Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alex Deucher | 4663 | 98.52% | 5 | 62.50% |
Ken Wang | 35 | 0.74% | 1 | 12.50% |
Luben Tuikov | 33 | 0.70% | 1 | 12.50% |
Shashank Sharma | 2 | 0.04% | 1 | 12.50% |
Total | 4733 | 8 |
/* * Copyright 2007-8 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Dave Airlie * Alex Deucher */ #include <drm/drm_crtc_helper.h> #include <drm/amdgpu_drm.h> #include <drm/drm_fixed.h> #include "amdgpu.h" #include "atom.h" #include "atom-bits.h" #include "atombios_encoders.h" #include "atombios_crtc.h" #include "amdgpu_atombios.h" #include "amdgpu_pll.h" #include "amdgpu_connectors.h" void amdgpu_atombios_crtc_overscan_setup(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct drm_device *dev = crtc->dev; struct amdgpu_device *adev = drm_to_adev(dev); struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); SET_CRTC_OVERSCAN_PS_ALLOCATION args; int index = GetIndexIntoMasterTable(COMMAND, SetCRTC_OverScan); int a1, a2; memset(&args, 0, sizeof(args)); args.ucCRTC = amdgpu_crtc->crtc_id; switch (amdgpu_crtc->rmx_type) { case RMX_CENTER: args.usOverscanTop = cpu_to_le16((adjusted_mode->crtc_vdisplay - mode->crtc_vdisplay) / 2); args.usOverscanBottom = cpu_to_le16((adjusted_mode->crtc_vdisplay - mode->crtc_vdisplay) / 2); args.usOverscanLeft = cpu_to_le16((adjusted_mode->crtc_hdisplay - mode->crtc_hdisplay) / 2); args.usOverscanRight = cpu_to_le16((adjusted_mode->crtc_hdisplay - mode->crtc_hdisplay) / 2); break; case RMX_ASPECT: a1 = mode->crtc_vdisplay * adjusted_mode->crtc_hdisplay; a2 = adjusted_mode->crtc_vdisplay * mode->crtc_hdisplay; if (a1 > a2) { args.usOverscanLeft = cpu_to_le16((adjusted_mode->crtc_hdisplay - (a2 / mode->crtc_vdisplay)) / 2); args.usOverscanRight = cpu_to_le16((adjusted_mode->crtc_hdisplay - (a2 / mode->crtc_vdisplay)) / 2); } else if (a2 > a1) { args.usOverscanTop = cpu_to_le16((adjusted_mode->crtc_vdisplay - (a1 / mode->crtc_hdisplay)) / 2); args.usOverscanBottom = cpu_to_le16((adjusted_mode->crtc_vdisplay - (a1 / mode->crtc_hdisplay)) / 2); } break; case RMX_FULL: default: args.usOverscanRight = cpu_to_le16(amdgpu_crtc->h_border); args.usOverscanLeft = cpu_to_le16(amdgpu_crtc->h_border); args.usOverscanBottom = cpu_to_le16(amdgpu_crtc->v_border); args.usOverscanTop = cpu_to_le16(amdgpu_crtc->v_border); break; } amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args); } void amdgpu_atombios_crtc_scaler_setup(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct amdgpu_device *adev = drm_to_adev(dev); struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); ENABLE_SCALER_PS_ALLOCATION args; int index = GetIndexIntoMasterTable(COMMAND, EnableScaler); memset(&args, 0, sizeof(args)); args.ucScaler = amdgpu_crtc->crtc_id; switch (amdgpu_crtc->rmx_type) { case RMX_FULL: args.ucEnable = ATOM_SCALER_EXPANSION; break; case RMX_CENTER: args.ucEnable = ATOM_SCALER_CENTER; break; case RMX_ASPECT: args.ucEnable = ATOM_SCALER_EXPANSION; break; default: args.ucEnable = ATOM_SCALER_DISABLE; break; } amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args); } void amdgpu_atombios_crtc_lock(struct drm_crtc *crtc, int lock) { struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); struct drm_device *dev = crtc->dev; struct amdgpu_device *adev = drm_to_adev(dev); int index = GetIndexIntoMasterTable(COMMAND, UpdateCRTC_DoubleBufferRegisters); ENABLE_CRTC_PS_ALLOCATION args; memset(&args, 0, sizeof(args)); args.ucCRTC = amdgpu_crtc->crtc_id; args.ucEnable = lock; amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args); } void amdgpu_atombios_crtc_enable(struct drm_crtc *crtc, int state) { struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); struct drm_device *dev = crtc->dev; struct amdgpu_device *adev = drm_to_adev(dev); int index = GetIndexIntoMasterTable(COMMAND, EnableCRTC); ENABLE_CRTC_PS_ALLOCATION args; memset(&args, 0, sizeof(args)); args.ucCRTC = amdgpu_crtc->crtc_id; args.ucEnable = state; amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args); } void amdgpu_atombios_crtc_blank(struct drm_crtc *crtc, int state) { struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); struct drm_device *dev = crtc->dev; struct amdgpu_device *adev = drm_to_adev(dev); int index = GetIndexIntoMasterTable(COMMAND, BlankCRTC); BLANK_CRTC_PS_ALLOCATION args; memset(&args, 0, sizeof(args)); args.ucCRTC = amdgpu_crtc->crtc_id; args.ucBlanking = state; amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args); } void amdgpu_atombios_crtc_powergate(struct drm_crtc *crtc, int state) { struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); struct drm_device *dev = crtc->dev; struct amdgpu_device *adev = drm_to_adev(dev); int index = GetIndexIntoMasterTable(COMMAND, EnableDispPowerGating); ENABLE_DISP_POWER_GATING_PS_ALLOCATION args; memset(&args, 0, sizeof(args)); args.ucDispPipeId = amdgpu_crtc->crtc_id; args.ucEnable = state; amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args); } void amdgpu_atombios_crtc_powergate_init(struct amdgpu_device *adev) { int index = GetIndexIntoMasterTable(COMMAND, EnableDispPowerGating); ENABLE_DISP_POWER_GATING_PS_ALLOCATION args; memset(&args, 0, sizeof(args)); args.ucEnable = ATOM_INIT; amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args); } void amdgpu_atombios_crtc_set_dtd_timing(struct drm_crtc *crtc, struct drm_display_mode *mode) { struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); struct drm_device *dev = crtc->dev; struct amdgpu_device *adev = drm_to_adev(dev); SET_CRTC_USING_DTD_TIMING_PARAMETERS args; int index = GetIndexIntoMasterTable(COMMAND, SetCRTC_UsingDTDTiming); u16 misc = 0; memset(&args, 0, sizeof(args)); args.usH_Size = cpu_to_le16(mode->crtc_hdisplay - (amdgpu_crtc->h_border * 2)); args.usH_Blanking_Time = cpu_to_le16(mode->crtc_hblank_end - mode->crtc_hdisplay + (amdgpu_crtc->h_border * 2)); args.usV_Size = cpu_to_le16(mode->crtc_vdisplay - (amdgpu_crtc->v_border * 2)); args.usV_Blanking_Time = cpu_to_le16(mode->crtc_vblank_end - mode->crtc_vdisplay + (amdgpu_crtc->v_border * 2)); args.usH_SyncOffset = cpu_to_le16(mode->crtc_hsync_start - mode->crtc_hdisplay + amdgpu_crtc->h_border); args.usH_SyncWidth = cpu_to_le16(mode->crtc_hsync_end - mode->crtc_hsync_start); args.usV_SyncOffset = cpu_to_le16(mode->crtc_vsync_start - mode->crtc_vdisplay + amdgpu_crtc->v_border); args.usV_SyncWidth = cpu_to_le16(mode->crtc_vsync_end - mode->crtc_vsync_start); args.ucH_Border = amdgpu_crtc->h_border; args.ucV_Border = amdgpu_crtc->v_border; if (mode->flags & DRM_MODE_FLAG_NVSYNC) misc |= ATOM_VSYNC_POLARITY; if (mode->flags & DRM_MODE_FLAG_NHSYNC) misc |= ATOM_HSYNC_POLARITY; if (mode->flags & DRM_MODE_FLAG_CSYNC) misc |= ATOM_COMPOSITESYNC; if (mode->flags & DRM_MODE_FLAG_INTERLACE) misc |= ATOM_INTERLACE; if (mode->flags & DRM_MODE_FLAG_DBLSCAN) misc |= ATOM_DOUBLE_CLOCK_MODE; args.susModeMiscInfo.usAccess = cpu_to_le16(misc); args.ucCRTC = amdgpu_crtc->crtc_id; amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args); } union atom_enable_ss { ENABLE_SPREAD_SPECTRUM_ON_PPLL_PS_ALLOCATION v1; ENABLE_SPREAD_SPECTRUM_ON_PPLL_V2 v2; ENABLE_SPREAD_SPECTRUM_ON_PPLL_V3 v3; }; static void amdgpu_atombios_crtc_program_ss(struct amdgpu_device *adev, int enable, int pll_id, int crtc_id, struct amdgpu_atom_ss *ss) { unsigned i; int index = GetIndexIntoMasterTable(COMMAND, EnableSpreadSpectrumOnPPLL); union atom_enable_ss args; if (enable) { /* Don't mess with SS if percentage is 0 or external ss. * SS is already disabled previously, and disabling it * again can cause display problems if the pll is already * programmed. */ if (ss->percentage == 0) return; if (ss->type & ATOM_EXTERNAL_SS_MASK) return; } else { for (i = 0; i < adev->mode_info.num_crtc; i++) { if (adev->mode_info.crtcs[i] && adev->mode_info.crtcs[i]->enabled && i != crtc_id && pll_id == adev->mode_info.crtcs[i]->pll_id) { /* one other crtc is using this pll don't turn * off spread spectrum as it might turn off * display on active crtc */ return; } } } memset(&args, 0, sizeof(args)); args.v3.usSpreadSpectrumAmountFrac = cpu_to_le16(0); args.v3.ucSpreadSpectrumType = ss->type & ATOM_SS_CENTRE_SPREAD_MODE_MASK; switch (pll_id) { case ATOM_PPLL1: args.v3.ucSpreadSpectrumType |= ATOM_PPLL_SS_TYPE_V3_P1PLL; break; case ATOM_PPLL2: args.v3.ucSpreadSpectrumType |= ATOM_PPLL_SS_TYPE_V3_P2PLL; break; case ATOM_DCPLL: args.v3.ucSpreadSpectrumType |= ATOM_PPLL_SS_TYPE_V3_DCPLL; break; case ATOM_PPLL_INVALID: return; } args.v3.usSpreadSpectrumAmount = cpu_to_le16(ss->amount); args.v3.usSpreadSpectrumStep = cpu_to_le16(ss->step); args.v3.ucEnable = enable; amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args); } union adjust_pixel_clock { ADJUST_DISPLAY_PLL_PS_ALLOCATION v1; ADJUST_DISPLAY_PLL_PS_ALLOCATION_V3 v3; }; static u32 amdgpu_atombios_crtc_adjust_pll(struct drm_crtc *crtc, struct drm_display_mode *mode) { struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); struct drm_device *dev = crtc->dev; struct amdgpu_device *adev = drm_to_adev(dev); struct drm_encoder *encoder = amdgpu_crtc->encoder; struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); struct drm_connector *connector = amdgpu_get_connector_for_encoder(encoder); u32 adjusted_clock = mode->clock; int encoder_mode = amdgpu_atombios_encoder_get_encoder_mode(encoder); u32 dp_clock = mode->clock; u32 clock = mode->clock; int bpc = amdgpu_crtc->bpc; bool is_duallink = amdgpu_dig_monitor_is_duallink(encoder, mode->clock); union adjust_pixel_clock args; u8 frev, crev; int index; amdgpu_crtc->pll_flags = AMDGPU_PLL_USE_FRAC_FB_DIV; if ((amdgpu_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT | ATOM_DEVICE_DFP_SUPPORT)) || (amdgpu_encoder_get_dp_bridge_encoder_id(encoder) != ENCODER_OBJECT_ID_NONE)) { if (connector) { struct amdgpu_connector *amdgpu_connector = to_amdgpu_connector(connector); struct amdgpu_connector_atom_dig *dig_connector = amdgpu_connector->con_priv; dp_clock = dig_connector->dp_clock; } } /* use recommended ref_div for ss */ if (amdgpu_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT)) { if (amdgpu_crtc->ss_enabled) { if (amdgpu_crtc->ss.refdiv) { amdgpu_crtc->pll_flags |= AMDGPU_PLL_USE_REF_DIV; amdgpu_crtc->pll_reference_div = amdgpu_crtc->ss.refdiv; amdgpu_crtc->pll_flags |= AMDGPU_PLL_USE_FRAC_FB_DIV; } } } /* DVO wants 2x pixel clock if the DVO chip is in 12 bit mode */ if (amdgpu_encoder->encoder_id == ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DVO1) adjusted_clock = mode->clock * 2; if (amdgpu_encoder->active_device & (ATOM_DEVICE_TV_SUPPORT)) amdgpu_crtc->pll_flags |= AMDGPU_PLL_PREFER_CLOSEST_LOWER; if (amdgpu_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT)) amdgpu_crtc->pll_flags |= AMDGPU_PLL_IS_LCD; /* adjust pll for deep color modes */ if (encoder_mode == ATOM_ENCODER_MODE_HDMI) { switch (bpc) { case 8: default: break; case 10: clock = (clock * 5) / 4; break; case 12: clock = (clock * 3) / 2; break; case 16: clock = clock * 2; break; } } /* DCE3+ has an AdjustDisplayPll that will adjust the pixel clock * accordingly based on the encoder/transmitter to work around * special hw requirements. */ index = GetIndexIntoMasterTable(COMMAND, AdjustDisplayPll); if (!amdgpu_atom_parse_cmd_header(adev->mode_info.atom_context, index, &frev, &crev)) return adjusted_clock; memset(&args, 0, sizeof(args)); switch (frev) { case 1: switch (crev) { case 1: case 2: args.v1.usPixelClock = cpu_to_le16(clock / 10); args.v1.ucTransmitterID = amdgpu_encoder->encoder_id; args.v1.ucEncodeMode = encoder_mode; if (amdgpu_crtc->ss_enabled && amdgpu_crtc->ss.percentage) args.v1.ucConfig |= ADJUST_DISPLAY_CONFIG_SS_ENABLE; amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args); adjusted_clock = le16_to_cpu(args.v1.usPixelClock) * 10; break; case 3: args.v3.sInput.usPixelClock = cpu_to_le16(clock / 10); args.v3.sInput.ucTransmitterID = amdgpu_encoder->encoder_id; args.v3.sInput.ucEncodeMode = encoder_mode; args.v3.sInput.ucDispPllConfig = 0; if (amdgpu_crtc->ss_enabled && amdgpu_crtc->ss.percentage) args.v3.sInput.ucDispPllConfig |= DISPPLL_CONFIG_SS_ENABLE; if (ENCODER_MODE_IS_DP(encoder_mode)) { args.v3.sInput.ucDispPllConfig |= DISPPLL_CONFIG_COHERENT_MODE; /* 16200 or 27000 */ args.v3.sInput.usPixelClock = cpu_to_le16(dp_clock / 10); } else if (amdgpu_encoder->devices & (ATOM_DEVICE_DFP_SUPPORT)) { struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; if (dig->coherent_mode) args.v3.sInput.ucDispPllConfig |= DISPPLL_CONFIG_COHERENT_MODE; if (is_duallink) args.v3.sInput.ucDispPllConfig |= DISPPLL_CONFIG_DUAL_LINK; } if (amdgpu_encoder_get_dp_bridge_encoder_id(encoder) != ENCODER_OBJECT_ID_NONE) args.v3.sInput.ucExtTransmitterID = amdgpu_encoder_get_dp_bridge_encoder_id(encoder); else args.v3.sInput.ucExtTransmitterID = 0; amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args); adjusted_clock = le32_to_cpu(args.v3.sOutput.ulDispPllFreq) * 10; if (args.v3.sOutput.ucRefDiv) { amdgpu_crtc->pll_flags |= AMDGPU_PLL_USE_FRAC_FB_DIV; amdgpu_crtc->pll_flags |= AMDGPU_PLL_USE_REF_DIV; amdgpu_crtc->pll_reference_div = args.v3.sOutput.ucRefDiv; } if (args.v3.sOutput.ucPostDiv) { amdgpu_crtc->pll_flags |= AMDGPU_PLL_USE_FRAC_FB_DIV; amdgpu_crtc->pll_flags |= AMDGPU_PLL_USE_POST_DIV; amdgpu_crtc->pll_post_div = args.v3.sOutput.ucPostDiv; } break; default: DRM_ERROR("Unknown table version %d %d\n", frev, crev); return adjusted_clock; } break; default: DRM_ERROR("Unknown table version %d %d\n", frev, crev); return adjusted_clock; } return adjusted_clock; } union set_pixel_clock { SET_PIXEL_CLOCK_PS_ALLOCATION base; PIXEL_CLOCK_PARAMETERS v1; PIXEL_CLOCK_PARAMETERS_V2 v2; PIXEL_CLOCK_PARAMETERS_V3 v3; PIXEL_CLOCK_PARAMETERS_V5 v5; PIXEL_CLOCK_PARAMETERS_V6 v6; PIXEL_CLOCK_PARAMETERS_V7 v7; }; /* on DCE5, make sure the voltage is high enough to support the * required disp clk. */ void amdgpu_atombios_crtc_set_disp_eng_pll(struct amdgpu_device *adev, u32 dispclk) { u8 frev, crev; int index; union set_pixel_clock args; memset(&args, 0, sizeof(args)); index = GetIndexIntoMasterTable(COMMAND, SetPixelClock); if (!amdgpu_atom_parse_cmd_header(adev->mode_info.atom_context, index, &frev, &crev)) return; switch (frev) { case 1: switch (crev) { case 5: /* if the default dcpll clock is specified, * SetPixelClock provides the dividers */ args.v5.ucCRTC = ATOM_CRTC_INVALID; args.v5.usPixelClock = cpu_to_le16(dispclk); args.v5.ucPpll = ATOM_DCPLL; break; case 6: /* if the default dcpll clock is specified, * SetPixelClock provides the dividers */ args.v6.ulDispEngClkFreq = cpu_to_le32(dispclk); if (adev->asic_type == CHIP_TAHITI || adev->asic_type == CHIP_PITCAIRN || adev->asic_type == CHIP_VERDE || adev->asic_type == CHIP_OLAND) args.v6.ucPpll = ATOM_PPLL0; else args.v6.ucPpll = ATOM_EXT_PLL1; break; default: DRM_ERROR("Unknown table version %d %d\n", frev, crev); return; } break; default: DRM_ERROR("Unknown table version %d %d\n", frev, crev); return; } amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args); } union set_dce_clock { SET_DCE_CLOCK_PS_ALLOCATION_V1_1 v1_1; SET_DCE_CLOCK_PS_ALLOCATION_V2_1 v2_1; }; u32 amdgpu_atombios_crtc_set_dce_clock(struct amdgpu_device *adev, u32 freq, u8 clk_type, u8 clk_src) { u8 frev, crev; int index; union set_dce_clock args; u32 ret_freq = 0; memset(&args, 0, sizeof(args)); index = GetIndexIntoMasterTable(COMMAND, SetDCEClock); if (!amdgpu_atom_parse_cmd_header(adev->mode_info.atom_context, index, &frev, &crev)) return 0; switch (frev) { case 2: switch (crev) { case 1: args.v2_1.asParam.ulDCEClkFreq = cpu_to_le32(freq); /* 10kHz units */ args.v2_1.asParam.ucDCEClkType = clk_type; args.v2_1.asParam.ucDCEClkSrc = clk_src; amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args); ret_freq = le32_to_cpu(args.v2_1.asParam.ulDCEClkFreq) * 10; break; default: DRM_ERROR("Unknown table version %d %d\n", frev, crev); return 0; } break; default: DRM_ERROR("Unknown table version %d %d\n", frev, crev); return 0; } return ret_freq; } static bool is_pixel_clock_source_from_pll(u32 encoder_mode, int pll_id) { if (ENCODER_MODE_IS_DP(encoder_mode)) { if (pll_id < ATOM_EXT_PLL1) return true; else return false; } else { return true; } } void amdgpu_atombios_crtc_program_pll(struct drm_crtc *crtc, u32 crtc_id, int pll_id, u32 encoder_mode, u32 encoder_id, u32 clock, u32 ref_div, u32 fb_div, u32 frac_fb_div, u32 post_div, int bpc, bool ss_enabled, struct amdgpu_atom_ss *ss) { struct drm_device *dev = crtc->dev; struct amdgpu_device *adev = drm_to_adev(dev); u8 frev, crev; int index = GetIndexIntoMasterTable(COMMAND, SetPixelClock); union set_pixel_clock args; memset(&args, 0, sizeof(args)); if (!amdgpu_atom_parse_cmd_header(adev->mode_info.atom_context, index, &frev, &crev)) return; switch (frev) { case 1: switch (crev) { case 1: if (clock == ATOM_DISABLE) return; args.v1.usPixelClock = cpu_to_le16(clock / 10); args.v1.usRefDiv = cpu_to_le16(ref_div); args.v1.usFbDiv = cpu_to_le16(fb_div); args.v1.ucFracFbDiv = frac_fb_div; args.v1.ucPostDiv = post_div; args.v1.ucPpll = pll_id; args.v1.ucCRTC = crtc_id; args.v1.ucRefDivSrc = 1; break; case 2: args.v2.usPixelClock = cpu_to_le16(clock / 10); args.v2.usRefDiv = cpu_to_le16(ref_div); args.v2.usFbDiv = cpu_to_le16(fb_div); args.v2.ucFracFbDiv = frac_fb_div; args.v2.ucPostDiv = post_div; args.v2.ucPpll = pll_id; args.v2.ucCRTC = crtc_id; args.v2.ucRefDivSrc = 1; break; case 3: args.v3.usPixelClock = cpu_to_le16(clock / 10); args.v3.usRefDiv = cpu_to_le16(ref_div); args.v3.usFbDiv = cpu_to_le16(fb_div); args.v3.ucFracFbDiv = frac_fb_div; args.v3.ucPostDiv = post_div; args.v3.ucPpll = pll_id; if (crtc_id == ATOM_CRTC2) args.v3.ucMiscInfo = PIXEL_CLOCK_MISC_CRTC_SEL_CRTC2; else args.v3.ucMiscInfo = PIXEL_CLOCK_MISC_CRTC_SEL_CRTC1; if (ss_enabled && (ss->type & ATOM_EXTERNAL_SS_MASK)) args.v3.ucMiscInfo |= PIXEL_CLOCK_MISC_REF_DIV_SRC; args.v3.ucTransmitterId = encoder_id; args.v3.ucEncoderMode = encoder_mode; break; case 5: args.v5.ucCRTC = crtc_id; args.v5.usPixelClock = cpu_to_le16(clock / 10); args.v5.ucRefDiv = ref_div; args.v5.usFbDiv = cpu_to_le16(fb_div); args.v5.ulFbDivDecFrac = cpu_to_le32(frac_fb_div * 100000); args.v5.ucPostDiv = post_div; args.v5.ucMiscInfo = 0; /* HDMI depth, etc. */ if ((ss_enabled && (ss->type & ATOM_EXTERNAL_SS_MASK)) && (pll_id < ATOM_EXT_PLL1)) args.v5.ucMiscInfo |= PIXEL_CLOCK_V5_MISC_REF_DIV_SRC; if (encoder_mode == ATOM_ENCODER_MODE_HDMI) { switch (bpc) { case 8: default: args.v5.ucMiscInfo |= PIXEL_CLOCK_V5_MISC_HDMI_24BPP; break; case 10: /* yes this is correct, the atom define is wrong */ args.v5.ucMiscInfo |= PIXEL_CLOCK_V5_MISC_HDMI_32BPP; break; case 12: /* yes this is correct, the atom define is wrong */ args.v5.ucMiscInfo |= PIXEL_CLOCK_V5_MISC_HDMI_30BPP; break; } } args.v5.ucTransmitterID = encoder_id; args.v5.ucEncoderMode = encoder_mode; args.v5.ucPpll = pll_id; break; case 6: args.v6.ulDispEngClkFreq = cpu_to_le32(crtc_id << 24 | clock / 10); args.v6.ucRefDiv = ref_div; args.v6.usFbDiv = cpu_to_le16(fb_div); args.v6.ulFbDivDecFrac = cpu_to_le32(frac_fb_div * 100000); args.v6.ucPostDiv = post_div; args.v6.ucMiscInfo = 0; /* HDMI depth, etc. */ if ((ss_enabled && (ss->type & ATOM_EXTERNAL_SS_MASK)) && (pll_id < ATOM_EXT_PLL1) && !is_pixel_clock_source_from_pll(encoder_mode, pll_id)) args.v6.ucMiscInfo |= PIXEL_CLOCK_V6_MISC_REF_DIV_SRC; if (encoder_mode == ATOM_ENCODER_MODE_HDMI) { switch (bpc) { case 8: default: args.v6.ucMiscInfo |= PIXEL_CLOCK_V6_MISC_HDMI_24BPP; break; case 10: args.v6.ucMiscInfo |= PIXEL_CLOCK_V6_MISC_HDMI_30BPP_V6; break; case 12: args.v6.ucMiscInfo |= PIXEL_CLOCK_V6_MISC_HDMI_36BPP_V6; break; case 16: args.v6.ucMiscInfo |= PIXEL_CLOCK_V6_MISC_HDMI_48BPP; break; } } args.v6.ucTransmitterID = encoder_id; args.v6.ucEncoderMode = encoder_mode; args.v6.ucPpll = pll_id; break; case 7: args.v7.ulPixelClock = cpu_to_le32(clock * 10); /* 100 hz units */ args.v7.ucMiscInfo = 0; if ((encoder_mode == ATOM_ENCODER_MODE_DVI) && (clock > 165000)) args.v7.ucMiscInfo |= PIXEL_CLOCK_V7_MISC_DVI_DUALLINK_EN; args.v7.ucCRTC = crtc_id; if (encoder_mode == ATOM_ENCODER_MODE_HDMI) { switch (bpc) { case 8: default: args.v7.ucDeepColorRatio = PIXEL_CLOCK_V7_DEEPCOLOR_RATIO_DIS; break; case 10: args.v7.ucDeepColorRatio = PIXEL_CLOCK_V7_DEEPCOLOR_RATIO_5_4; break; case 12: args.v7.ucDeepColorRatio = PIXEL_CLOCK_V7_DEEPCOLOR_RATIO_3_2; break; case 16: args.v7.ucDeepColorRatio = PIXEL_CLOCK_V7_DEEPCOLOR_RATIO_2_1; break; } } args.v7.ucTransmitterID = encoder_id; args.v7.ucEncoderMode = encoder_mode; args.v7.ucPpll = pll_id; break; default: DRM_ERROR("Unknown table version %d %d\n", frev, crev); return; } break; default: DRM_ERROR("Unknown table version %d %d\n", frev, crev); return; } amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args); } int amdgpu_atombios_crtc_prepare_pll(struct drm_crtc *crtc, struct drm_display_mode *mode) { struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); struct drm_device *dev = crtc->dev; struct amdgpu_device *adev = drm_to_adev(dev); struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(amdgpu_crtc->encoder); int encoder_mode = amdgpu_atombios_encoder_get_encoder_mode(amdgpu_crtc->encoder); amdgpu_crtc->bpc = 8; amdgpu_crtc->ss_enabled = false; if ((amdgpu_encoder->active_device & (ATOM_DEVICE_LCD_SUPPORT | ATOM_DEVICE_DFP_SUPPORT)) || (amdgpu_encoder_get_dp_bridge_encoder_id(amdgpu_crtc->encoder) != ENCODER_OBJECT_ID_NONE)) { struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; struct drm_connector *connector = amdgpu_get_connector_for_encoder(amdgpu_crtc->encoder); struct amdgpu_connector *amdgpu_connector = to_amdgpu_connector(connector); struct amdgpu_connector_atom_dig *dig_connector = amdgpu_connector->con_priv; int dp_clock; /* Assign mode clock for hdmi deep color max clock limit check */ amdgpu_connector->pixelclock_for_modeset = mode->clock; amdgpu_crtc->bpc = amdgpu_connector_get_monitor_bpc(connector); switch (encoder_mode) { case ATOM_ENCODER_MODE_DP_MST: case ATOM_ENCODER_MODE_DP: /* DP/eDP */ dp_clock = dig_connector->dp_clock / 10; amdgpu_crtc->ss_enabled = amdgpu_atombios_get_asic_ss_info(adev, &amdgpu_crtc->ss, ASIC_INTERNAL_SS_ON_DP, dp_clock); break; case ATOM_ENCODER_MODE_LVDS: amdgpu_crtc->ss_enabled = amdgpu_atombios_get_asic_ss_info(adev, &amdgpu_crtc->ss, dig->lcd_ss_id, mode->clock / 10); break; case ATOM_ENCODER_MODE_DVI: amdgpu_crtc->ss_enabled = amdgpu_atombios_get_asic_ss_info(adev, &amdgpu_crtc->ss, ASIC_INTERNAL_SS_ON_TMDS, mode->clock / 10); break; case ATOM_ENCODER_MODE_HDMI: amdgpu_crtc->ss_enabled = amdgpu_atombios_get_asic_ss_info(adev, &amdgpu_crtc->ss, ASIC_INTERNAL_SS_ON_HDMI, mode->clock / 10); break; default: break; } } /* adjust pixel clock as needed */ amdgpu_crtc->adjusted_clock = amdgpu_atombios_crtc_adjust_pll(crtc, mode); return 0; } void amdgpu_atombios_crtc_set_pll(struct drm_crtc *crtc, struct drm_display_mode *mode) { struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); struct drm_device *dev = crtc->dev; struct amdgpu_device *adev = drm_to_adev(dev); struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(amdgpu_crtc->encoder); u32 pll_clock = mode->clock; u32 clock = mode->clock; u32 ref_div = 0, fb_div = 0, frac_fb_div = 0, post_div = 0; struct amdgpu_pll *pll; int encoder_mode = amdgpu_atombios_encoder_get_encoder_mode(amdgpu_crtc->encoder); /* pass the actual clock to amdgpu_atombios_crtc_program_pll for HDMI */ if ((encoder_mode == ATOM_ENCODER_MODE_HDMI) && (amdgpu_crtc->bpc > 8)) clock = amdgpu_crtc->adjusted_clock; switch (amdgpu_crtc->pll_id) { case ATOM_PPLL1: pll = &adev->clock.ppll[0]; break; case ATOM_PPLL2: pll = &adev->clock.ppll[1]; break; case ATOM_PPLL0: case ATOM_PPLL_INVALID: default: pll = &adev->clock.ppll[2]; break; } /* update pll params */ pll->flags = amdgpu_crtc->pll_flags; pll->reference_div = amdgpu_crtc->pll_reference_div; pll->post_div = amdgpu_crtc->pll_post_div; amdgpu_pll_compute(adev, pll, amdgpu_crtc->adjusted_clock, &pll_clock, &fb_div, &frac_fb_div, &ref_div, &post_div); amdgpu_atombios_crtc_program_ss(adev, ATOM_DISABLE, amdgpu_crtc->pll_id, amdgpu_crtc->crtc_id, &amdgpu_crtc->ss); amdgpu_atombios_crtc_program_pll(crtc, amdgpu_crtc->crtc_id, amdgpu_crtc->pll_id, encoder_mode, amdgpu_encoder->encoder_id, clock, ref_div, fb_div, frac_fb_div, post_div, amdgpu_crtc->bpc, amdgpu_crtc->ss_enabled, &amdgpu_crtc->ss); if (amdgpu_crtc->ss_enabled) { /* calculate ss amount and step size */ u32 step_size; u32 amount = (((fb_div * 10) + frac_fb_div) * (u32)amdgpu_crtc->ss.percentage) / (100 * (u32)amdgpu_crtc->ss.percentage_divider); amdgpu_crtc->ss.amount = (amount / 10) & ATOM_PPLL_SS_AMOUNT_V2_FBDIV_MASK; amdgpu_crtc->ss.amount |= ((amount - (amount / 10)) << ATOM_PPLL_SS_AMOUNT_V2_NFRAC_SHIFT) & ATOM_PPLL_SS_AMOUNT_V2_NFRAC_MASK; if (amdgpu_crtc->ss.type & ATOM_PPLL_SS_TYPE_V2_CENTRE_SPREAD) step_size = (4 * amount * ref_div * ((u32)amdgpu_crtc->ss.rate * 2048)) / (125 * 25 * pll->reference_freq / 100); else step_size = (2 * amount * ref_div * ((u32)amdgpu_crtc->ss.rate * 2048)) / (125 * 25 * pll->reference_freq / 100); amdgpu_crtc->ss.step = step_size; amdgpu_atombios_crtc_program_ss(adev, ATOM_ENABLE, amdgpu_crtc->pll_id, amdgpu_crtc->crtc_id, &amdgpu_crtc->ss); } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1