Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Oded Gabbay | 568 | 52.45% | 4 | 16.00% |
Felix Kuhling | 274 | 25.30% | 8 | 32.00% |
Mukul Joshi | 173 | 15.97% | 2 | 8.00% |
Xihan Zhang | 14 | 1.29% | 1 | 4.00% |
Rajneesh Bhardwaj | 13 | 1.20% | 2 | 8.00% |
Shaoyun Liu | 11 | 1.02% | 1 | 4.00% |
Kent Russell | 9 | 0.83% | 2 | 8.00% |
Yong Zhao | 7 | 0.65% | 1 | 4.00% |
Harish Kasiviswanathan | 5 | 0.46% | 1 | 4.00% |
Edward O'Callaghan | 4 | 0.37% | 1 | 4.00% |
Graham Sider | 4 | 0.37% | 1 | 4.00% |
Colin Ian King | 1 | 0.09% | 1 | 4.00% |
Total | 1083 | 25 |
// SPDX-License-Identifier: GPL-2.0 OR MIT /* * Copyright 2014-2022 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "kfd_priv.h" #include <linux/mm.h> #include <linux/mman.h> #include <linux/slab.h> #include <linux/io.h> #include <linux/idr.h> /* * This extension supports a kernel level doorbells management for the * kernel queues using the first doorbell page reserved for the kernel. */ /* * Each device exposes a doorbell aperture, a PCI MMIO aperture that * receives 32-bit writes that are passed to queues as wptr values. * The doorbells are intended to be written by applications as part * of queueing work on user-mode queues. * We assign doorbells to applications in PAGE_SIZE-sized and aligned chunks. * We map the doorbell address space into user-mode when a process creates * its first queue on each device. * Although the mapping is done by KFD, it is equivalent to an mmap of * the /dev/kfd with the particular device encoded in the mmap offset. * There will be other uses for mmap of /dev/kfd, so only a range of * offsets (KFD_MMAP_DOORBELL_START-END) is used for doorbells. */ /* # of doorbell bytes allocated for each process. */ size_t kfd_doorbell_process_slice(struct kfd_dev *kfd) { if (!kfd->shared_resources.enable_mes) return roundup(kfd->device_info.doorbell_size * KFD_MAX_NUM_OF_QUEUES_PER_PROCESS, PAGE_SIZE); else return amdgpu_mes_doorbell_process_slice( (struct amdgpu_device *)kfd->adev); } /* Doorbell calculations for device init. */ int kfd_doorbell_init(struct kfd_dev *kfd) { size_t doorbell_start_offset; size_t doorbell_aperture_size; size_t doorbell_process_limit; /* * With MES enabled, just set the doorbell base as it is needed * to calculate doorbell physical address. */ if (kfd->shared_resources.enable_mes) { kfd->doorbell_base = kfd->shared_resources.doorbell_physical_address; return 0; } /* * We start with calculations in bytes because the input data might * only be byte-aligned. * Only after we have done the rounding can we assume any alignment. */ doorbell_start_offset = roundup(kfd->shared_resources.doorbell_start_offset, kfd_doorbell_process_slice(kfd)); doorbell_aperture_size = rounddown(kfd->shared_resources.doorbell_aperture_size, kfd_doorbell_process_slice(kfd)); if (doorbell_aperture_size > doorbell_start_offset) doorbell_process_limit = (doorbell_aperture_size - doorbell_start_offset) / kfd_doorbell_process_slice(kfd); else return -ENOSPC; if (!kfd->max_doorbell_slices || doorbell_process_limit < kfd->max_doorbell_slices) kfd->max_doorbell_slices = doorbell_process_limit; kfd->doorbell_base = kfd->shared_resources.doorbell_physical_address + doorbell_start_offset; kfd->doorbell_base_dw_offset = doorbell_start_offset / sizeof(u32); kfd->doorbell_kernel_ptr = ioremap(kfd->doorbell_base, kfd_doorbell_process_slice(kfd)); if (!kfd->doorbell_kernel_ptr) return -ENOMEM; pr_debug("Doorbell initialization:\n"); pr_debug("doorbell base == 0x%08lX\n", (uintptr_t)kfd->doorbell_base); pr_debug("doorbell_base_dw_offset == 0x%08lX\n", kfd->doorbell_base_dw_offset); pr_debug("doorbell_process_limit == 0x%08lX\n", doorbell_process_limit); pr_debug("doorbell_kernel_offset == 0x%08lX\n", (uintptr_t)kfd->doorbell_base); pr_debug("doorbell aperture size == 0x%08lX\n", kfd->shared_resources.doorbell_aperture_size); pr_debug("doorbell kernel address == %p\n", kfd->doorbell_kernel_ptr); return 0; } void kfd_doorbell_fini(struct kfd_dev *kfd) { if (kfd->doorbell_kernel_ptr) iounmap(kfd->doorbell_kernel_ptr); } int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process, struct vm_area_struct *vma) { phys_addr_t address; struct kfd_process_device *pdd; /* * For simplicitly we only allow mapping of the entire doorbell * allocation of a single device & process. */ if (vma->vm_end - vma->vm_start != kfd_doorbell_process_slice(dev)) return -EINVAL; pdd = kfd_get_process_device_data(dev, process); if (!pdd) return -EINVAL; /* Calculate physical address of doorbell */ address = kfd_get_process_doorbells(pdd); if (!address) return -ENOMEM; vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP; vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); pr_debug("Mapping doorbell page\n" " target user address == 0x%08llX\n" " physical address == 0x%08llX\n" " vm_flags == 0x%04lX\n" " size == 0x%04lX\n", (unsigned long long) vma->vm_start, address, vma->vm_flags, kfd_doorbell_process_slice(dev)); return io_remap_pfn_range(vma, vma->vm_start, address >> PAGE_SHIFT, kfd_doorbell_process_slice(dev), vma->vm_page_prot); } /* get kernel iomem pointer for a doorbell */ void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd, unsigned int *doorbell_off) { u32 inx; mutex_lock(&kfd->doorbell_mutex); inx = find_first_zero_bit(kfd->doorbell_available_index, KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); __set_bit(inx, kfd->doorbell_available_index); mutex_unlock(&kfd->doorbell_mutex); if (inx >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) return NULL; inx *= kfd->device_info.doorbell_size / sizeof(u32); /* * Calculating the kernel doorbell offset using the first * doorbell page. */ *doorbell_off = kfd->doorbell_base_dw_offset + inx; pr_debug("Get kernel queue doorbell\n" " doorbell offset == 0x%08X\n" " doorbell index == 0x%x\n", *doorbell_off, inx); return kfd->doorbell_kernel_ptr + inx; } void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr) { unsigned int inx; inx = (unsigned int)(db_addr - kfd->doorbell_kernel_ptr) * sizeof(u32) / kfd->device_info.doorbell_size; mutex_lock(&kfd->doorbell_mutex); __clear_bit(inx, kfd->doorbell_available_index); mutex_unlock(&kfd->doorbell_mutex); } void write_kernel_doorbell(void __iomem *db, u32 value) { if (db) { writel(value, db); pr_debug("Writing %d to doorbell address %p\n", value, db); } } void write_kernel_doorbell64(void __iomem *db, u64 value) { if (db) { WARN(((unsigned long)db & 7) != 0, "Unaligned 64-bit doorbell"); writeq(value, (u64 __iomem *)db); pr_debug("writing %llu to doorbell address %p\n", value, db); } } unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd, struct kfd_process_device *pdd, unsigned int doorbell_id) { /* * doorbell_base_dw_offset accounts for doorbells taken by KGD. * index * kfd_doorbell_process_slice/sizeof(u32) adjusts to * the process's doorbells. The offset returned is in dword * units regardless of the ASIC-dependent doorbell size. */ if (!kfd->shared_resources.enable_mes) return kfd->doorbell_base_dw_offset + pdd->doorbell_index * kfd_doorbell_process_slice(kfd) / sizeof(u32) + doorbell_id * kfd->device_info.doorbell_size / sizeof(u32); else return amdgpu_mes_get_doorbell_dw_offset_in_bar( (struct amdgpu_device *)kfd->adev, pdd->doorbell_index, doorbell_id); } uint64_t kfd_get_number_elems(struct kfd_dev *kfd) { uint64_t num_of_elems = (kfd->shared_resources.doorbell_aperture_size - kfd->shared_resources.doorbell_start_offset) / kfd_doorbell_process_slice(kfd) + 1; return num_of_elems; } phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd) { if (!pdd->doorbell_index) { int r = kfd_alloc_process_doorbells(pdd->dev, &pdd->doorbell_index); if (r) return 0; } return pdd->dev->doorbell_base + pdd->doorbell_index * kfd_doorbell_process_slice(pdd->dev); } int kfd_alloc_process_doorbells(struct kfd_dev *kfd, unsigned int *doorbell_index) { int r = 0; if (!kfd->shared_resources.enable_mes) r = ida_simple_get(&kfd->doorbell_ida, 1, kfd->max_doorbell_slices, GFP_KERNEL); else r = amdgpu_mes_alloc_process_doorbells( (struct amdgpu_device *)kfd->adev, doorbell_index); if (r > 0) *doorbell_index = r; if (r < 0) pr_err("Failed to allocate process doorbells\n"); return r; } void kfd_free_process_doorbells(struct kfd_dev *kfd, unsigned int doorbell_index) { if (doorbell_index) { if (!kfd->shared_resources.enable_mes) ida_simple_remove(&kfd->doorbell_ida, doorbell_index); else amdgpu_mes_free_process_doorbells( (struct amdgpu_device *)kfd->adev, doorbell_index); } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1