Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alex Deucher | 1900 | 42.15% | 17 | 20.73% |
Leo Liu | 643 | 14.26% | 8 | 9.76% |
Eric Huang | 387 | 8.58% | 1 | 1.22% |
Chunming Zhou | 273 | 6.06% | 1 | 1.22% |
Maruthi Srinivas Bayyavarapu | 225 | 4.99% | 2 | 2.44% |
yanyang1 | 207 | 4.59% | 1 | 1.22% |
jimqu | 202 | 4.48% | 2 | 2.44% |
Rex Zhu | 142 | 3.15% | 11 | 13.41% |
Huang Rui | 114 | 2.53% | 1 | 1.22% |
Tom St Denis | 105 | 2.33% | 9 | 10.98% |
Christian König | 91 | 2.02% | 10 | 12.20% |
Ken Wang | 72 | 1.60% | 2 | 2.44% |
Evan Quan | 69 | 1.53% | 3 | 3.66% |
Samuel Li | 29 | 0.64% | 1 | 1.22% |
Satyajit Sahu | 10 | 0.22% | 1 | 1.22% |
Jammy Zhou | 7 | 0.16% | 2 | 2.44% |
Emily Deng | 7 | 0.16% | 1 | 1.22% |
Alan Harrison | 7 | 0.16% | 1 | 1.22% |
Andrey Grodzovsky | 5 | 0.11% | 2 | 2.44% |
Monk Liu | 5 | 0.11% | 1 | 1.22% |
Jack Xiao | 2 | 0.04% | 1 | 1.22% |
Flora Cui | 2 | 0.04% | 1 | 1.22% |
Junwei (Martin) Zhang | 2 | 0.04% | 1 | 1.22% |
Nirmoy Das | 1 | 0.02% | 1 | 1.22% |
Sonny Jiang | 1 | 0.02% | 1 | 1.22% |
Total | 4508 | 82 |
/* * Copyright 2014 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * Authors: Christian König <christian.koenig@amd.com> */ #include <linux/firmware.h> #include "amdgpu.h" #include "amdgpu_vce.h" #include "vid.h" #include "vce/vce_3_0_d.h" #include "vce/vce_3_0_sh_mask.h" #include "oss/oss_3_0_d.h" #include "oss/oss_3_0_sh_mask.h" #include "gca/gfx_8_0_d.h" #include "smu/smu_7_1_2_d.h" #include "smu/smu_7_1_2_sh_mask.h" #include "gca/gfx_8_0_sh_mask.h" #include "ivsrcid/ivsrcid_vislands30.h" #define GRBM_GFX_INDEX__VCE_INSTANCE__SHIFT 0x04 #define GRBM_GFX_INDEX__VCE_INSTANCE_MASK 0x10 #define GRBM_GFX_INDEX__VCE_ALL_PIPE 0x07 #define mmVCE_LMI_VCPU_CACHE_40BIT_BAR0 0x8616 #define mmVCE_LMI_VCPU_CACHE_40BIT_BAR1 0x8617 #define mmVCE_LMI_VCPU_CACHE_40BIT_BAR2 0x8618 #define mmGRBM_GFX_INDEX_DEFAULT 0xE0000000 #define VCE_STATUS_VCPU_REPORT_FW_LOADED_MASK 0x02 #define VCE_V3_0_FW_SIZE (384 * 1024) #define VCE_V3_0_STACK_SIZE (64 * 1024) #define VCE_V3_0_DATA_SIZE ((16 * 1024 * AMDGPU_MAX_VCE_HANDLES) + (52 * 1024)) #define FW_52_8_3 ((52 << 24) | (8 << 16) | (3 << 8)) #define GET_VCE_INSTANCE(i) ((i) << GRBM_GFX_INDEX__VCE_INSTANCE__SHIFT \ | GRBM_GFX_INDEX__VCE_ALL_PIPE) static void vce_v3_0_mc_resume(struct amdgpu_device *adev, int idx); static void vce_v3_0_set_ring_funcs(struct amdgpu_device *adev); static void vce_v3_0_set_irq_funcs(struct amdgpu_device *adev); static int vce_v3_0_wait_for_idle(void *handle); static int vce_v3_0_set_clockgating_state(void *handle, enum amd_clockgating_state state); /** * vce_v3_0_ring_get_rptr - get read pointer * * @ring: amdgpu_ring pointer * * Returns the current hardware read pointer */ static uint64_t vce_v3_0_ring_get_rptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; u32 v; mutex_lock(&adev->grbm_idx_mutex); if (adev->vce.harvest_config == 0 || adev->vce.harvest_config == AMDGPU_VCE_HARVEST_VCE1) WREG32(mmGRBM_GFX_INDEX, GET_VCE_INSTANCE(0)); else if (adev->vce.harvest_config == AMDGPU_VCE_HARVEST_VCE0) WREG32(mmGRBM_GFX_INDEX, GET_VCE_INSTANCE(1)); if (ring->me == 0) v = RREG32(mmVCE_RB_RPTR); else if (ring->me == 1) v = RREG32(mmVCE_RB_RPTR2); else v = RREG32(mmVCE_RB_RPTR3); WREG32(mmGRBM_GFX_INDEX, mmGRBM_GFX_INDEX_DEFAULT); mutex_unlock(&adev->grbm_idx_mutex); return v; } /** * vce_v3_0_ring_get_wptr - get write pointer * * @ring: amdgpu_ring pointer * * Returns the current hardware write pointer */ static uint64_t vce_v3_0_ring_get_wptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; u32 v; mutex_lock(&adev->grbm_idx_mutex); if (adev->vce.harvest_config == 0 || adev->vce.harvest_config == AMDGPU_VCE_HARVEST_VCE1) WREG32(mmGRBM_GFX_INDEX, GET_VCE_INSTANCE(0)); else if (adev->vce.harvest_config == AMDGPU_VCE_HARVEST_VCE0) WREG32(mmGRBM_GFX_INDEX, GET_VCE_INSTANCE(1)); if (ring->me == 0) v = RREG32(mmVCE_RB_WPTR); else if (ring->me == 1) v = RREG32(mmVCE_RB_WPTR2); else v = RREG32(mmVCE_RB_WPTR3); WREG32(mmGRBM_GFX_INDEX, mmGRBM_GFX_INDEX_DEFAULT); mutex_unlock(&adev->grbm_idx_mutex); return v; } /** * vce_v3_0_ring_set_wptr - set write pointer * * @ring: amdgpu_ring pointer * * Commits the write pointer to the hardware */ static void vce_v3_0_ring_set_wptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; mutex_lock(&adev->grbm_idx_mutex); if (adev->vce.harvest_config == 0 || adev->vce.harvest_config == AMDGPU_VCE_HARVEST_VCE1) WREG32(mmGRBM_GFX_INDEX, GET_VCE_INSTANCE(0)); else if (adev->vce.harvest_config == AMDGPU_VCE_HARVEST_VCE0) WREG32(mmGRBM_GFX_INDEX, GET_VCE_INSTANCE(1)); if (ring->me == 0) WREG32(mmVCE_RB_WPTR, lower_32_bits(ring->wptr)); else if (ring->me == 1) WREG32(mmVCE_RB_WPTR2, lower_32_bits(ring->wptr)); else WREG32(mmVCE_RB_WPTR3, lower_32_bits(ring->wptr)); WREG32(mmGRBM_GFX_INDEX, mmGRBM_GFX_INDEX_DEFAULT); mutex_unlock(&adev->grbm_idx_mutex); } static void vce_v3_0_override_vce_clock_gating(struct amdgpu_device *adev, bool override) { WREG32_FIELD(VCE_RB_ARB_CTRL, VCE_CGTT_OVERRIDE, override ? 1 : 0); } static void vce_v3_0_set_vce_sw_clock_gating(struct amdgpu_device *adev, bool gated) { u32 data; /* Set Override to disable Clock Gating */ vce_v3_0_override_vce_clock_gating(adev, true); /* This function enables MGCG which is controlled by firmware. With the clocks in the gated state the core is still accessible but the firmware will throttle the clocks on the fly as necessary. */ if (!gated) { data = RREG32(mmVCE_CLOCK_GATING_B); data |= 0x1ff; data &= ~0xef0000; WREG32(mmVCE_CLOCK_GATING_B, data); data = RREG32(mmVCE_UENC_CLOCK_GATING); data |= 0x3ff000; data &= ~0xffc00000; WREG32(mmVCE_UENC_CLOCK_GATING, data); data = RREG32(mmVCE_UENC_CLOCK_GATING_2); data |= 0x2; data &= ~0x00010000; WREG32(mmVCE_UENC_CLOCK_GATING_2, data); data = RREG32(mmVCE_UENC_REG_CLOCK_GATING); data |= 0x37f; WREG32(mmVCE_UENC_REG_CLOCK_GATING, data); data = RREG32(mmVCE_UENC_DMA_DCLK_CTRL); data |= VCE_UENC_DMA_DCLK_CTRL__WRDMCLK_FORCEON_MASK | VCE_UENC_DMA_DCLK_CTRL__RDDMCLK_FORCEON_MASK | VCE_UENC_DMA_DCLK_CTRL__REGCLK_FORCEON_MASK | 0x8; WREG32(mmVCE_UENC_DMA_DCLK_CTRL, data); } else { data = RREG32(mmVCE_CLOCK_GATING_B); data &= ~0x80010; data |= 0xe70008; WREG32(mmVCE_CLOCK_GATING_B, data); data = RREG32(mmVCE_UENC_CLOCK_GATING); data |= 0xffc00000; WREG32(mmVCE_UENC_CLOCK_GATING, data); data = RREG32(mmVCE_UENC_CLOCK_GATING_2); data |= 0x10000; WREG32(mmVCE_UENC_CLOCK_GATING_2, data); data = RREG32(mmVCE_UENC_REG_CLOCK_GATING); data &= ~0x3ff; WREG32(mmVCE_UENC_REG_CLOCK_GATING, data); data = RREG32(mmVCE_UENC_DMA_DCLK_CTRL); data &= ~(VCE_UENC_DMA_DCLK_CTRL__WRDMCLK_FORCEON_MASK | VCE_UENC_DMA_DCLK_CTRL__RDDMCLK_FORCEON_MASK | VCE_UENC_DMA_DCLK_CTRL__REGCLK_FORCEON_MASK | 0x8); WREG32(mmVCE_UENC_DMA_DCLK_CTRL, data); } vce_v3_0_override_vce_clock_gating(adev, false); } static int vce_v3_0_firmware_loaded(struct amdgpu_device *adev) { int i, j; for (i = 0; i < 10; ++i) { for (j = 0; j < 100; ++j) { uint32_t status = RREG32(mmVCE_STATUS); if (status & VCE_STATUS_VCPU_REPORT_FW_LOADED_MASK) return 0; mdelay(10); } DRM_ERROR("VCE not responding, trying to reset the ECPU!!!\n"); WREG32_FIELD(VCE_SOFT_RESET, ECPU_SOFT_RESET, 1); mdelay(10); WREG32_FIELD(VCE_SOFT_RESET, ECPU_SOFT_RESET, 0); mdelay(10); } return -ETIMEDOUT; } /** * vce_v3_0_start - start VCE block * * @adev: amdgpu_device pointer * * Setup and start the VCE block */ static int vce_v3_0_start(struct amdgpu_device *adev) { struct amdgpu_ring *ring; int idx, r; mutex_lock(&adev->grbm_idx_mutex); for (idx = 0; idx < 2; ++idx) { if (adev->vce.harvest_config & (1 << idx)) continue; WREG32(mmGRBM_GFX_INDEX, GET_VCE_INSTANCE(idx)); /* Program instance 0 reg space for two instances or instance 0 case program instance 1 reg space for only instance 1 available case */ if (idx != 1 || adev->vce.harvest_config == AMDGPU_VCE_HARVEST_VCE0) { ring = &adev->vce.ring[0]; WREG32(mmVCE_RB_RPTR, lower_32_bits(ring->wptr)); WREG32(mmVCE_RB_WPTR, lower_32_bits(ring->wptr)); WREG32(mmVCE_RB_BASE_LO, ring->gpu_addr); WREG32(mmVCE_RB_BASE_HI, upper_32_bits(ring->gpu_addr)); WREG32(mmVCE_RB_SIZE, ring->ring_size / 4); ring = &adev->vce.ring[1]; WREG32(mmVCE_RB_RPTR2, lower_32_bits(ring->wptr)); WREG32(mmVCE_RB_WPTR2, lower_32_bits(ring->wptr)); WREG32(mmVCE_RB_BASE_LO2, ring->gpu_addr); WREG32(mmVCE_RB_BASE_HI2, upper_32_bits(ring->gpu_addr)); WREG32(mmVCE_RB_SIZE2, ring->ring_size / 4); ring = &adev->vce.ring[2]; WREG32(mmVCE_RB_RPTR3, lower_32_bits(ring->wptr)); WREG32(mmVCE_RB_WPTR3, lower_32_bits(ring->wptr)); WREG32(mmVCE_RB_BASE_LO3, ring->gpu_addr); WREG32(mmVCE_RB_BASE_HI3, upper_32_bits(ring->gpu_addr)); WREG32(mmVCE_RB_SIZE3, ring->ring_size / 4); } vce_v3_0_mc_resume(adev, idx); WREG32_FIELD(VCE_STATUS, JOB_BUSY, 1); if (adev->asic_type >= CHIP_STONEY) WREG32_P(mmVCE_VCPU_CNTL, 1, ~0x200001); else WREG32_FIELD(VCE_VCPU_CNTL, CLK_EN, 1); WREG32_FIELD(VCE_SOFT_RESET, ECPU_SOFT_RESET, 0); mdelay(100); r = vce_v3_0_firmware_loaded(adev); /* clear BUSY flag */ WREG32_FIELD(VCE_STATUS, JOB_BUSY, 0); if (r) { DRM_ERROR("VCE not responding, giving up!!!\n"); mutex_unlock(&adev->grbm_idx_mutex); return r; } } WREG32(mmGRBM_GFX_INDEX, mmGRBM_GFX_INDEX_DEFAULT); mutex_unlock(&adev->grbm_idx_mutex); return 0; } static int vce_v3_0_stop(struct amdgpu_device *adev) { int idx; mutex_lock(&adev->grbm_idx_mutex); for (idx = 0; idx < 2; ++idx) { if (adev->vce.harvest_config & (1 << idx)) continue; WREG32(mmGRBM_GFX_INDEX, GET_VCE_INSTANCE(idx)); if (adev->asic_type >= CHIP_STONEY) WREG32_P(mmVCE_VCPU_CNTL, 0, ~0x200001); else WREG32_FIELD(VCE_VCPU_CNTL, CLK_EN, 0); /* hold on ECPU */ WREG32_FIELD(VCE_SOFT_RESET, ECPU_SOFT_RESET, 1); /* clear VCE STATUS */ WREG32(mmVCE_STATUS, 0); } WREG32(mmGRBM_GFX_INDEX, mmGRBM_GFX_INDEX_DEFAULT); mutex_unlock(&adev->grbm_idx_mutex); return 0; } #define ixVCE_HARVEST_FUSE_MACRO__ADDRESS 0xC0014074 #define VCE_HARVEST_FUSE_MACRO__SHIFT 27 #define VCE_HARVEST_FUSE_MACRO__MASK 0x18000000 static unsigned vce_v3_0_get_harvest_config(struct amdgpu_device *adev) { u32 tmp; if ((adev->asic_type == CHIP_FIJI) || (adev->asic_type == CHIP_STONEY)) return AMDGPU_VCE_HARVEST_VCE1; if (adev->flags & AMD_IS_APU) tmp = (RREG32_SMC(ixVCE_HARVEST_FUSE_MACRO__ADDRESS) & VCE_HARVEST_FUSE_MACRO__MASK) >> VCE_HARVEST_FUSE_MACRO__SHIFT; else tmp = (RREG32_SMC(ixCC_HARVEST_FUSES) & CC_HARVEST_FUSES__VCE_DISABLE_MASK) >> CC_HARVEST_FUSES__VCE_DISABLE__SHIFT; switch (tmp) { case 1: return AMDGPU_VCE_HARVEST_VCE0; case 2: return AMDGPU_VCE_HARVEST_VCE1; case 3: return AMDGPU_VCE_HARVEST_VCE0 | AMDGPU_VCE_HARVEST_VCE1; default: if ((adev->asic_type == CHIP_POLARIS10) || (adev->asic_type == CHIP_POLARIS11) || (adev->asic_type == CHIP_POLARIS12) || (adev->asic_type == CHIP_VEGAM)) return AMDGPU_VCE_HARVEST_VCE1; return 0; } } static int vce_v3_0_early_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; adev->vce.harvest_config = vce_v3_0_get_harvest_config(adev); if ((adev->vce.harvest_config & (AMDGPU_VCE_HARVEST_VCE0 | AMDGPU_VCE_HARVEST_VCE1)) == (AMDGPU_VCE_HARVEST_VCE0 | AMDGPU_VCE_HARVEST_VCE1)) return -ENOENT; adev->vce.num_rings = 3; vce_v3_0_set_ring_funcs(adev); vce_v3_0_set_irq_funcs(adev); return 0; } static int vce_v3_0_sw_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct amdgpu_ring *ring; int r, i; /* VCE */ r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_VCE_TRAP, &adev->vce.irq); if (r) return r; r = amdgpu_vce_sw_init(adev, VCE_V3_0_FW_SIZE + (VCE_V3_0_STACK_SIZE + VCE_V3_0_DATA_SIZE) * 2); if (r) return r; /* 52.8.3 required for 3 ring support */ if (adev->vce.fw_version < FW_52_8_3) adev->vce.num_rings = 2; r = amdgpu_vce_resume(adev); if (r) return r; for (i = 0; i < adev->vce.num_rings; i++) { enum amdgpu_ring_priority_level hw_prio = amdgpu_vce_get_ring_prio(i); ring = &adev->vce.ring[i]; sprintf(ring->name, "vce%d", i); r = amdgpu_ring_init(adev, ring, 512, &adev->vce.irq, 0, hw_prio, NULL); if (r) return r; } r = amdgpu_vce_entity_init(adev); return r; } static int vce_v3_0_sw_fini(void *handle) { int r; struct amdgpu_device *adev = (struct amdgpu_device *)handle; r = amdgpu_vce_suspend(adev); if (r) return r; return amdgpu_vce_sw_fini(adev); } static int vce_v3_0_hw_init(void *handle) { int r, i; struct amdgpu_device *adev = (struct amdgpu_device *)handle; vce_v3_0_override_vce_clock_gating(adev, true); amdgpu_asic_set_vce_clocks(adev, 10000, 10000); for (i = 0; i < adev->vce.num_rings; i++) { r = amdgpu_ring_test_helper(&adev->vce.ring[i]); if (r) return r; } DRM_INFO("VCE initialized successfully.\n"); return 0; } static int vce_v3_0_hw_fini(void *handle) { int r; struct amdgpu_device *adev = (struct amdgpu_device *)handle; cancel_delayed_work_sync(&adev->vce.idle_work); r = vce_v3_0_wait_for_idle(handle); if (r) return r; vce_v3_0_stop(adev); return vce_v3_0_set_clockgating_state(adev, AMD_CG_STATE_GATE); } static int vce_v3_0_suspend(void *handle) { int r; struct amdgpu_device *adev = (struct amdgpu_device *)handle; /* * Proper cleanups before halting the HW engine: * - cancel the delayed idle work * - enable powergating * - enable clockgating * - disable dpm * * TODO: to align with the VCN implementation, move the * jobs for clockgating/powergating/dpm setting to * ->set_powergating_state(). */ cancel_delayed_work_sync(&adev->vce.idle_work); if (adev->pm.dpm_enabled) { amdgpu_dpm_enable_vce(adev, false); } else { amdgpu_asic_set_vce_clocks(adev, 0, 0); amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VCE, AMD_PG_STATE_GATE); amdgpu_device_ip_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_VCE, AMD_CG_STATE_GATE); } r = vce_v3_0_hw_fini(adev); if (r) return r; return amdgpu_vce_suspend(adev); } static int vce_v3_0_resume(void *handle) { int r; struct amdgpu_device *adev = (struct amdgpu_device *)handle; r = amdgpu_vce_resume(adev); if (r) return r; return vce_v3_0_hw_init(adev); } static void vce_v3_0_mc_resume(struct amdgpu_device *adev, int idx) { uint32_t offset, size; WREG32_P(mmVCE_CLOCK_GATING_A, 0, ~(1 << 16)); WREG32_P(mmVCE_UENC_CLOCK_GATING, 0x1FF000, ~0xFF9FF000); WREG32_P(mmVCE_UENC_REG_CLOCK_GATING, 0x3F, ~0x3F); WREG32(mmVCE_CLOCK_GATING_B, 0x1FF); WREG32(mmVCE_LMI_CTRL, 0x00398000); WREG32_P(mmVCE_LMI_CACHE_CTRL, 0x0, ~0x1); WREG32(mmVCE_LMI_SWAP_CNTL, 0); WREG32(mmVCE_LMI_SWAP_CNTL1, 0); WREG32(mmVCE_LMI_VM_CTRL, 0); WREG32_OR(mmVCE_VCPU_CNTL, 0x00100000); if (adev->asic_type >= CHIP_STONEY) { WREG32(mmVCE_LMI_VCPU_CACHE_40BIT_BAR0, (adev->vce.gpu_addr >> 8)); WREG32(mmVCE_LMI_VCPU_CACHE_40BIT_BAR1, (adev->vce.gpu_addr >> 8)); WREG32(mmVCE_LMI_VCPU_CACHE_40BIT_BAR2, (adev->vce.gpu_addr >> 8)); } else WREG32(mmVCE_LMI_VCPU_CACHE_40BIT_BAR, (adev->vce.gpu_addr >> 8)); offset = AMDGPU_VCE_FIRMWARE_OFFSET; size = VCE_V3_0_FW_SIZE; WREG32(mmVCE_VCPU_CACHE_OFFSET0, offset & 0x7fffffff); WREG32(mmVCE_VCPU_CACHE_SIZE0, size); if (idx == 0) { offset += size; size = VCE_V3_0_STACK_SIZE; WREG32(mmVCE_VCPU_CACHE_OFFSET1, offset & 0x7fffffff); WREG32(mmVCE_VCPU_CACHE_SIZE1, size); offset += size; size = VCE_V3_0_DATA_SIZE; WREG32(mmVCE_VCPU_CACHE_OFFSET2, offset & 0x7fffffff); WREG32(mmVCE_VCPU_CACHE_SIZE2, size); } else { offset += size + VCE_V3_0_STACK_SIZE + VCE_V3_0_DATA_SIZE; size = VCE_V3_0_STACK_SIZE; WREG32(mmVCE_VCPU_CACHE_OFFSET1, offset & 0xfffffff); WREG32(mmVCE_VCPU_CACHE_SIZE1, size); offset += size; size = VCE_V3_0_DATA_SIZE; WREG32(mmVCE_VCPU_CACHE_OFFSET2, offset & 0xfffffff); WREG32(mmVCE_VCPU_CACHE_SIZE2, size); } WREG32_P(mmVCE_LMI_CTRL2, 0x0, ~0x100); WREG32_FIELD(VCE_SYS_INT_EN, VCE_SYS_INT_TRAP_INTERRUPT_EN, 1); } static bool vce_v3_0_is_idle(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; u32 mask = 0; mask |= (adev->vce.harvest_config & AMDGPU_VCE_HARVEST_VCE0) ? 0 : SRBM_STATUS2__VCE0_BUSY_MASK; mask |= (adev->vce.harvest_config & AMDGPU_VCE_HARVEST_VCE1) ? 0 : SRBM_STATUS2__VCE1_BUSY_MASK; return !(RREG32(mmSRBM_STATUS2) & mask); } static int vce_v3_0_wait_for_idle(void *handle) { unsigned i; struct amdgpu_device *adev = (struct amdgpu_device *)handle; for (i = 0; i < adev->usec_timeout; i++) if (vce_v3_0_is_idle(handle)) return 0; return -ETIMEDOUT; } #define VCE_STATUS_VCPU_REPORT_AUTO_BUSY_MASK 0x00000008L /* AUTO_BUSY */ #define VCE_STATUS_VCPU_REPORT_RB0_BUSY_MASK 0x00000010L /* RB0_BUSY */ #define VCE_STATUS_VCPU_REPORT_RB1_BUSY_MASK 0x00000020L /* RB1_BUSY */ #define AMDGPU_VCE_STATUS_BUSY_MASK (VCE_STATUS_VCPU_REPORT_AUTO_BUSY_MASK | \ VCE_STATUS_VCPU_REPORT_RB0_BUSY_MASK) static bool vce_v3_0_check_soft_reset(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; u32 srbm_soft_reset = 0; /* According to VCE team , we should use VCE_STATUS instead * SRBM_STATUS.VCE_BUSY bit for busy status checking. * GRBM_GFX_INDEX.INSTANCE_INDEX is used to specify which VCE * instance's registers are accessed * (0 for 1st instance, 10 for 2nd instance). * *VCE_STATUS *|UENC|ACPI|AUTO ACTIVE|RB1 |RB0 |RB2 | |FW_LOADED|JOB | *|----+----+-----------+----+----+----+----------+---------+----| *|bit8|bit7| bit6 |bit5|bit4|bit3| bit2 | bit1 |bit0| * * VCE team suggest use bit 3--bit 6 for busy status check */ mutex_lock(&adev->grbm_idx_mutex); WREG32(mmGRBM_GFX_INDEX, GET_VCE_INSTANCE(0)); if (RREG32(mmVCE_STATUS) & AMDGPU_VCE_STATUS_BUSY_MASK) { srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_VCE0, 1); srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_VCE1, 1); } WREG32(mmGRBM_GFX_INDEX, GET_VCE_INSTANCE(1)); if (RREG32(mmVCE_STATUS) & AMDGPU_VCE_STATUS_BUSY_MASK) { srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_VCE0, 1); srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_VCE1, 1); } WREG32(mmGRBM_GFX_INDEX, GET_VCE_INSTANCE(0)); mutex_unlock(&adev->grbm_idx_mutex); if (srbm_soft_reset) { adev->vce.srbm_soft_reset = srbm_soft_reset; return true; } else { adev->vce.srbm_soft_reset = 0; return false; } } static int vce_v3_0_soft_reset(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; u32 srbm_soft_reset; if (!adev->vce.srbm_soft_reset) return 0; srbm_soft_reset = adev->vce.srbm_soft_reset; if (srbm_soft_reset) { u32 tmp; tmp = RREG32(mmSRBM_SOFT_RESET); tmp |= srbm_soft_reset; dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp); WREG32(mmSRBM_SOFT_RESET, tmp); tmp = RREG32(mmSRBM_SOFT_RESET); udelay(50); tmp &= ~srbm_soft_reset; WREG32(mmSRBM_SOFT_RESET, tmp); tmp = RREG32(mmSRBM_SOFT_RESET); /* Wait a little for things to settle down */ udelay(50); } return 0; } static int vce_v3_0_pre_soft_reset(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (!adev->vce.srbm_soft_reset) return 0; mdelay(5); return vce_v3_0_suspend(adev); } static int vce_v3_0_post_soft_reset(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (!adev->vce.srbm_soft_reset) return 0; mdelay(5); return vce_v3_0_resume(adev); } static int vce_v3_0_set_interrupt_state(struct amdgpu_device *adev, struct amdgpu_irq_src *source, unsigned type, enum amdgpu_interrupt_state state) { uint32_t val = 0; if (state == AMDGPU_IRQ_STATE_ENABLE) val |= VCE_SYS_INT_EN__VCE_SYS_INT_TRAP_INTERRUPT_EN_MASK; WREG32_P(mmVCE_SYS_INT_EN, val, ~VCE_SYS_INT_EN__VCE_SYS_INT_TRAP_INTERRUPT_EN_MASK); return 0; } static int vce_v3_0_process_interrupt(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { DRM_DEBUG("IH: VCE\n"); WREG32_FIELD(VCE_SYS_INT_STATUS, VCE_SYS_INT_TRAP_INTERRUPT_INT, 1); switch (entry->src_data[0]) { case 0: case 1: case 2: amdgpu_fence_process(&adev->vce.ring[entry->src_data[0]]); break; default: DRM_ERROR("Unhandled interrupt: %d %d\n", entry->src_id, entry->src_data[0]); break; } return 0; } static int vce_v3_0_set_clockgating_state(void *handle, enum amd_clockgating_state state) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; bool enable = (state == AMD_CG_STATE_GATE); int i; if (!(adev->cg_flags & AMD_CG_SUPPORT_VCE_MGCG)) return 0; mutex_lock(&adev->grbm_idx_mutex); for (i = 0; i < 2; i++) { /* Program VCE Instance 0 or 1 if not harvested */ if (adev->vce.harvest_config & (1 << i)) continue; WREG32(mmGRBM_GFX_INDEX, GET_VCE_INSTANCE(i)); if (!enable) { /* initialize VCE_CLOCK_GATING_A: Clock ON/OFF delay */ uint32_t data = RREG32(mmVCE_CLOCK_GATING_A); data &= ~(0xf | 0xff0); data |= ((0x0 << 0) | (0x04 << 4)); WREG32(mmVCE_CLOCK_GATING_A, data); /* initialize VCE_UENC_CLOCK_GATING: Clock ON/OFF delay */ data = RREG32(mmVCE_UENC_CLOCK_GATING); data &= ~(0xf | 0xff0); data |= ((0x0 << 0) | (0x04 << 4)); WREG32(mmVCE_UENC_CLOCK_GATING, data); } vce_v3_0_set_vce_sw_clock_gating(adev, enable); } WREG32(mmGRBM_GFX_INDEX, mmGRBM_GFX_INDEX_DEFAULT); mutex_unlock(&adev->grbm_idx_mutex); return 0; } static int vce_v3_0_set_powergating_state(void *handle, enum amd_powergating_state state) { /* This doesn't actually powergate the VCE block. * That's done in the dpm code via the SMC. This * just re-inits the block as necessary. The actual * gating still happens in the dpm code. We should * revisit this when there is a cleaner line between * the smc and the hw blocks */ struct amdgpu_device *adev = (struct amdgpu_device *)handle; int ret = 0; if (state == AMD_PG_STATE_GATE) { ret = vce_v3_0_stop(adev); if (ret) goto out; } else { ret = vce_v3_0_start(adev); if (ret) goto out; } out: return ret; } static void vce_v3_0_get_clockgating_state(void *handle, u64 *flags) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int data; mutex_lock(&adev->pm.mutex); if (adev->flags & AMD_IS_APU) data = RREG32_SMC(ixCURRENT_PG_STATUS_APU); else data = RREG32_SMC(ixCURRENT_PG_STATUS); if (data & CURRENT_PG_STATUS__VCE_PG_STATUS_MASK) { DRM_INFO("Cannot get clockgating state when VCE is powergated.\n"); goto out; } WREG32_FIELD(GRBM_GFX_INDEX, VCE_INSTANCE, 0); /* AMD_CG_SUPPORT_VCE_MGCG */ data = RREG32(mmVCE_CLOCK_GATING_A); if (data & (0x04 << 4)) *flags |= AMD_CG_SUPPORT_VCE_MGCG; out: mutex_unlock(&adev->pm.mutex); } static void vce_v3_0_ring_emit_ib(struct amdgpu_ring *ring, struct amdgpu_job *job, struct amdgpu_ib *ib, uint32_t flags) { unsigned vmid = AMDGPU_JOB_GET_VMID(job); amdgpu_ring_write(ring, VCE_CMD_IB_VM); amdgpu_ring_write(ring, vmid); amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr)); amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); amdgpu_ring_write(ring, ib->length_dw); } static void vce_v3_0_emit_vm_flush(struct amdgpu_ring *ring, unsigned int vmid, uint64_t pd_addr) { amdgpu_ring_write(ring, VCE_CMD_UPDATE_PTB); amdgpu_ring_write(ring, vmid); amdgpu_ring_write(ring, pd_addr >> 12); amdgpu_ring_write(ring, VCE_CMD_FLUSH_TLB); amdgpu_ring_write(ring, vmid); amdgpu_ring_write(ring, VCE_CMD_END); } static void vce_v3_0_emit_pipeline_sync(struct amdgpu_ring *ring) { uint32_t seq = ring->fence_drv.sync_seq; uint64_t addr = ring->fence_drv.gpu_addr; amdgpu_ring_write(ring, VCE_CMD_WAIT_GE); amdgpu_ring_write(ring, lower_32_bits(addr)); amdgpu_ring_write(ring, upper_32_bits(addr)); amdgpu_ring_write(ring, seq); } static const struct amd_ip_funcs vce_v3_0_ip_funcs = { .name = "vce_v3_0", .early_init = vce_v3_0_early_init, .late_init = NULL, .sw_init = vce_v3_0_sw_init, .sw_fini = vce_v3_0_sw_fini, .hw_init = vce_v3_0_hw_init, .hw_fini = vce_v3_0_hw_fini, .suspend = vce_v3_0_suspend, .resume = vce_v3_0_resume, .is_idle = vce_v3_0_is_idle, .wait_for_idle = vce_v3_0_wait_for_idle, .check_soft_reset = vce_v3_0_check_soft_reset, .pre_soft_reset = vce_v3_0_pre_soft_reset, .soft_reset = vce_v3_0_soft_reset, .post_soft_reset = vce_v3_0_post_soft_reset, .set_clockgating_state = vce_v3_0_set_clockgating_state, .set_powergating_state = vce_v3_0_set_powergating_state, .get_clockgating_state = vce_v3_0_get_clockgating_state, }; static const struct amdgpu_ring_funcs vce_v3_0_ring_phys_funcs = { .type = AMDGPU_RING_TYPE_VCE, .align_mask = 0xf, .nop = VCE_CMD_NO_OP, .support_64bit_ptrs = false, .no_user_fence = true, .get_rptr = vce_v3_0_ring_get_rptr, .get_wptr = vce_v3_0_ring_get_wptr, .set_wptr = vce_v3_0_ring_set_wptr, .parse_cs = amdgpu_vce_ring_parse_cs, .emit_frame_size = 4 + /* vce_v3_0_emit_pipeline_sync */ 6, /* amdgpu_vce_ring_emit_fence x1 no user fence */ .emit_ib_size = 4, /* amdgpu_vce_ring_emit_ib */ .emit_ib = amdgpu_vce_ring_emit_ib, .emit_fence = amdgpu_vce_ring_emit_fence, .test_ring = amdgpu_vce_ring_test_ring, .test_ib = amdgpu_vce_ring_test_ib, .insert_nop = amdgpu_ring_insert_nop, .pad_ib = amdgpu_ring_generic_pad_ib, .begin_use = amdgpu_vce_ring_begin_use, .end_use = amdgpu_vce_ring_end_use, }; static const struct amdgpu_ring_funcs vce_v3_0_ring_vm_funcs = { .type = AMDGPU_RING_TYPE_VCE, .align_mask = 0xf, .nop = VCE_CMD_NO_OP, .support_64bit_ptrs = false, .no_user_fence = true, .get_rptr = vce_v3_0_ring_get_rptr, .get_wptr = vce_v3_0_ring_get_wptr, .set_wptr = vce_v3_0_ring_set_wptr, .parse_cs = amdgpu_vce_ring_parse_cs_vm, .emit_frame_size = 6 + /* vce_v3_0_emit_vm_flush */ 4 + /* vce_v3_0_emit_pipeline_sync */ 6 + 6, /* amdgpu_vce_ring_emit_fence x2 vm fence */ .emit_ib_size = 5, /* vce_v3_0_ring_emit_ib */ .emit_ib = vce_v3_0_ring_emit_ib, .emit_vm_flush = vce_v3_0_emit_vm_flush, .emit_pipeline_sync = vce_v3_0_emit_pipeline_sync, .emit_fence = amdgpu_vce_ring_emit_fence, .test_ring = amdgpu_vce_ring_test_ring, .test_ib = amdgpu_vce_ring_test_ib, .insert_nop = amdgpu_ring_insert_nop, .pad_ib = amdgpu_ring_generic_pad_ib, .begin_use = amdgpu_vce_ring_begin_use, .end_use = amdgpu_vce_ring_end_use, }; static void vce_v3_0_set_ring_funcs(struct amdgpu_device *adev) { int i; if (adev->asic_type >= CHIP_STONEY) { for (i = 0; i < adev->vce.num_rings; i++) { adev->vce.ring[i].funcs = &vce_v3_0_ring_vm_funcs; adev->vce.ring[i].me = i; } DRM_INFO("VCE enabled in VM mode\n"); } else { for (i = 0; i < adev->vce.num_rings; i++) { adev->vce.ring[i].funcs = &vce_v3_0_ring_phys_funcs; adev->vce.ring[i].me = i; } DRM_INFO("VCE enabled in physical mode\n"); } } static const struct amdgpu_irq_src_funcs vce_v3_0_irq_funcs = { .set = vce_v3_0_set_interrupt_state, .process = vce_v3_0_process_interrupt, }; static void vce_v3_0_set_irq_funcs(struct amdgpu_device *adev) { adev->vce.irq.num_types = 1; adev->vce.irq.funcs = &vce_v3_0_irq_funcs; }; const struct amdgpu_ip_block_version vce_v3_0_ip_block = { .type = AMD_IP_BLOCK_TYPE_VCE, .major = 3, .minor = 0, .rev = 0, .funcs = &vce_v3_0_ip_funcs, }; const struct amdgpu_ip_block_version vce_v3_1_ip_block = { .type = AMD_IP_BLOCK_TYPE_VCE, .major = 3, .minor = 1, .rev = 0, .funcs = &vce_v3_0_ip_funcs, }; const struct amdgpu_ip_block_version vce_v3_4_ip_block = { .type = AMD_IP_BLOCK_TYPE_VCE, .major = 3, .minor = 4, .rev = 0, .funcs = &vce_v3_0_ip_funcs, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1