPU_CHUNK_ID_DEPENDENCIES: case AMDGPU_CHUNK_ID_SYNCOBJ_IN: case AMDGPU_CHUNK_ID_SYNCOBJ_OUT: case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES: case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT: case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL: break; default: goto free_partial_kdata; } } if (!p->gang_size) { ret = -EINVAL; goto free_partial_kdata; } for (i = 0; i < p->gang_size; ++i) { ret = amdgpu_job_alloc(p->adev, vm, p->entities[i], vm, num_ibs[i], &p->jobs[i]); if (ret) goto free_all_kdata; } p->gang_leader = p->jobs[p->gang_leader_idx]; if (p->ctx->vram_lost_counter != p->gang_leader->vram_lost_counter) { ret = -ECANCELED; goto free_all_kdata; } if (p->uf_entry.tv.bo) p->gang_leader->uf_addr = uf_offset; kvfree(chunk_array); /* Use this opportunity to fill in task info for the vm */ amdgpu_vm_set_task_info(vm); return 0; free_all_kdata: i = p->nchunks - 1; free_partial_kdata: for (; i >= 0; i--) kvfree(p->chunks[i].kdata); kvfree(p->chunks); p->chunks = NULL; p->nchunks = 0; free_chunk: kvfree(chunk_array); return ret; } static int amdgpu_cs_p2_ib(struct amdgpu_cs_parser *p, struct amdgpu_cs_chunk *chunk, unsigned int *ce_preempt, unsigned int *de_preempt) { struct drm_amdgpu_cs_chunk_ib *chunk_ib = chunk->kdata; struct amdgpu_fpriv *fpriv = p->filp->driver_priv; struct amdgpu_vm *vm = &fpriv->vm; struct amdgpu_ring *ring; struct amdgpu_job *job; struct amdgpu_ib *ib; int r; r = amdgpu_cs_job_idx(p, chunk_ib); if (r < 0) return r; job = p->jobs[r]; ring = amdgpu_job_ring(job); ib = &job->ibs[job->num_ibs++]; /* MM engine doesn't support user fences */ if (p->uf_entry.tv.bo && ring->funcs->no_user_fence) return -EINVAL; if (chunk_ib->ip_type == AMDGPU_HW_IP_GFX && chunk_ib->flags & AMDGPU_IB_FLAG_PREEMPT) { if (chunk_ib->flags & AMDGPU_IB_FLAG_CE) (*ce_preempt)++; else (*de_preempt)++; /* Each GFX command submit allows only 1 IB max * preemptible for CE & DE */ if (*ce_preempt > 1 || *de_preempt > 1) return -EINVAL; } if (chunk_ib->flags & AMDGPU_IB_FLAG_PREAMBLE) job->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT; r = amdgpu_ib_get(p->adev, vm, ring->funcs->parse_cs ? chunk_ib->ib_bytes : 0, AMDGPU_IB_POOL_DELAYED, ib); if (r) { DRM_ERROR("Failed to get ib !\n"); return r; } ib->gpu_addr = chunk_ib->va_start; ib->length_dw = chunk_ib->ib_bytes / 4; ib->flags = chunk_ib->flags; return 0; } static int amdgpu_cs_p2_dependencies(struct amdgpu_cs_parser *p, struct amdgpu_cs_chunk *chunk) { struct drm_amdgpu_cs_chunk_dep *deps = chunk->kdata; struct amdgpu_fpriv *fpriv = p->filp->driver_priv; unsigned num_deps; int i, r; num_deps = chunk->length_dw * 4 / sizeof(struct drm_amdgpu_cs_chunk_dep); for (i = 0; i < num_deps; ++i) { struct amdgpu_ctx *ctx; struct drm_sched_entity *entity; struct dma_fence *fence; ctx = amdgpu_ctx_get(fpriv, deps[i].ctx_id); if (ctx == NULL) return -EINVAL; r = amdgpu_ctx_get_entity(ctx, deps[i].ip_type, deps[i].ip_instance, deps[i].ring, &entity); if (r) { amdgpu_ctx_put(ctx); return r; } fence = amdgpu_ctx_get_fence(ctx, entity, deps[i].handle); amdgpu_ctx_put(ctx); if (IS_ERR(fence)) return PTR_ERR(fence); else if (!fence) continue; if (chunk->chunk_id == AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES) { struct drm_sched_fence *s_fence; struct dma_fence *old = fence; s_fence = to_drm_sched_fence(fence); fence = dma_fence_get(&s_fence->scheduled); dma_fence_put(old); } r = amdgpu_sync_fence(&p->sync, fence); dma_fence_put(fence); if (r) return r; } return 0; } static int amdgpu_syncobj_lookup_and_add(struct amdgpu_cs_parser *p, uint32_t handle, u64 point, u64 flags) { struct dma_fence *fence; int r; r = drm_syncobj_find_fence(p->filp, handle, point, flags, &fence); if (r) { DRM_ERROR("syncobj %u failed to find fence @ %llu (%d)!\n", handle, point, r); return r; } r = amdgpu_sync_fence(&p->sync, fence); dma_fence_put(fence); return r; } static int amdgpu_cs_p2_syncobj_in(struct amdgpu_cs_parser *p, struct amdgpu_cs_chunk *chunk) { struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata; unsigned num_deps; int i, r; num_deps = chunk->length_dw * 4 / sizeof(struct drm_amdgpu_cs_chunk_sem); for (i = 0; i < num_deps; ++i) { r = amdgpu_syncobj_lookup_and_add(p, deps[i].handle, 0, 0); if (r) return r; } return 0; } static int amdgpu_cs_p2_syncobj_timeline_wait(struct amdgpu_cs_parser *p, struct amdgpu_cs_chunk *chunk) { struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata; unsigned num_deps; int i, r; num_deps = chunk->length_dw * 4 / sizeof(struct drm_amdgpu_cs_chunk_syncobj); for (i = 0; i < num_deps; ++i) { r = amdgpu_syncobj_lookup_and_add(p, syncobj_deps[i].handle, syncobj_deps[i].point, syncobj_deps[i].flags); if (r) return r; } return 0; } static int amdgpu_cs_p2_syncobj_out(struct amdgpu_cs_parser *p, struct amdgpu_cs_chunk *chunk) { struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata; unsigned num_deps; int i; num_deps = chunk->length_dw * 4 / sizeof(struct drm_amdgpu_cs_chunk_sem); if (p->post_deps) return -EINVAL; p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps), GFP_KERNEL); p->num_post_deps = 0; if (!p->post_deps) return -ENOMEM; for (i = 0; i < num_deps; ++i) { p->post_deps[i].syncobj = drm_syncobj_find(p->filp, deps[i].handle); if (!p->post_deps[i].syncobj) return -EINVAL; p->post_deps[i].chain = NULL; p->post_deps[i].point = 0; p->num_post_deps++; } return 0; } static int amdgpu_cs_p2_syncobj_timeline_signal(struct amdgpu_cs_parser *p, struct amdgpu_cs_chunk *chunk) { struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata; unsigned num_deps; int i; num_deps = chunk->length_dw * 4 / sizeof(struct drm_amdgpu_cs_chunk_syncobj); if (p->post_deps) return -EINVAL; p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps), GFP_KERNEL); p->num_post_deps = 0; if (!p->post_deps) return -ENOMEM; for (i = 0; i < num_deps; ++i) { struct amdgpu_cs_post_dep *dep = &p->post_deps[i]; dep->chain = NULL; if (syncobj_deps[i].point) { dep->chain = dma_fence_chain_alloc(); if (!dep->chain) return -ENOMEM; } dep->syncobj = drm_syncobj_find(p->filp, syncobj_deps[i].handle); if (!dep->syncobj) { dma_fence_chain_free(dep->chain); return -EINVAL; } dep->point = syncobj_deps[i].point; p->num_post_deps++; } return 0; } static int amdgpu_cs_pass2(struct amdgpu_cs_parser *p) { unsigned int ce_preempt = 0, de_preempt = 0; int i, r; for (i = 0; i < p->nchunks; ++i) { struct amdgpu_cs_chunk *chunk; chunk = &p->chunks[i]; switch (chunk->chunk_id) { case AMDGPU_CHUNK_ID_IB: r = amdgpu_cs_p2_ib(p, chunk, &ce_preempt, &de_preempt); if (r) return r; break; case AMDGPU_CHUNK_ID_DEPENDENCIES: case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES: r = amdgpu_cs_p2_dependencies(p, chunk); if (r) return r; break; case AMDGPU_CHUNK_ID_SYNCOBJ_IN: r = amdgpu_cs_p2_syncobj_in(p, chunk); if (r) return r; break; case AMDGPU_CHUNK_ID_SYNCOBJ_OUT: r = amdgpu_cs_p2_syncobj_out(p, chunk); if (r) return r; break; case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT: r = amdgpu_cs_p2_syncobj_timeline_wait(p, chunk); if (r) return r; break; case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL: r = amdgpu_cs_p2_syncobj_timeline_signal(p, chunk); if (r) return r; break; } } return 0; } /* Convert microseconds to bytes. */ static u64 us_to_bytes(struct amdgpu_device *adev, s64 us) { if (us <= 0 || !adev->mm_stats.log2_max_MBps) return 0; /* Since accum_us is incremented by a million per second, just * multiply it by the number of MB/s to get the number of bytes. */ return us << adev->mm_stats.log2_max_MBps; } static s64 bytes_to_us(struct amdgpu_device *adev, u64 bytes) { if (!adev->mm_stats.log2_max_MBps) return 0; return bytes >> adev->mm_stats.log2_max_MBps; } /* Returns how many bytes TTM can move right now. If no bytes can be moved, * it returns 0. If it returns non-zero, it's OK to move at least one buffer, * which means it can go over the threshold once. If that happens, the driver * will be in debt and no other buffer migrations can be done until that debt * is repaid. * * This approach allows moving a buffer of any size (it's important to allow * that). * * The currency is simply time in microseconds and it increases as the clock * ticks. The accumulated microseconds (us) are converted to bytes and * returned. */ static void amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev, u64 *max_bytes, u64 *max_vis_bytes) { s64 time_us, increment_us; u64 free_vram, total_vram, used_vram; /* Allow a maximum of 200 accumulated ms. This is basically per-IB * throttling. * * It means that in order to get full max MBps, at least 5 IBs per * second must be submitted and not more than 200ms apart from each * other. */ const s64 us_upper_bound = 200000; if (!adev->mm_stats.log2_max_MBps) { *max_bytes = 0; *max_vis_bytes = 0; return; } total_vram = adev->gmc.real_vram_size - atomic64_read(&adev->vram_pin_size); used_vram = ttm_resource_manager_usage(&adev->mman.vram_mgr.manager); free_vram = used_vram >= total_vram ? 0 : total_vram - used_vram; spin_lock(&adev->mm_stats.lock); /* Increase the amount of accumulated us. */ time_us = ktime_to_us(ktime_get()); increment_us = time_us - adev->mm_stats.last_update_us; adev->mm_stats.last_update_us = time_us; adev->mm_stats.accum_us = min(adev->mm_stats.accum_us + increment_us, us_upper_bound); /* This prevents the short period of low performance when the VRAM * usage is low and the driver is in debt or doesn't have enough * accumulated us to fill VRAM quickly. * * The situation can occur in these cases: * - a lot of VRAM is freed by userspace * - the presence of a big buffer causes a lot of evictions * (solution: split buffers into smaller ones) * * If 128 MB or 1/8th of VRAM is free, start filling it now by setting * accum_us to a positive number. */ if (free_vram >= 128 * 1024 * 1024 || free_vram >= total_vram / 8) { s64 min_us; /* Be more aggressive on dGPUs. Try to fill a portion of free * VRAM now. */ if (!(adev->flags & AMD_IS_APU)) min_us = bytes_to_us(adev, free_vram / 4); else min_us = 0; /* Reset accum_us on APUs. */ adev->mm_stats.accum_us = max(min_us, adev->mm_stats.accum_us); } /* This is set to 0 if the driver is in debt to disallow (optional) * buffer moves. */ *max_bytes = us_to_bytes(adev, adev->mm_stats.accum_us); /* Do the same for visible VRAM if half of it is free */ if (!amdgpu_gmc_vram_full_visible(&adev->gmc)) { u64 total_vis_vram = adev->gmc.visible_vram_size; u64 used_vis_vram = amdgpu_vram_mgr_vis_usage(&adev->mman.vram_mgr); if (used_vis_vram < total_vis_vram) { u64 free_vis_vram = total_vis_vram - used_vis_vram; adev->mm_stats.accum_us_vis = min(adev->mm_stats.accum_us_vis + increment_us, us_upper_bound); if (free_vis_vram >= total_vis_vram / 2) adev->mm_stats.accum_us_vis = max(bytes_to_us(adev, free_vis_vram / 2), adev->mm_stats.accum_us_vis); } *max_vis_bytes = us_to_bytes(adev, adev->mm_stats.accum_us_vis); } else { *max_vis_bytes = 0; } spin_unlock(&adev->mm_stats.lock); } /* Report how many bytes have really been moved for the last command * submission. This can result in a debt that can stop buffer migrations * temporarily. */ void amdgpu_cs_report_moved_bytes(struct amdgpu_device *adev, u64 num_bytes, u64 num_vis_bytes) { spin_lock(&adev->mm_stats.lock); adev->mm_stats.accum_us -= bytes_to_us(adev, num_bytes); adev->mm_stats.accum_us_vis -= bytes_to_us(adev, num_vis_bytes); spin_unlock(&adev->mm_stats.lock); } static int amdgpu_cs_bo_validate(void *param, struct amdgpu_bo *bo) { struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); struct amdgpu_cs_parser *p = param; struct ttm_operation_ctx ctx = { .interruptible = true, .no_wait_gpu = false, .resv = bo->tbo.base.resv }; uint32_t domain; int r; if (bo->tbo.pin_count) return 0; /* Don't move this buffer if we have depleted our allowance * to move it. Don't move anything if the threshold is zero. */ if (p->bytes_moved < p->bytes_moved_threshold && (!bo->tbo.base.dma_buf || list_empty(&bo->tbo.base.dma_buf->attachments))) { if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && (bo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED)) { /* And don't move a CPU_ACCESS_REQUIRED BO to limited * visible VRAM if we've depleted our allowance to do * that. */ if (p->bytes_moved_vis < p->bytes_moved_vis_threshold) domain = bo->preferred_domains; else domain = bo->allowed_domains; } else { domain = bo->preferred_domains; } } else { domain = bo->allowed_domains; } retry: amdgpu_bo_placement_from_domain(bo, domain); r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); p->bytes_moved += ctx.bytes_moved; if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && amdgpu_bo_in_cpu_visible_vram(bo)) p->bytes_moved_vis += ctx.bytes_moved; if (unlikely(r == -ENOMEM) && domain != bo->allowed_domains) { domain = bo->allowed_domains; goto retry; } return r; } static int amdgpu_cs_list_validate(struct amdgpu_cs_parser *p, struct list_head *validated) { struct ttm_operation_ctx ctx = { true, false }; struct amdgpu_bo_list_entry *lobj; int r; list_for_each_entry(lobj, validated, tv.head) { struct amdgpu_bo *bo = ttm_to_amdgpu_bo(lobj->tv.bo); struct mm_struct *usermm; usermm = amdgpu_ttm_tt_get_usermm(bo->tbo.ttm); if (usermm && usermm != current->mm) return -EPERM; if (amdgpu_ttm_tt_is_userptr(bo->tbo.ttm) && lobj->user_invalidated && lobj->user_pages) { amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); if (r) return r; amdgpu_ttm_tt_set_user_pages(bo->tbo.ttm, lobj->user_pages); } r = amdgpu_cs_bo_validate(p, bo); if (r) return r; kvfree(lobj->user_pages); lobj->user_pages = NULL; } return 0; } static int amdgpu_cs_parser_bos(struct amdgpu_cs_parser *p, union drm_amdgpu_cs *cs) { struct amdgpu_fpriv *fpriv = p->filp->driver_priv; struct amdgpu_vm *vm = &fpriv->vm; struct amdgpu_bo_list_entry *e; struct list_head duplicates; unsigned int i; int r; INIT_LIST_HEAD(&p->validated); /* p->bo_list could already be assigned if AMDGPU_CHUNK_ID_BO_HANDLES is present */ if (cs->in.bo_list_handle) { if (p->bo_list) return -EINVAL; r = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle, &p->bo_list); if (r) return r; } else if (!p->bo_list) { /* Create a empty bo_list when no handle is provided */ r = amdgpu_bo_list_create(p->adev, p->filp, NULL, 0, &p->bo_list); if (r) return r; } mutex_lock(&p->bo_list->bo_list_mutex); /* One for TTM and one for the CS job */ amdgpu_bo_list_for_each_entry(e, p->bo_list) e->tv.num_shared = 2; amdgpu_bo_list_get_list(p->bo_list, &p->validated); INIT_LIST_HEAD(&duplicates); amdgpu_vm_get_pd_bo(&fpriv->vm, &p->validated, &p->vm_pd); if (p->uf_entry.tv.bo && !ttm_to_amdgpu_bo(p->uf_entry.tv.bo)->parent) list_add(&p->uf_entry.tv.head, &p->validated); /* Get userptr backing pages. If pages are updated after registered * in amdgpu_gem_userptr_ioctl(), amdgpu_cs_list_validate() will do * amdgpu_ttm_backend_bind() to flush and invalidate new pages */ amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); bool userpage_invalidated = false; int i; e->user_pages = kvmalloc_array(bo->tbo.ttm->num_pages, sizeof(struct page *), GFP_KERNEL | __GFP_ZERO); if (!e->user_pages) { DRM_ERROR("kvmalloc_array failure\n"); r = -ENOMEM; goto out_free_user_pages; } r = amdgpu_ttm_tt_get_user_pages(bo, e->user_pages, &e->range); if (r) { kvfree(e->user_pages); e->user_pages = NULL; goto out_free_user_pages; } for (i = 0; i < bo->tbo.ttm->num_pages; i++) { if (bo->tbo.ttm->pages[i] != e->user_pages[i]) { userpage_invalidated = true; break; } } e->user_invalidated = userpage_invalidated; } r = ttm_eu_reserve_buffers(&p->ticket, &p->validated, true, &duplicates); if (unlikely(r != 0)) { if (r != -ERESTARTSYS) DRM_ERROR("ttm_eu_reserve_buffers failed.\n"); goto out_free_user_pages; } amdgpu_bo_list_for_each_entry(e, p->bo_list) { struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); e->bo_va = amdgpu_vm_bo_find(vm, bo); } amdgpu_cs_get_threshold_for_moves(p->adev, &p->bytes_moved_threshold, &p->bytes_moved_vis_threshold); p->bytes_moved = 0; p->bytes_moved_vis = 0; r = amdgpu_vm_validate_pt_bos(p->adev, &fpriv->vm, amdgpu_cs_bo_validate, p); if (r) { DRM_ERROR("amdgpu_vm_validate_pt_bos() failed.\n"); goto error_validate; } r = amdgpu_cs_list_validate(p, &duplicates); if (r) goto error_validate; r = amdgpu_cs_list_validate(p, &p->validated); if (r) goto error_validate; if (p->uf_entry.tv.bo) { struct amdgpu_bo *uf = ttm_to_amdgpu_bo(p->uf_entry.tv.bo); r = amdgpu_ttm_alloc_gart(&uf->tbo); if (r) goto error_validate; p->gang_leader->uf_addr += amdgpu_bo_gpu_offset(uf); } amdgpu_cs_report_moved_bytes(p->adev, p->bytes_moved, p->bytes_moved_vis); for (i = 0; i < p->gang_size; ++i) amdgpu_job_set_resources(p->jobs[i], p->bo_list->gds_obj, p->bo_list->gws_obj, p->bo_list->oa_obj); return 0; error_validate: ttm_eu_backoff_reservation(&p->ticket, &p->validated); out_free_user_pages: amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); if (!e->user_pages) continue; amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, e->range); kvfree(e->user_pages); e->user_pages = NULL; e->range = NULL; } mutex_unlock(&p->bo_list->bo_list_mutex); return r; } static void trace_amdgpu_cs_ibs(struct amdgpu_cs_parser *p) { int i, j; if (!trace_amdgpu_cs_enabled()) return; for (i = 0; i < p->gang_size; ++i) { struct amdgpu_job *job = p->jobs[i]; for (j = 0; j < job->num_ibs; ++j) trace_amdgpu_cs(p, job, &job->ibs[j]); } } static int amdgpu_cs_patch_ibs(struct amdgpu_cs_parser *p, struct amdgpu_job *job) { struct amdgpu_ring *ring = amdgpu_job_ring(job); unsigned int i; int r; /* Only for UVD/VCE VM emulation */ if (!ring->funcs->parse_cs && !ring->funcs->patch_cs_in_place) return 0; for (i = 0; i < job->num_ibs; ++i) { struct amdgpu_ib *ib = &job->ibs[i]; struct amdgpu_bo_va_mapping *m; struct amdgpu_bo *aobj; uint64_t va_start; uint8_t *kptr; va_start = ib->gpu_addr & AMDGPU_GMC_HOLE_MASK; r = amdgpu_cs_find_mapping(p, va_start, &aobj, &m); if (r) { DRM_ERROR("IB va_start is invalid\n"); return r; } if ((va_start + ib->length_dw * 4) > (m->last + 1) * AMDGPU_GPU_PAGE_SIZE) { DRM_ERROR("IB va_start+ib_bytes is invalid\n"); return -EINVAL; } /* the IB should be reserved at this point */ r = amdgpu_bo_kmap(aobj, (void **)&kptr); if (r) { return r; } kptr += va_start - (m->start * AMDGPU_GPU_PAGE_SIZE); if (ring->funcs->parse_cs) { memcpy(ib->ptr, kptr, ib->length_dw * 4); amdgpu_bo_kunmap(aobj); r = amdgpu_ring_parse_cs(ring, p, job, ib); if (r) return r; } else { ib->ptr = (uint32_t *)kptr; r = amdgpu_ring_patch_cs_in_place(ring, p, job, ib); amdgpu_bo_kunmap(aobj); if (r) return r; } } return 0; } static int amdgpu_cs_patch_jobs(struct amdgpu_cs_parser *p) { unsigned int i; int r; for (i = 0; i < p->gang_size; ++i) { r = amdgpu_cs_patch_ibs(p, p->jobs[i]); if (r) return r; } return 0; } static int amdgpu_cs_vm_handling(struct amdgpu_cs_parser *p) { struct amdgpu_fpriv *fpriv = p->filp->driver_priv; struct amdgpu_job *job = p->gang_leader; struct amdgpu_device *adev = p->adev; struct amdgpu_vm *vm = &fpriv->vm; struct amdgpu_bo_list_entry *e; struct amdgpu_bo_va *bo_va; struct amdgpu_bo *bo; unsigned int i; int r; r = amdgpu_vm_clear_freed(adev, vm, NULL); if (r) return r; r = amdgpu_vm_bo_update(adev, fpriv->prt_va, false); if (r) return r; r = amdgpu_sync_fence(&p->sync, fpriv->prt_va->last_pt_update); if (r) return r; if (fpriv->csa_va) { bo_va = fpriv->csa_va; BUG_ON(!bo_va); r = amdgpu_vm_bo_update(adev, bo_va, false); if (r) return r; r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update); if (r) return r; } amdgpu_bo_list_for_each_entry(e, p->bo_list) { /* ignore duplicates */ bo = ttm_to_amdgpu_bo(e->tv.bo); if (!bo) continue; bo_va = e->bo_va; if (bo_va == NULL) continue; r = amdgpu_vm_bo_update(adev, bo_va, false); if (r) return r; r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update); if (r) return r; } r = amdgpu_vm_handle_moved(adev, vm); if (r) return r; r = amdgpu_vm_update_pdes(adev, vm, false); if (r) return r; r = amdgpu_sync_fence(&p->sync, vm->last_update); if (r) return r; for (i = 0; i < p->gang_size; ++i) { job = p->jobs[i]; if (!job->vm) continue; job->vm_pd_addr = amdgpu_gmc_pd_addr(vm->root.bo); } if (amdgpu_vm_debug) { /* Invalidate all BOs to test for userspace bugs */ amdgpu_bo_list_for_each_entry(e, p->bo_list) { struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); /* ignore duplicates */ if (!bo) continue; amdgpu_vm_bo_invalidate(adev, bo, false); } } return 0; } static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p) { struct amdgpu_fpriv *fpriv = p->filp->driver_priv; struct drm_gpu_scheduler *sched; struct amdgpu_bo_list_entry *e; struct dma_fence *fence; unsigned int i; int r; r = amdgpu_ctx_wait_prev_fence(p->ctx, p->entities[p->gang_leader_idx]); if (r) { if (r != -ERESTARTSYS) DRM_ERROR("amdgpu_ctx_wait_prev_fence failed.\n"); return r; } list_for_each_entry(e, &p->validated, tv.head) { struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); struct dma_resv *resv = bo->tbo.base.resv; enum amdgpu_sync_mode sync_mode; sync_mode = amdgpu_bo_explicit_sync(bo) ? AMDGPU_SYNC_EXPLICIT : AMDGPU_SYNC_NE_OWNER; r = amdgpu_sync_resv(p->adev, &p->sync, resv, sync_mode, &fpriv->vm); if (r) return r; } for (i = 0; i < p->gang_size; ++i) { r = amdgpu_sync_push_to_job(&p->sync, p->jobs[i]); if (r) return r; } sched = p->gang_leader->base.entity->rq->sched; while ((fence = amdgpu_sync_get_fence(&p->sync))) { struct drm_sched_fence *s_fence = to_drm_sched_fence(fence); /* * When we have an dependency it might be necessary to insert a * pipeline sync to make sure that all caches etc are flushed and the * next job actually sees the results from the previous one * before we start executing on the same scheduler ring. */ if (!s_fence || s_fence->sched != sched) { dma_fence_put(fence); continue; } r = amdgpu_sync_fence(&p->gang_leader->explicit_sync, fence); dma_fence_put(fence); if (r) return r; } return 0; } static void amdgpu_cs_post_dependencies(struct amdgpu_cs_parser *p) { int i; for (i = 0; i < p->num_post_deps; ++i) { if (p->post_deps[i].chain && p->post_deps[i].point) { drm_syncobj_add_point(p->post_deps[i].syncobj, p->post_deps[i].chain, p->fence, p->post_deps[i].point); p->post_deps[i].chain = NULL; } else { drm_syncobj_replace_fence(p->post_deps[i].syncobj, p->fence); } } } static int amdgpu_cs_submit(struct amdgpu_cs_parser *p, union drm_amdgpu_cs *cs) { struct amdgpu_fpriv *fpriv = p->filp->driver_priv; struct amdgpu_job *leader = p->gang_leader; struct amdgpu_bo_list_entry *e; unsigned int i; uint64_t seq; int r; for (i = 0; i < p->gang_size; ++i) drm_sched_job_arm(&p->jobs[i]->base); for (i = 0; i < p->gang_size; ++i) { struct dma_fence *fence; if (p->jobs[i] == leader) continue; fence = &p->jobs[i]->base.s_fence->scheduled; dma_fence_get(fence); r = drm_sched_job_add_dependency(&leader->base, fence); if (r) { dma_fence_put(fence); goto error_cleanup; } } if (p->gang_size > 1) { for (i = 0; i < p->gang_size; ++i) amdgpu_job_set_gang_leader(p->jobs[i], leader); } /* No memory allocation is allowed while holding the notifier lock. * The lock is held until amdgpu_cs_submit is finished and fence is * added to BOs. */ mutex_lock(&p->adev->notifier_lock); /* If userptr are invalidated after amdgpu_cs_parser_bos(), return * -EAGAIN, drmIoctl in libdrm will restart the amdgpu_cs_ioctl. */ r = 0; amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); r |= !amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, e->range); e->range = NULL; } if (r) { r = -EAGAIN; goto error_unlock; } p->fence = dma_fence_get(&leader->base.s_fence->finished); list_for_each_entry(e, &p->validated, tv.head) { /* Everybody except for the gang leader uses READ */ for (i = 0; i < p->gang_size; ++i) { if (p->jobs[i] == leader) continue; dma_resv_add_fence(e->tv.bo->base.resv, &p->jobs[i]->base.s_fence->finished, DMA_RESV_USAGE_READ); } /* The gang leader is remembered as writer */ e->tv.num_shared = 0; } seq = amdgpu_ctx_add_fence(p->ctx, p->entities[p->gang_leader_idx], p->fence); amdgpu_cs_post_dependencies(p); if ((leader->preamble_status & AMDGPU_PREAMBLE_IB_PRESENT) && !p->ctx->preamble_presented) { leader->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT_FIRST; p->ctx->preamble_presented = true; } cs->out.handle = seq; leader->uf_sequence = seq; amdgpu_vm_bo_trace_cs(&fpriv->vm, &p->ticket); for (i = 0; i < p->gang_size; ++i) { amdgpu_job_free_resources(p->jobs[i]); trace_amdgpu_cs_ioctl(p->jobs[i]); drm_sched_entity_push_job(&p->jobs[i]->base); p->jobs[i] = NULL; } amdgpu_vm_move_to_lru_tail(p->adev, &fpriv->vm); ttm_eu_fence_buffer_objects(&p->ticket, &p->validated, p->fence); mutex_unlock(&p->adev->notifier_lock); mutex_unlock(&p->bo_list->bo_list_mutex); return 0; error_unlock: mutex_unlock(&p->adev->notifier_lock); error_cleanup: for (i = 0; i < p->gang_size; ++i) drm_sched_job_cleanup(&p->jobs[i]->base); return r; } /* Cleanup the parser structure */ static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser) { unsigned i; amdgpu_sync_free(&parser->sync); for (i = 0; i < parser->num_post_deps; i++) { drm_syncobj_put(parser->post_deps[i].syncobj); kfree(parser->post_deps[i].chain); } kfree(parser->post_deps); dma_fence_put(parser->fence); if (parser->ctx) amdgpu_ctx_put(parser->ctx); if (parser->bo_list) amdgpu_bo_list_put(parser->bo_list); for (i = 0; i < parser->nchunks; i++) kvfree(parser->chunks[i].kdata); kvfree(parser->chunks); for (i = 0; i < parser->gang_size; ++i) { if (parser->jobs[i]) amdgpu_job_free(parser->jobs[i]); } if (parser->uf_entry.tv.bo) { struct amdgpu_bo *uf = ttm_to_amdgpu_bo(parser->uf_entry.tv.bo); amdgpu_bo_unref(&uf); } } int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) { struct amdgpu_device *adev = drm_to_adev(dev); struct amdgpu_cs_parser parser; int r; if (amdgpu_ras_intr_triggered()) return -EHWPOISON; if (!adev->accel_working) return -EBUSY; r = amdgpu_cs_parser_init(&parser, adev, filp, data); if (r) { if (printk_ratelimit()) DRM_ERROR("Failed to initialize parser %d!\n", r); return r; } r = amdgpu_cs_pass1(&parser, data); if (r) goto error_fini; r = amdgpu_cs_pass2(&parser); if (r) goto error_fini; r = amdgpu_cs_parser_bos(&parser, data); if (r) { if (r == -ENOMEM) DRM_ERROR("Not enough memory for command submission!\n"); else if (r != -ERESTARTSYS && r != -EAGAIN) DRM_ERROR("Failed to process the buffer list %d!\n", r); goto error_fini; } r = amdgpu_cs_patch_jobs(&parser); if (r) goto error_backoff; r = amdgpu_cs_vm_handling(&parser); if (r) goto error_backoff; r = amdgpu_cs_sync_rings(&parser); if (r) goto error_backoff; trace_amdgpu_cs_ibs(&parser); r = amdgpu_cs_submit(&parser, data); if (r) goto error_backoff; amdgpu_cs_parser_fini(&parser); return 0; error_backoff: ttm_eu_backoff_reservation(&parser.ticket, &parser.validated); mutex_unlock(&parser.bo_list->bo_list_mutex); error_fini: amdgpu_cs_parser_fini(&parser); return r; } /** * amdgpu_cs_wait_ioctl - wait for a command submission to finish * * @dev: drm device * @data: data from userspace * @filp: file private * * Wait for the command submission identified by handle to finish. */ int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) { union drm_amdgpu_wait_cs *wait = data; unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout); struct drm_sched_entity *entity; struct amdgpu_ctx *ctx; struct dma_fence *fence; long r; ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id); if (ctx == NULL) return -EINVAL; r = amdgpu_ctx_get_entity(ctx, wait->in.ip_type, wait->in.ip_instance, wait->in.ring, &entity); if (r) { amdgpu_ctx_put(ctx); return r; } fence = amdgpu_ctx_get_fence(ctx, entity, wait->in.handle); if (IS_ERR(fence)) r = PTR_ERR(fence); else if (fence) { r = dma_fence_wait_timeout(fence, true, timeout); if (r > 0 && fence->error) r = fence->error; dma_fence_put(fence); } else r = 1; amdgpu_ctx_put(ctx); if (r < 0) return r; memset(wait, 0, sizeof(*wait)); wait->out.status = (r == 0); return 0; } /** * amdgpu_cs_get_fence - helper to get fence from drm_amdgpu_fence * * @adev: amdgpu device * @filp: file private * @user: drm_amdgpu_fence copied from user space */ static struct dma_fence *amdgpu_cs_get_fence(struct amdgpu_device *adev, struct drm_file *filp, struct drm_amdgpu_fence *user) { struct drm_sched_entity *entity; struct amdgpu_ctx *ctx; struct dma_fence *fence; int r; ctx = amdgpu_ctx_get(filp->driver_priv, user->ctx_id); if (ctx == NULL) return ERR_PTR(-EINVAL); r = amdgpu_ctx_get_entity(ctx, user->ip_type, user->ip_instance, user->ring, &entity); if (r) { amdgpu_ctx_put(ctx); return ERR_PTR(r); } fence = amdgpu_ctx_get_fence(ctx, entity, user->seq_no); amdgpu_ctx_put(ctx); return fence; } int amdgpu_cs_fence_to_handle_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) { struct amdgpu_device *adev = drm_to_adev(dev); union drm_amdgpu_fence_to_handle *info = data; struct dma_fence *fence; struct drm_syncobj *syncobj; struct sync_file *sync_file; int fd, r; fence = amdgpu_cs_get_fence(adev, filp, &info->in.fence); if (IS_ERR(fence)) return PTR_ERR(fence); if (!fence) fence = dma_fence_get_stub(); switch (info->in.what) { case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ: r = drm_syncobj_create(&syncobj, 0, fence); dma_fence_put(fence); if (r) return r; r = drm_syncobj_get_handle(filp, syncobj, &info->out.handle); drm_syncobj_put(syncobj); return r; case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ_FD: r = drm_syncobj_create(&syncobj, 0, fence); dma_fence_put(fence); if (r) return r; r = drm_syncobj_get_fd(syncobj, (int *)&info->out.handle); drm_syncobj_put(syncobj); return r; case AMDGPU_FENCE_TO_HANDLE_GET_SYNC_FILE_FD: fd = get_unused_fd_flags(O_CLOEXEC); if (fd < 0) { dma_fence_put(fence); return fd; } sync_file = sync_file_create(fence); dma_fence_put(fence); if (!sync_file) { put_unused_fd(fd); return -ENOMEM; } fd_install(fd, sync_file->file); info->out.handle = fd; return 0; default: dma_fence_put(fence); return -EINVAL; } } /** * amdgpu_cs_wait_all_fences - wait on all fences to signal * * @adev: amdgpu device * @filp: file private * @wait: wait parameters * @fences: array of drm_amdgpu_fence */ static int amdgpu_cs_wait_all_fences(struct amdgpu_device *adev, struct drm_file *filp, union drm_amdgpu_wait_fences *wait, struct drm_amdgpu_fence *fences) { uint32_t fence_count = wait->in.fence_count; unsigned int i; long r = 1; for (i = 0; i < fence_count; i++) { struct dma_fence *fence; unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns); fence = amdgpu_cs_get_fence(adev, filp, &fences[i]); if (IS_ERR(fence)) return PTR_ERR(fence); else if (!fence) continue; r = dma_fence_wait_timeout(fence, true, timeout); dma_fence_put(fence); if (r < 0) return r; if (r == 0) break; if (fence->error) return fence->error; } memset(wait, 0, sizeof(*wait)); wait->out.status = (r > 0); return 0; } /** * amdgpu_cs_wait_any_fence - wait on any fence to signal * * @adev: amdgpu device * @filp: file private * @wait: wait parameters * @fences: array of drm_amdgpu_fence */ static int amdgpu_cs_wait_any_fence(struct amdgpu_device *adev, struct drm_file *filp, union drm_amdgpu_wait_fences *wait, struct drm_amdgpu_fence *fences) { unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns); uint32_t fence_count = wait->in.fence_count; uint32_t first = ~0; struct dma_fence **array; unsigned int i; long r; /* Prepare the fence array */ array = kcalloc(fence_count, sizeof(struct dma_fence *), GFP_KERNEL); if (array == NULL) return -ENOMEM; for (i = 0; i < fence_count; i++) { struct dma_fence *fence; fence = amdgpu_cs_get_fence(adev, filp, &fences[i]); if (IS_ERR(fence)) { r = PTR_ERR(fence); goto err_free_fence_array; } else if (fence) { array[i] = fence; } else { /* NULL, the fence has been already signaled */ r = 1; first = i; goto out; } } r = dma_fence_wait_any_timeout(array, fence_count, true, timeout, &first); if (r < 0) goto err_free_fence_array; out: memset(wait, 0, sizeof(*wait)); wait->out.status = (r > 0); wait->out.first_signaled = first; if (first < fence_count && array[first]) r = array[first]->error; else r = 0; err_free_fence_array: for (i = 0; i < fence_count; i++) dma_fence_put(array[i]); kfree(array); return r; } /** * amdgpu_cs_wait_fences_ioctl - wait for multiple command submissions to finish * * @dev: drm device * @data: data from userspace * @filp: file private */ int amdgpu_cs_wait_fences_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) { struct amdgpu_device *adev = drm_to_adev(dev); union drm_amdgpu_wait_fences *wait = data; uint32_t fence_count = wait->in.fence_count; struct drm_amdgpu_fence *fences_user; struct drm_amdgpu_fence *fences; int r; /* Get the fences from userspace */ fences = kmalloc_array(fence_count, sizeof(struct drm_amdgpu_fence), GFP_KERNEL); if (fences == NULL) return -ENOMEM; fences_user = u64_to_user_ptr(wait->in.fences); if (copy_from_user(fences, fences_user, sizeof(struct drm_amdgpu_fence) * fence_count)) { r = -EFAULT; goto err_free_fences; } if (wait->in.wait_all) r = amdgpu_cs_wait_all_fences(adev, filp, wait, fences); else r = amdgpu_cs_wait_any_fence(adev, filp, wait, fences); err_free_fences: kfree(fences); return r; } /** * amdgpu_cs_find_mapping - find bo_va for VM address * * @parser: command submission parser context * @addr: VM address * @bo: resulting BO of the mapping found * @map: Placeholder to return found BO mapping * * Search the buffer objects in the command submission context for a certain * virtual memory address. Returns allocation structure when found, NULL * otherwise. */ int amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser, uint64_t addr, struct amdgpu_bo **bo, struct amdgpu_bo_va_mapping **map) { struct amdgpu_fpriv *fpriv = parser->filp->driver_priv; struct ttm_operation_ctx ctx = { false, false }; struct amdgpu_vm *vm = &fpriv->vm; struct amdgpu_bo_va_mapping *mapping; int r; addr /= AMDGPU_GPU_PAGE_SIZE; mapping = amdgpu_vm_bo_lookup_mapping(vm, addr); if (!mapping || !mapping->bo_va || !mapping->bo_va->base.bo) return -EINVAL; *bo = mapping->bo_va->base.bo; *map = mapping; /* Double check that the BO is reserved by this CS */ if (dma_resv_locking_ctx((*bo)->tbo.base.resv) != &parser->ticket) return -EINVAL; if (!((*bo)->flags & AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS)) { (*bo)->flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; amdgpu_bo_placement_from_domain(*bo, (*bo)->allowed_domains); r = ttm_bo_validate(&(*bo)->tbo, &(*bo)->placement, &ctx); if (r) return r; } return amdgpu_ttm_alloc_gart(&(*bo)->tbo); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1