Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Evgeny Pinchuk | 4004 | 38.46% | 1 | 0.99% |
Ramesh Errabolu | 1601 | 15.38% | 1 | 0.99% |
Felix Kuhling | 1224 | 11.76% | 15 | 14.85% |
Ma Jun | 1133 | 10.88% | 2 | 1.98% |
Harish Kasiviswanathan | 660 | 6.34% | 10 | 9.90% |
Amber Lin | 410 | 3.94% | 5 | 4.95% |
Eric Huang | 206 | 1.98% | 3 | 2.97% |
Mukul Joshi | 178 | 1.71% | 6 | 5.94% |
Graham Sider | 156 | 1.50% | 9 | 8.91% |
Jonathan Kim | 136 | 1.31% | 3 | 2.97% |
Oak Zeng | 112 | 1.08% | 5 | 4.95% |
Huang Rui | 100 | 0.96% | 3 | 2.97% |
Yong Zhao | 82 | 0.79% | 4 | 3.96% |
Oded Gabbay | 65 | 0.62% | 3 | 2.97% |
Alexey Skidanov | 53 | 0.51% | 2 | 1.98% |
Qiushi Wu | 47 | 0.45% | 1 | 0.99% |
Flora Cui | 33 | 0.32% | 1 | 0.99% |
Ben Goz | 29 | 0.28% | 4 | 3.96% |
Ori Messinger | 28 | 0.27% | 1 | 0.99% |
Dan Carpenter | 25 | 0.24% | 2 | 1.98% |
Joseph Greathouse | 24 | 0.23% | 2 | 1.98% |
Shaoyun Liu | 19 | 0.18% | 1 | 0.99% |
Kent Russell | 17 | 0.16% | 4 | 3.96% |
Alex Deucher | 14 | 0.13% | 2 | 1.98% |
Philip Yang | 12 | 0.12% | 2 | 1.98% |
Philip Cox | 12 | 0.12% | 1 | 0.99% |
Stanley.Yang | 9 | 0.09% | 1 | 0.99% |
Edward O'Callaghan | 7 | 0.07% | 1 | 0.99% |
Xihan Zhang | 6 | 0.06% | 1 | 0.99% |
Gang Ba | 3 | 0.03% | 1 | 0.99% |
Rajneesh Bhardwaj | 3 | 0.03% | 2 | 1.98% |
Luben Tuikov | 3 | 0.03% | 1 | 0.99% |
Heiner Kallweit | 1 | 0.01% | 1 | 0.99% |
Total | 10412 | 101 |
// SPDX-License-Identifier: GPL-2.0 OR MIT /* * Copyright 2014-2022 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include <linux/types.h> #include <linux/kernel.h> #include <linux/pci.h> #include <linux/errno.h> #include <linux/acpi.h> #include <linux/hash.h> #include <linux/cpufreq.h> #include <linux/log2.h> #include <linux/dmi.h> #include <linux/atomic.h> #include "kfd_priv.h" #include "kfd_crat.h" #include "kfd_topology.h" #include "kfd_device_queue_manager.h" #include "kfd_iommu.h" #include "kfd_svm.h" #include "amdgpu_amdkfd.h" #include "amdgpu_ras.h" #include "amdgpu.h" /* topology_device_list - Master list of all topology devices */ static struct list_head topology_device_list; static struct kfd_system_properties sys_props; static DECLARE_RWSEM(topology_lock); static uint32_t topology_crat_proximity_domain; struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock( uint32_t proximity_domain) { struct kfd_topology_device *top_dev; struct kfd_topology_device *device = NULL; list_for_each_entry(top_dev, &topology_device_list, list) if (top_dev->proximity_domain == proximity_domain) { device = top_dev; break; } return device; } struct kfd_topology_device *kfd_topology_device_by_proximity_domain( uint32_t proximity_domain) { struct kfd_topology_device *device = NULL; down_read(&topology_lock); device = kfd_topology_device_by_proximity_domain_no_lock( proximity_domain); up_read(&topology_lock); return device; } struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id) { struct kfd_topology_device *top_dev = NULL; struct kfd_topology_device *ret = NULL; down_read(&topology_lock); list_for_each_entry(top_dev, &topology_device_list, list) if (top_dev->gpu_id == gpu_id) { ret = top_dev; break; } up_read(&topology_lock); return ret; } struct kfd_dev *kfd_device_by_id(uint32_t gpu_id) { struct kfd_topology_device *top_dev; top_dev = kfd_topology_device_by_id(gpu_id); if (!top_dev) return NULL; return top_dev->gpu; } struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev) { struct kfd_topology_device *top_dev; struct kfd_dev *device = NULL; down_read(&topology_lock); list_for_each_entry(top_dev, &topology_device_list, list) if (top_dev->gpu && top_dev->gpu->adev->pdev == pdev) { device = top_dev->gpu; break; } up_read(&topology_lock); return device; } struct kfd_dev *kfd_device_by_adev(const struct amdgpu_device *adev) { struct kfd_topology_device *top_dev; struct kfd_dev *device = NULL; down_read(&topology_lock); list_for_each_entry(top_dev, &topology_device_list, list) if (top_dev->gpu && top_dev->gpu->adev == adev) { device = top_dev->gpu; break; } up_read(&topology_lock); return device; } /* Called with write topology_lock acquired */ static void kfd_release_topology_device(struct kfd_topology_device *dev) { struct kfd_mem_properties *mem; struct kfd_cache_properties *cache; struct kfd_iolink_properties *iolink; struct kfd_iolink_properties *p2plink; struct kfd_perf_properties *perf; list_del(&dev->list); while (dev->mem_props.next != &dev->mem_props) { mem = container_of(dev->mem_props.next, struct kfd_mem_properties, list); list_del(&mem->list); kfree(mem); } while (dev->cache_props.next != &dev->cache_props) { cache = container_of(dev->cache_props.next, struct kfd_cache_properties, list); list_del(&cache->list); kfree(cache); } while (dev->io_link_props.next != &dev->io_link_props) { iolink = container_of(dev->io_link_props.next, struct kfd_iolink_properties, list); list_del(&iolink->list); kfree(iolink); } while (dev->p2p_link_props.next != &dev->p2p_link_props) { p2plink = container_of(dev->p2p_link_props.next, struct kfd_iolink_properties, list); list_del(&p2plink->list); kfree(p2plink); } while (dev->perf_props.next != &dev->perf_props) { perf = container_of(dev->perf_props.next, struct kfd_perf_properties, list); list_del(&perf->list); kfree(perf); } kfree(dev); } void kfd_release_topology_device_list(struct list_head *device_list) { struct kfd_topology_device *dev; while (!list_empty(device_list)) { dev = list_first_entry(device_list, struct kfd_topology_device, list); kfd_release_topology_device(dev); } } static void kfd_release_live_view(void) { kfd_release_topology_device_list(&topology_device_list); memset(&sys_props, 0, sizeof(sys_props)); } struct kfd_topology_device *kfd_create_topology_device( struct list_head *device_list) { struct kfd_topology_device *dev; dev = kfd_alloc_struct(dev); if (!dev) { pr_err("No memory to allocate a topology device"); return NULL; } INIT_LIST_HEAD(&dev->mem_props); INIT_LIST_HEAD(&dev->cache_props); INIT_LIST_HEAD(&dev->io_link_props); INIT_LIST_HEAD(&dev->p2p_link_props); INIT_LIST_HEAD(&dev->perf_props); list_add_tail(&dev->list, device_list); return dev; } #define sysfs_show_gen_prop(buffer, offs, fmt, ...) \ (offs += snprintf(buffer+offs, PAGE_SIZE-offs, \ fmt, __VA_ARGS__)) #define sysfs_show_32bit_prop(buffer, offs, name, value) \ sysfs_show_gen_prop(buffer, offs, "%s %u\n", name, value) #define sysfs_show_64bit_prop(buffer, offs, name, value) \ sysfs_show_gen_prop(buffer, offs, "%s %llu\n", name, value) #define sysfs_show_32bit_val(buffer, offs, value) \ sysfs_show_gen_prop(buffer, offs, "%u\n", value) #define sysfs_show_str_val(buffer, offs, value) \ sysfs_show_gen_prop(buffer, offs, "%s\n", value) static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr, char *buffer) { int offs = 0; /* Making sure that the buffer is an empty string */ buffer[0] = 0; if (attr == &sys_props.attr_genid) { sysfs_show_32bit_val(buffer, offs, sys_props.generation_count); } else if (attr == &sys_props.attr_props) { sysfs_show_64bit_prop(buffer, offs, "platform_oem", sys_props.platform_oem); sysfs_show_64bit_prop(buffer, offs, "platform_id", sys_props.platform_id); sysfs_show_64bit_prop(buffer, offs, "platform_rev", sys_props.platform_rev); } else { offs = -EINVAL; } return offs; } static void kfd_topology_kobj_release(struct kobject *kobj) { kfree(kobj); } static const struct sysfs_ops sysprops_ops = { .show = sysprops_show, }; static struct kobj_type sysprops_type = { .release = kfd_topology_kobj_release, .sysfs_ops = &sysprops_ops, }; static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr, char *buffer) { int offs = 0; struct kfd_iolink_properties *iolink; /* Making sure that the buffer is an empty string */ buffer[0] = 0; iolink = container_of(attr, struct kfd_iolink_properties, attr); if (iolink->gpu && kfd_devcgroup_check_permission(iolink->gpu)) return -EPERM; sysfs_show_32bit_prop(buffer, offs, "type", iolink->iolink_type); sysfs_show_32bit_prop(buffer, offs, "version_major", iolink->ver_maj); sysfs_show_32bit_prop(buffer, offs, "version_minor", iolink->ver_min); sysfs_show_32bit_prop(buffer, offs, "node_from", iolink->node_from); sysfs_show_32bit_prop(buffer, offs, "node_to", iolink->node_to); sysfs_show_32bit_prop(buffer, offs, "weight", iolink->weight); sysfs_show_32bit_prop(buffer, offs, "min_latency", iolink->min_latency); sysfs_show_32bit_prop(buffer, offs, "max_latency", iolink->max_latency); sysfs_show_32bit_prop(buffer, offs, "min_bandwidth", iolink->min_bandwidth); sysfs_show_32bit_prop(buffer, offs, "max_bandwidth", iolink->max_bandwidth); sysfs_show_32bit_prop(buffer, offs, "recommended_transfer_size", iolink->rec_transfer_size); sysfs_show_32bit_prop(buffer, offs, "flags", iolink->flags); return offs; } static const struct sysfs_ops iolink_ops = { .show = iolink_show, }; static struct kobj_type iolink_type = { .release = kfd_topology_kobj_release, .sysfs_ops = &iolink_ops, }; static ssize_t mem_show(struct kobject *kobj, struct attribute *attr, char *buffer) { int offs = 0; struct kfd_mem_properties *mem; /* Making sure that the buffer is an empty string */ buffer[0] = 0; mem = container_of(attr, struct kfd_mem_properties, attr); if (mem->gpu && kfd_devcgroup_check_permission(mem->gpu)) return -EPERM; sysfs_show_32bit_prop(buffer, offs, "heap_type", mem->heap_type); sysfs_show_64bit_prop(buffer, offs, "size_in_bytes", mem->size_in_bytes); sysfs_show_32bit_prop(buffer, offs, "flags", mem->flags); sysfs_show_32bit_prop(buffer, offs, "width", mem->width); sysfs_show_32bit_prop(buffer, offs, "mem_clk_max", mem->mem_clk_max); return offs; } static const struct sysfs_ops mem_ops = { .show = mem_show, }; static struct kobj_type mem_type = { .release = kfd_topology_kobj_release, .sysfs_ops = &mem_ops, }; static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr, char *buffer) { int offs = 0; uint32_t i, j; struct kfd_cache_properties *cache; /* Making sure that the buffer is an empty string */ buffer[0] = 0; cache = container_of(attr, struct kfd_cache_properties, attr); if (cache->gpu && kfd_devcgroup_check_permission(cache->gpu)) return -EPERM; sysfs_show_32bit_prop(buffer, offs, "processor_id_low", cache->processor_id_low); sysfs_show_32bit_prop(buffer, offs, "level", cache->cache_level); sysfs_show_32bit_prop(buffer, offs, "size", cache->cache_size); sysfs_show_32bit_prop(buffer, offs, "cache_line_size", cache->cacheline_size); sysfs_show_32bit_prop(buffer, offs, "cache_lines_per_tag", cache->cachelines_per_tag); sysfs_show_32bit_prop(buffer, offs, "association", cache->cache_assoc); sysfs_show_32bit_prop(buffer, offs, "latency", cache->cache_latency); sysfs_show_32bit_prop(buffer, offs, "type", cache->cache_type); offs += snprintf(buffer+offs, PAGE_SIZE-offs, "sibling_map "); for (i = 0; i < cache->sibling_map_size; i++) for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++) /* Check each bit */ offs += snprintf(buffer+offs, PAGE_SIZE-offs, "%d,", (cache->sibling_map[i] >> j) & 1); /* Replace the last "," with end of line */ buffer[offs-1] = '\n'; return offs; } static const struct sysfs_ops cache_ops = { .show = kfd_cache_show, }; static struct kobj_type cache_type = { .release = kfd_topology_kobj_release, .sysfs_ops = &cache_ops, }; /****** Sysfs of Performance Counters ******/ struct kfd_perf_attr { struct kobj_attribute attr; uint32_t data; }; static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs, char *buf) { int offs = 0; struct kfd_perf_attr *attr; buf[0] = 0; attr = container_of(attrs, struct kfd_perf_attr, attr); if (!attr->data) /* invalid data for PMC */ return 0; else return sysfs_show_32bit_val(buf, offs, attr->data); } #define KFD_PERF_DESC(_name, _data) \ { \ .attr = __ATTR(_name, 0444, perf_show, NULL), \ .data = _data, \ } static struct kfd_perf_attr perf_attr_iommu[] = { KFD_PERF_DESC(max_concurrent, 0), KFD_PERF_DESC(num_counters, 0), KFD_PERF_DESC(counter_ids, 0), }; /****************************************/ static ssize_t node_show(struct kobject *kobj, struct attribute *attr, char *buffer) { int offs = 0; struct kfd_topology_device *dev; uint32_t log_max_watch_addr; /* Making sure that the buffer is an empty string */ buffer[0] = 0; if (strcmp(attr->name, "gpu_id") == 0) { dev = container_of(attr, struct kfd_topology_device, attr_gpuid); if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu)) return -EPERM; return sysfs_show_32bit_val(buffer, offs, dev->gpu_id); } if (strcmp(attr->name, "name") == 0) { dev = container_of(attr, struct kfd_topology_device, attr_name); if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu)) return -EPERM; return sysfs_show_str_val(buffer, offs, dev->node_props.name); } dev = container_of(attr, struct kfd_topology_device, attr_props); if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu)) return -EPERM; sysfs_show_32bit_prop(buffer, offs, "cpu_cores_count", dev->node_props.cpu_cores_count); sysfs_show_32bit_prop(buffer, offs, "simd_count", dev->gpu ? dev->node_props.simd_count : 0); sysfs_show_32bit_prop(buffer, offs, "mem_banks_count", dev->node_props.mem_banks_count); sysfs_show_32bit_prop(buffer, offs, "caches_count", dev->node_props.caches_count); sysfs_show_32bit_prop(buffer, offs, "io_links_count", dev->node_props.io_links_count); sysfs_show_32bit_prop(buffer, offs, "p2p_links_count", dev->node_props.p2p_links_count); sysfs_show_32bit_prop(buffer, offs, "cpu_core_id_base", dev->node_props.cpu_core_id_base); sysfs_show_32bit_prop(buffer, offs, "simd_id_base", dev->node_props.simd_id_base); sysfs_show_32bit_prop(buffer, offs, "max_waves_per_simd", dev->node_props.max_waves_per_simd); sysfs_show_32bit_prop(buffer, offs, "lds_size_in_kb", dev->node_props.lds_size_in_kb); sysfs_show_32bit_prop(buffer, offs, "gds_size_in_kb", dev->node_props.gds_size_in_kb); sysfs_show_32bit_prop(buffer, offs, "num_gws", dev->node_props.num_gws); sysfs_show_32bit_prop(buffer, offs, "wave_front_size", dev->node_props.wave_front_size); sysfs_show_32bit_prop(buffer, offs, "array_count", dev->node_props.array_count); sysfs_show_32bit_prop(buffer, offs, "simd_arrays_per_engine", dev->node_props.simd_arrays_per_engine); sysfs_show_32bit_prop(buffer, offs, "cu_per_simd_array", dev->node_props.cu_per_simd_array); sysfs_show_32bit_prop(buffer, offs, "simd_per_cu", dev->node_props.simd_per_cu); sysfs_show_32bit_prop(buffer, offs, "max_slots_scratch_cu", dev->node_props.max_slots_scratch_cu); sysfs_show_32bit_prop(buffer, offs, "gfx_target_version", dev->node_props.gfx_target_version); sysfs_show_32bit_prop(buffer, offs, "vendor_id", dev->node_props.vendor_id); sysfs_show_32bit_prop(buffer, offs, "device_id", dev->node_props.device_id); sysfs_show_32bit_prop(buffer, offs, "location_id", dev->node_props.location_id); sysfs_show_32bit_prop(buffer, offs, "domain", dev->node_props.domain); sysfs_show_32bit_prop(buffer, offs, "drm_render_minor", dev->node_props.drm_render_minor); sysfs_show_64bit_prop(buffer, offs, "hive_id", dev->node_props.hive_id); sysfs_show_32bit_prop(buffer, offs, "num_sdma_engines", dev->node_props.num_sdma_engines); sysfs_show_32bit_prop(buffer, offs, "num_sdma_xgmi_engines", dev->node_props.num_sdma_xgmi_engines); sysfs_show_32bit_prop(buffer, offs, "num_sdma_queues_per_engine", dev->node_props.num_sdma_queues_per_engine); sysfs_show_32bit_prop(buffer, offs, "num_cp_queues", dev->node_props.num_cp_queues); if (dev->gpu) { log_max_watch_addr = __ilog2_u32(dev->gpu->device_info.num_of_watch_points); if (log_max_watch_addr) { dev->node_props.capability |= HSA_CAP_WATCH_POINTS_SUPPORTED; dev->node_props.capability |= ((log_max_watch_addr << HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) & HSA_CAP_WATCH_POINTS_TOTALBITS_MASK); } if (dev->gpu->adev->asic_type == CHIP_TONGA) dev->node_props.capability |= HSA_CAP_AQL_QUEUE_DOUBLE_MAP; sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_fcompute", dev->node_props.max_engine_clk_fcompute); sysfs_show_64bit_prop(buffer, offs, "local_mem_size", 0ULL); sysfs_show_32bit_prop(buffer, offs, "fw_version", dev->gpu->mec_fw_version); sysfs_show_32bit_prop(buffer, offs, "capability", dev->node_props.capability); sysfs_show_32bit_prop(buffer, offs, "sdma_fw_version", dev->gpu->sdma_fw_version); sysfs_show_64bit_prop(buffer, offs, "unique_id", dev->gpu->adev->unique_id); } return sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_ccompute", cpufreq_quick_get_max(0)/1000); } static const struct sysfs_ops node_ops = { .show = node_show, }; static struct kobj_type node_type = { .release = kfd_topology_kobj_release, .sysfs_ops = &node_ops, }; static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr) { sysfs_remove_file(kobj, attr); kobject_del(kobj); kobject_put(kobj); } static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev) { struct kfd_iolink_properties *p2plink; struct kfd_iolink_properties *iolink; struct kfd_cache_properties *cache; struct kfd_mem_properties *mem; struct kfd_perf_properties *perf; if (dev->kobj_iolink) { list_for_each_entry(iolink, &dev->io_link_props, list) if (iolink->kobj) { kfd_remove_sysfs_file(iolink->kobj, &iolink->attr); iolink->kobj = NULL; } kobject_del(dev->kobj_iolink); kobject_put(dev->kobj_iolink); dev->kobj_iolink = NULL; } if (dev->kobj_p2plink) { list_for_each_entry(p2plink, &dev->p2p_link_props, list) if (p2plink->kobj) { kfd_remove_sysfs_file(p2plink->kobj, &p2plink->attr); p2plink->kobj = NULL; } kobject_del(dev->kobj_p2plink); kobject_put(dev->kobj_p2plink); dev->kobj_p2plink = NULL; } if (dev->kobj_cache) { list_for_each_entry(cache, &dev->cache_props, list) if (cache->kobj) { kfd_remove_sysfs_file(cache->kobj, &cache->attr); cache->kobj = NULL; } kobject_del(dev->kobj_cache); kobject_put(dev->kobj_cache); dev->kobj_cache = NULL; } if (dev->kobj_mem) { list_for_each_entry(mem, &dev->mem_props, list) if (mem->kobj) { kfd_remove_sysfs_file(mem->kobj, &mem->attr); mem->kobj = NULL; } kobject_del(dev->kobj_mem); kobject_put(dev->kobj_mem); dev->kobj_mem = NULL; } if (dev->kobj_perf) { list_for_each_entry(perf, &dev->perf_props, list) { kfree(perf->attr_group); perf->attr_group = NULL; } kobject_del(dev->kobj_perf); kobject_put(dev->kobj_perf); dev->kobj_perf = NULL; } if (dev->kobj_node) { sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid); sysfs_remove_file(dev->kobj_node, &dev->attr_name); sysfs_remove_file(dev->kobj_node, &dev->attr_props); kobject_del(dev->kobj_node); kobject_put(dev->kobj_node); dev->kobj_node = NULL; } } static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev, uint32_t id) { struct kfd_iolink_properties *p2plink; struct kfd_iolink_properties *iolink; struct kfd_cache_properties *cache; struct kfd_mem_properties *mem; struct kfd_perf_properties *perf; int ret; uint32_t i, num_attrs; struct attribute **attrs; if (WARN_ON(dev->kobj_node)) return -EEXIST; /* * Creating the sysfs folders */ dev->kobj_node = kfd_alloc_struct(dev->kobj_node); if (!dev->kobj_node) return -ENOMEM; ret = kobject_init_and_add(dev->kobj_node, &node_type, sys_props.kobj_nodes, "%d", id); if (ret < 0) { kobject_put(dev->kobj_node); return ret; } dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node); if (!dev->kobj_mem) return -ENOMEM; dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node); if (!dev->kobj_cache) return -ENOMEM; dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node); if (!dev->kobj_iolink) return -ENOMEM; dev->kobj_p2plink = kobject_create_and_add("p2p_links", dev->kobj_node); if (!dev->kobj_p2plink) return -ENOMEM; dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node); if (!dev->kobj_perf) return -ENOMEM; /* * Creating sysfs files for node properties */ dev->attr_gpuid.name = "gpu_id"; dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE; sysfs_attr_init(&dev->attr_gpuid); dev->attr_name.name = "name"; dev->attr_name.mode = KFD_SYSFS_FILE_MODE; sysfs_attr_init(&dev->attr_name); dev->attr_props.name = "properties"; dev->attr_props.mode = KFD_SYSFS_FILE_MODE; sysfs_attr_init(&dev->attr_props); ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid); if (ret < 0) return ret; ret = sysfs_create_file(dev->kobj_node, &dev->attr_name); if (ret < 0) return ret; ret = sysfs_create_file(dev->kobj_node, &dev->attr_props); if (ret < 0) return ret; i = 0; list_for_each_entry(mem, &dev->mem_props, list) { mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); if (!mem->kobj) return -ENOMEM; ret = kobject_init_and_add(mem->kobj, &mem_type, dev->kobj_mem, "%d", i); if (ret < 0) { kobject_put(mem->kobj); return ret; } mem->attr.name = "properties"; mem->attr.mode = KFD_SYSFS_FILE_MODE; sysfs_attr_init(&mem->attr); ret = sysfs_create_file(mem->kobj, &mem->attr); if (ret < 0) return ret; i++; } i = 0; list_for_each_entry(cache, &dev->cache_props, list) { cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); if (!cache->kobj) return -ENOMEM; ret = kobject_init_and_add(cache->kobj, &cache_type, dev->kobj_cache, "%d", i); if (ret < 0) { kobject_put(cache->kobj); return ret; } cache->attr.name = "properties"; cache->attr.mode = KFD_SYSFS_FILE_MODE; sysfs_attr_init(&cache->attr); ret = sysfs_create_file(cache->kobj, &cache->attr); if (ret < 0) return ret; i++; } i = 0; list_for_each_entry(iolink, &dev->io_link_props, list) { iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); if (!iolink->kobj) return -ENOMEM; ret = kobject_init_and_add(iolink->kobj, &iolink_type, dev->kobj_iolink, "%d", i); if (ret < 0) { kobject_put(iolink->kobj); return ret; } iolink->attr.name = "properties"; iolink->attr.mode = KFD_SYSFS_FILE_MODE; sysfs_attr_init(&iolink->attr); ret = sysfs_create_file(iolink->kobj, &iolink->attr); if (ret < 0) return ret; i++; } i = 0; list_for_each_entry(p2plink, &dev->p2p_link_props, list) { p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); if (!p2plink->kobj) return -ENOMEM; ret = kobject_init_and_add(p2plink->kobj, &iolink_type, dev->kobj_p2plink, "%d", i); if (ret < 0) { kobject_put(p2plink->kobj); return ret; } p2plink->attr.name = "properties"; p2plink->attr.mode = KFD_SYSFS_FILE_MODE; sysfs_attr_init(&p2plink->attr); ret = sysfs_create_file(p2plink->kobj, &p2plink->attr); if (ret < 0) return ret; i++; } /* All hardware blocks have the same number of attributes. */ num_attrs = ARRAY_SIZE(perf_attr_iommu); list_for_each_entry(perf, &dev->perf_props, list) { perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr) * num_attrs + sizeof(struct attribute_group), GFP_KERNEL); if (!perf->attr_group) return -ENOMEM; attrs = (struct attribute **)(perf->attr_group + 1); if (!strcmp(perf->block_name, "iommu")) { /* Information of IOMMU's num_counters and counter_ids is shown * under /sys/bus/event_source/devices/amd_iommu. We don't * duplicate here. */ perf_attr_iommu[0].data = perf->max_concurrent; for (i = 0; i < num_attrs; i++) attrs[i] = &perf_attr_iommu[i].attr.attr; } perf->attr_group->name = perf->block_name; perf->attr_group->attrs = attrs; ret = sysfs_create_group(dev->kobj_perf, perf->attr_group); if (ret < 0) return ret; } return 0; } /* Called with write topology lock acquired */ static int kfd_build_sysfs_node_tree(void) { struct kfd_topology_device *dev; int ret; uint32_t i = 0; list_for_each_entry(dev, &topology_device_list, list) { ret = kfd_build_sysfs_node_entry(dev, i); if (ret < 0) return ret; i++; } return 0; } /* Called with write topology lock acquired */ static void kfd_remove_sysfs_node_tree(void) { struct kfd_topology_device *dev; list_for_each_entry(dev, &topology_device_list, list) kfd_remove_sysfs_node_entry(dev); } static int kfd_topology_update_sysfs(void) { int ret; if (!sys_props.kobj_topology) { sys_props.kobj_topology = kfd_alloc_struct(sys_props.kobj_topology); if (!sys_props.kobj_topology) return -ENOMEM; ret = kobject_init_and_add(sys_props.kobj_topology, &sysprops_type, &kfd_device->kobj, "topology"); if (ret < 0) { kobject_put(sys_props.kobj_topology); return ret; } sys_props.kobj_nodes = kobject_create_and_add("nodes", sys_props.kobj_topology); if (!sys_props.kobj_nodes) return -ENOMEM; sys_props.attr_genid.name = "generation_id"; sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE; sysfs_attr_init(&sys_props.attr_genid); ret = sysfs_create_file(sys_props.kobj_topology, &sys_props.attr_genid); if (ret < 0) return ret; sys_props.attr_props.name = "system_properties"; sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE; sysfs_attr_init(&sys_props.attr_props); ret = sysfs_create_file(sys_props.kobj_topology, &sys_props.attr_props); if (ret < 0) return ret; } kfd_remove_sysfs_node_tree(); return kfd_build_sysfs_node_tree(); } static void kfd_topology_release_sysfs(void) { kfd_remove_sysfs_node_tree(); if (sys_props.kobj_topology) { sysfs_remove_file(sys_props.kobj_topology, &sys_props.attr_genid); sysfs_remove_file(sys_props.kobj_topology, &sys_props.attr_props); if (sys_props.kobj_nodes) { kobject_del(sys_props.kobj_nodes); kobject_put(sys_props.kobj_nodes); sys_props.kobj_nodes = NULL; } kobject_del(sys_props.kobj_topology); kobject_put(sys_props.kobj_topology); sys_props.kobj_topology = NULL; } } /* Called with write topology_lock acquired */ static void kfd_topology_update_device_list(struct list_head *temp_list, struct list_head *master_list) { while (!list_empty(temp_list)) { list_move_tail(temp_list->next, master_list); sys_props.num_devices++; } } static void kfd_debug_print_topology(void) { struct kfd_topology_device *dev; down_read(&topology_lock); dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list); if (dev) { if (dev->node_props.cpu_cores_count && dev->node_props.simd_count) { pr_info("Topology: Add APU node [0x%0x:0x%0x]\n", dev->node_props.device_id, dev->node_props.vendor_id); } else if (dev->node_props.cpu_cores_count) pr_info("Topology: Add CPU node\n"); else if (dev->node_props.simd_count) pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n", dev->node_props.device_id, dev->node_props.vendor_id); } up_read(&topology_lock); } /* Helper function for intializing platform_xx members of * kfd_system_properties. Uses OEM info from the last CPU/APU node. */ static void kfd_update_system_properties(void) { struct kfd_topology_device *dev; down_read(&topology_lock); dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list); if (dev) { sys_props.platform_id = (*((uint64_t *)dev->oem_id)) & CRAT_OEMID_64BIT_MASK; sys_props.platform_oem = *((uint64_t *)dev->oem_table_id); sys_props.platform_rev = dev->oem_revision; } up_read(&topology_lock); } static void find_system_memory(const struct dmi_header *dm, void *private) { struct kfd_mem_properties *mem; u16 mem_width, mem_clock; struct kfd_topology_device *kdev = (struct kfd_topology_device *)private; const u8 *dmi_data = (const u8 *)(dm + 1); if (dm->type == DMI_ENTRY_MEM_DEVICE && dm->length >= 0x15) { mem_width = (u16)(*(const u16 *)(dmi_data + 0x6)); mem_clock = (u16)(*(const u16 *)(dmi_data + 0x11)); list_for_each_entry(mem, &kdev->mem_props, list) { if (mem_width != 0xFFFF && mem_width != 0) mem->width = mem_width; if (mem_clock != 0) mem->mem_clk_max = mem_clock; } } } /* * Performance counters information is not part of CRAT but we would like to * put them in the sysfs under topology directory for Thunk to get the data. * This function is called before updating the sysfs. */ static int kfd_add_perf_to_topology(struct kfd_topology_device *kdev) { /* These are the only counters supported so far */ return kfd_iommu_add_perf_counters(kdev); } /* kfd_add_non_crat_information - Add information that is not currently * defined in CRAT but is necessary for KFD topology * @dev - topology device to which addition info is added */ static void kfd_add_non_crat_information(struct kfd_topology_device *kdev) { /* Check if CPU only node. */ if (!kdev->gpu) { /* Add system memory information */ dmi_walk(find_system_memory, kdev); } /* TODO: For GPU node, rearrange code from kfd_topology_add_device */ } /* kfd_is_acpi_crat_invalid - CRAT from ACPI is valid only for AMD APU devices. * Ignore CRAT for all other devices. AMD APU is identified if both CPU * and GPU cores are present. * @device_list - topology device list created by parsing ACPI CRAT table. * @return - TRUE if invalid, FALSE is valid. */ static bool kfd_is_acpi_crat_invalid(struct list_head *device_list) { struct kfd_topology_device *dev; list_for_each_entry(dev, device_list, list) { if (dev->node_props.cpu_cores_count && dev->node_props.simd_count) return false; } pr_info("Ignoring ACPI CRAT on non-APU system\n"); return true; } int kfd_topology_init(void) { void *crat_image = NULL; size_t image_size = 0; int ret; struct list_head temp_topology_device_list; int cpu_only_node = 0; struct kfd_topology_device *kdev; int proximity_domain; /* topology_device_list - Master list of all topology devices * temp_topology_device_list - temporary list created while parsing CRAT * or VCRAT. Once parsing is complete the contents of list is moved to * topology_device_list */ /* Initialize the head for the both the lists */ INIT_LIST_HEAD(&topology_device_list); INIT_LIST_HEAD(&temp_topology_device_list); init_rwsem(&topology_lock); memset(&sys_props, 0, sizeof(sys_props)); /* Proximity domains in ACPI CRAT tables start counting at * 0. The same should be true for virtual CRAT tables created * at this stage. GPUs added later in kfd_topology_add_device * use a counter. */ proximity_domain = 0; /* * Get the CRAT image from the ACPI. If ACPI doesn't have one * or if ACPI CRAT is invalid create a virtual CRAT. * NOTE: The current implementation expects all AMD APUs to have * CRAT. If no CRAT is available, it is assumed to be a CPU */ ret = kfd_create_crat_image_acpi(&crat_image, &image_size); if (!ret) { ret = kfd_parse_crat_table(crat_image, &temp_topology_device_list, proximity_domain); if (ret || kfd_is_acpi_crat_invalid(&temp_topology_device_list)) { kfd_release_topology_device_list( &temp_topology_device_list); kfd_destroy_crat_image(crat_image); crat_image = NULL; } } if (!crat_image) { ret = kfd_create_crat_image_virtual(&crat_image, &image_size, COMPUTE_UNIT_CPU, NULL, proximity_domain); cpu_only_node = 1; if (ret) { pr_err("Error creating VCRAT table for CPU\n"); return ret; } ret = kfd_parse_crat_table(crat_image, &temp_topology_device_list, proximity_domain); if (ret) { pr_err("Error parsing VCRAT table for CPU\n"); goto err; } } kdev = list_first_entry(&temp_topology_device_list, struct kfd_topology_device, list); kfd_add_perf_to_topology(kdev); down_write(&topology_lock); kfd_topology_update_device_list(&temp_topology_device_list, &topology_device_list); topology_crat_proximity_domain = sys_props.num_devices-1; ret = kfd_topology_update_sysfs(); up_write(&topology_lock); if (!ret) { sys_props.generation_count++; kfd_update_system_properties(); kfd_debug_print_topology(); } else pr_err("Failed to update topology in sysfs ret=%d\n", ret); /* For nodes with GPU, this information gets added * when GPU is detected (kfd_topology_add_device). */ if (cpu_only_node) { /* Add additional information to CPU only node created above */ down_write(&topology_lock); kdev = list_first_entry(&topology_device_list, struct kfd_topology_device, list); up_write(&topology_lock); kfd_add_non_crat_information(kdev); } err: kfd_destroy_crat_image(crat_image); return ret; } void kfd_topology_shutdown(void) { down_write(&topology_lock); kfd_topology_release_sysfs(); kfd_release_live_view(); up_write(&topology_lock); } static uint32_t kfd_generate_gpu_id(struct kfd_dev *gpu) { uint32_t hashout; uint32_t buf[7]; uint64_t local_mem_size; int i; if (!gpu) return 0; local_mem_size = gpu->local_mem_info.local_mem_size_private + gpu->local_mem_info.local_mem_size_public; buf[0] = gpu->adev->pdev->devfn; buf[1] = gpu->adev->pdev->subsystem_vendor | (gpu->adev->pdev->subsystem_device << 16); buf[2] = pci_domain_nr(gpu->adev->pdev->bus); buf[3] = gpu->adev->pdev->device; buf[4] = gpu->adev->pdev->bus->number; buf[5] = lower_32_bits(local_mem_size); buf[6] = upper_32_bits(local_mem_size); for (i = 0, hashout = 0; i < 7; i++) hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH); return hashout; } /* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If * the GPU device is not already present in the topology device * list then return NULL. This means a new topology device has to * be created for this GPU. */ static struct kfd_topology_device *kfd_assign_gpu(struct kfd_dev *gpu) { struct kfd_topology_device *dev; struct kfd_topology_device *out_dev = NULL; struct kfd_mem_properties *mem; struct kfd_cache_properties *cache; struct kfd_iolink_properties *iolink; struct kfd_iolink_properties *p2plink; list_for_each_entry(dev, &topology_device_list, list) { /* Discrete GPUs need their own topology device list * entries. Don't assign them to CPU/APU nodes. */ if (!gpu->use_iommu_v2 && dev->node_props.cpu_cores_count) continue; if (!dev->gpu && (dev->node_props.simd_count > 0)) { dev->gpu = gpu; out_dev = dev; list_for_each_entry(mem, &dev->mem_props, list) mem->gpu = dev->gpu; list_for_each_entry(cache, &dev->cache_props, list) cache->gpu = dev->gpu; list_for_each_entry(iolink, &dev->io_link_props, list) iolink->gpu = dev->gpu; list_for_each_entry(p2plink, &dev->p2p_link_props, list) p2plink->gpu = dev->gpu; break; } } return out_dev; } static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival) { /* * TODO: Generate an event for thunk about the arrival/removal * of the GPU */ } /* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info, * patch this after CRAT parsing. */ static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev) { struct kfd_mem_properties *mem; struct kfd_local_mem_info local_mem_info; if (!dev) return; /* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with * single bank of VRAM local memory. * for dGPUs - VCRAT reports only one bank of Local Memory * for APUs - If CRAT from ACPI reports more than one bank, then * all the banks will report the same mem_clk_max information */ amdgpu_amdkfd_get_local_mem_info(dev->gpu->adev, &local_mem_info); list_for_each_entry(mem, &dev->mem_props, list) mem->mem_clk_max = local_mem_info.mem_clk_max; } static void kfd_set_iolink_no_atomics(struct kfd_topology_device *dev, struct kfd_topology_device *target_gpu_dev, struct kfd_iolink_properties *link) { /* xgmi always supports atomics between links. */ if (link->iolink_type == CRAT_IOLINK_TYPE_XGMI) return; /* check pcie support to set cpu(dev) flags for target_gpu_dev link. */ if (target_gpu_dev) { uint32_t cap; pcie_capability_read_dword(target_gpu_dev->gpu->adev->pdev, PCI_EXP_DEVCAP2, &cap); if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 | PCI_EXP_DEVCAP2_ATOMIC_COMP64))) link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT | CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT; /* set gpu (dev) flags. */ } else { if (!dev->gpu->pci_atomic_requested || dev->gpu->adev->asic_type == CHIP_HAWAII) link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT | CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT; } } static void kfd_set_iolink_non_coherent(struct kfd_topology_device *to_dev, struct kfd_iolink_properties *outbound_link, struct kfd_iolink_properties *inbound_link) { /* CPU -> GPU with PCIe */ if (!to_dev->gpu && inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS) inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT; if (to_dev->gpu) { /* GPU <-> GPU with PCIe and * Vega20 with XGMI */ if (inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS || (inbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI && KFD_GC_VERSION(to_dev->gpu) == IP_VERSION(9, 4, 0))) { outbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT; inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT; } } } static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev) { struct kfd_iolink_properties *link, *inbound_link; struct kfd_topology_device *peer_dev; if (!dev || !dev->gpu) return; /* GPU only creates direct links so apply flags setting to all */ list_for_each_entry(link, &dev->io_link_props, list) { link->flags = CRAT_IOLINK_FLAGS_ENABLED; kfd_set_iolink_no_atomics(dev, NULL, link); peer_dev = kfd_topology_device_by_proximity_domain( link->node_to); if (!peer_dev) continue; /* Include the CPU peer in GPU hive if connected over xGMI. */ if (!peer_dev->gpu && !peer_dev->node_props.hive_id && dev->node_props.hive_id && dev->gpu->adev->gmc.xgmi.connected_to_cpu) peer_dev->node_props.hive_id = dev->node_props.hive_id; list_for_each_entry(inbound_link, &peer_dev->io_link_props, list) { if (inbound_link->node_to != link->node_from) continue; inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED; kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link); kfd_set_iolink_non_coherent(peer_dev, link, inbound_link); } } /* Create indirect links so apply flags setting to all */ list_for_each_entry(link, &dev->p2p_link_props, list) { link->flags = CRAT_IOLINK_FLAGS_ENABLED; kfd_set_iolink_no_atomics(dev, NULL, link); peer_dev = kfd_topology_device_by_proximity_domain( link->node_to); if (!peer_dev) continue; list_for_each_entry(inbound_link, &peer_dev->p2p_link_props, list) { if (inbound_link->node_to != link->node_from) continue; inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED; kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link); kfd_set_iolink_non_coherent(peer_dev, link, inbound_link); } } } static int kfd_build_p2p_node_entry(struct kfd_topology_device *dev, struct kfd_iolink_properties *p2plink) { int ret; p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); if (!p2plink->kobj) return -ENOMEM; ret = kobject_init_and_add(p2plink->kobj, &iolink_type, dev->kobj_p2plink, "%d", dev->node_props.p2p_links_count - 1); if (ret < 0) { kobject_put(p2plink->kobj); return ret; } p2plink->attr.name = "properties"; p2plink->attr.mode = KFD_SYSFS_FILE_MODE; sysfs_attr_init(&p2plink->attr); ret = sysfs_create_file(p2plink->kobj, &p2plink->attr); if (ret < 0) return ret; return 0; } static int kfd_create_indirect_link_prop(struct kfd_topology_device *kdev, int gpu_node) { struct kfd_iolink_properties *gpu_link, *tmp_link, *cpu_link; struct kfd_iolink_properties *props = NULL, *props2 = NULL; struct kfd_topology_device *cpu_dev; int ret = 0; int i, num_cpu; num_cpu = 0; list_for_each_entry(cpu_dev, &topology_device_list, list) { if (cpu_dev->gpu) break; num_cpu++; } gpu_link = list_first_entry(&kdev->io_link_props, struct kfd_iolink_properties, list); if (!gpu_link) return -ENOMEM; for (i = 0; i < num_cpu; i++) { /* CPU <--> GPU */ if (gpu_link->node_to == i) continue; /* find CPU <--> CPU links */ cpu_link = NULL; cpu_dev = kfd_topology_device_by_proximity_domain(i); if (cpu_dev) { list_for_each_entry(tmp_link, &cpu_dev->io_link_props, list) { if (tmp_link->node_to == gpu_link->node_to) { cpu_link = tmp_link; break; } } } if (!cpu_link) return -ENOMEM; /* CPU <--> CPU <--> GPU, GPU node*/ props = kfd_alloc_struct(props); if (!props) return -ENOMEM; memcpy(props, gpu_link, sizeof(struct kfd_iolink_properties)); props->weight = gpu_link->weight + cpu_link->weight; props->min_latency = gpu_link->min_latency + cpu_link->min_latency; props->max_latency = gpu_link->max_latency + cpu_link->max_latency; props->min_bandwidth = min(gpu_link->min_bandwidth, cpu_link->min_bandwidth); props->max_bandwidth = min(gpu_link->max_bandwidth, cpu_link->max_bandwidth); props->node_from = gpu_node; props->node_to = i; kdev->node_props.p2p_links_count++; list_add_tail(&props->list, &kdev->p2p_link_props); ret = kfd_build_p2p_node_entry(kdev, props); if (ret < 0) return ret; /* for small Bar, no CPU --> GPU in-direct links */ if (kfd_dev_is_large_bar(kdev->gpu)) { /* CPU <--> CPU <--> GPU, CPU node*/ props2 = kfd_alloc_struct(props2); if (!props2) return -ENOMEM; memcpy(props2, props, sizeof(struct kfd_iolink_properties)); props2->node_from = i; props2->node_to = gpu_node; props2->kobj = NULL; cpu_dev->node_props.p2p_links_count++; list_add_tail(&props2->list, &cpu_dev->p2p_link_props); ret = kfd_build_p2p_node_entry(cpu_dev, props2); if (ret < 0) return ret; } } return ret; } #if defined(CONFIG_HSA_AMD_P2P) static int kfd_add_peer_prop(struct kfd_topology_device *kdev, struct kfd_topology_device *peer, int from, int to) { struct kfd_iolink_properties *props = NULL; struct kfd_iolink_properties *iolink1, *iolink2, *iolink3; struct kfd_topology_device *cpu_dev; int ret = 0; if (!amdgpu_device_is_peer_accessible( kdev->gpu->adev, peer->gpu->adev)) return ret; iolink1 = list_first_entry(&kdev->io_link_props, struct kfd_iolink_properties, list); if (!iolink1) return -ENOMEM; iolink2 = list_first_entry(&peer->io_link_props, struct kfd_iolink_properties, list); if (!iolink2) return -ENOMEM; props = kfd_alloc_struct(props); if (!props) return -ENOMEM; memcpy(props, iolink1, sizeof(struct kfd_iolink_properties)); props->weight = iolink1->weight + iolink2->weight; props->min_latency = iolink1->min_latency + iolink2->min_latency; props->max_latency = iolink1->max_latency + iolink2->max_latency; props->min_bandwidth = min(iolink1->min_bandwidth, iolink2->min_bandwidth); props->max_bandwidth = min(iolink2->max_bandwidth, iolink2->max_bandwidth); if (iolink1->node_to != iolink2->node_to) { /* CPU->CPU link*/ cpu_dev = kfd_topology_device_by_proximity_domain(iolink1->node_to); if (cpu_dev) { list_for_each_entry(iolink3, &cpu_dev->io_link_props, list) if (iolink3->node_to == iolink2->node_to) break; props->weight += iolink3->weight; props->min_latency += iolink3->min_latency; props->max_latency += iolink3->max_latency; props->min_bandwidth = min(props->min_bandwidth, iolink3->min_bandwidth); props->max_bandwidth = min(props->max_bandwidth, iolink3->max_bandwidth); } else { WARN(1, "CPU node not found"); } } props->node_from = from; props->node_to = to; peer->node_props.p2p_links_count++; list_add_tail(&props->list, &peer->p2p_link_props); ret = kfd_build_p2p_node_entry(peer, props); return ret; } #endif static int kfd_dev_create_p2p_links(void) { struct kfd_topology_device *dev; struct kfd_topology_device *new_dev; #if defined(CONFIG_HSA_AMD_P2P) uint32_t i; #endif uint32_t k; int ret = 0; k = 0; list_for_each_entry(dev, &topology_device_list, list) k++; if (k < 2) return 0; new_dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list); if (WARN_ON(!new_dev->gpu)) return 0; k--; /* create in-direct links */ ret = kfd_create_indirect_link_prop(new_dev, k); if (ret < 0) goto out; /* create p2p links */ #if defined(CONFIG_HSA_AMD_P2P) i = 0; list_for_each_entry(dev, &topology_device_list, list) { if (dev == new_dev) break; if (!dev->gpu || !dev->gpu->adev || (dev->gpu->hive_id && dev->gpu->hive_id == new_dev->gpu->hive_id)) goto next; /* check if node(s) is/are peer accessible in one direction or bi-direction */ ret = kfd_add_peer_prop(new_dev, dev, i, k); if (ret < 0) goto out; ret = kfd_add_peer_prop(dev, new_dev, k, i); if (ret < 0) goto out; next: i++; } #endif out: return ret; } /* Helper function. See kfd_fill_gpu_cache_info for parameter description */ static int fill_in_l1_pcache(struct kfd_cache_properties **props_ext, struct kfd_gpu_cache_info *pcache_info, struct kfd_cu_info *cu_info, int cu_bitmask, int cache_type, unsigned int cu_processor_id, int cu_block) { unsigned int cu_sibling_map_mask; int first_active_cu; struct kfd_cache_properties *pcache = NULL; cu_sibling_map_mask = cu_bitmask; cu_sibling_map_mask >>= cu_block; cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1); first_active_cu = ffs(cu_sibling_map_mask); /* CU could be inactive. In case of shared cache find the first active * CU. and incase of non-shared cache check if the CU is inactive. If * inactive active skip it */ if (first_active_cu) { pcache = kfd_alloc_struct(pcache); if (!pcache) return -ENOMEM; memset(pcache, 0, sizeof(struct kfd_cache_properties)); pcache->processor_id_low = cu_processor_id + (first_active_cu - 1); pcache->cache_level = pcache_info[cache_type].cache_level; pcache->cache_size = pcache_info[cache_type].cache_size; if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE) pcache->cache_type |= HSA_CACHE_TYPE_DATA; if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE) pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION; if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE) pcache->cache_type |= HSA_CACHE_TYPE_CPU; if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE) pcache->cache_type |= HSA_CACHE_TYPE_HSACU; /* Sibling map is w.r.t processor_id_low, so shift out * inactive CU */ cu_sibling_map_mask = cu_sibling_map_mask >> (first_active_cu - 1); pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF); pcache->sibling_map[1] = (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF); pcache->sibling_map[2] = (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF); pcache->sibling_map[3] = (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF); pcache->sibling_map_size = 4; *props_ext = pcache; return 0; } return 1; } /* Helper function. See kfd_fill_gpu_cache_info for parameter description */ static int fill_in_l2_l3_pcache(struct kfd_cache_properties **props_ext, struct kfd_gpu_cache_info *pcache_info, struct kfd_cu_info *cu_info, int cache_type, unsigned int cu_processor_id) { unsigned int cu_sibling_map_mask; int first_active_cu; int i, j, k; struct kfd_cache_properties *pcache = NULL; cu_sibling_map_mask = cu_info->cu_bitmap[0][0]; cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1); first_active_cu = ffs(cu_sibling_map_mask); /* CU could be inactive. In case of shared cache find the first active * CU. and incase of non-shared cache check if the CU is inactive. If * inactive active skip it */ if (first_active_cu) { pcache = kfd_alloc_struct(pcache); if (!pcache) return -ENOMEM; memset(pcache, 0, sizeof(struct kfd_cache_properties)); pcache->processor_id_low = cu_processor_id + (first_active_cu - 1); pcache->cache_level = pcache_info[cache_type].cache_level; pcache->cache_size = pcache_info[cache_type].cache_size; if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE) pcache->cache_type |= HSA_CACHE_TYPE_DATA; if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE) pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION; if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE) pcache->cache_type |= HSA_CACHE_TYPE_CPU; if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE) pcache->cache_type |= HSA_CACHE_TYPE_HSACU; /* Sibling map is w.r.t processor_id_low, so shift out * inactive CU */ cu_sibling_map_mask = cu_sibling_map_mask >> (first_active_cu - 1); k = 0; for (i = 0; i < cu_info->num_shader_engines; i++) { for (j = 0; j < cu_info->num_shader_arrays_per_engine; j++) { pcache->sibling_map[k] = (uint8_t)(cu_sibling_map_mask & 0xFF); pcache->sibling_map[k+1] = (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF); pcache->sibling_map[k+2] = (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF); pcache->sibling_map[k+3] = (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF); k += 4; cu_sibling_map_mask = cu_info->cu_bitmap[i % 4][j + i / 4]; cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1); } } pcache->sibling_map_size = k; *props_ext = pcache; return 0; } return 1; } #define KFD_MAX_CACHE_TYPES 6 /* kfd_fill_cache_non_crat_info - Fill GPU cache info using kfd_gpu_cache_info * tables */ static void kfd_fill_cache_non_crat_info(struct kfd_topology_device *dev, struct kfd_dev *kdev) { struct kfd_gpu_cache_info *pcache_info = NULL; int i, j, k; int ct = 0; unsigned int cu_processor_id; int ret; unsigned int num_cu_shared; struct kfd_cu_info cu_info; struct kfd_cu_info *pcu_info; int gpu_processor_id; struct kfd_cache_properties *props_ext; int num_of_entries = 0; int num_of_cache_types = 0; struct kfd_gpu_cache_info cache_info[KFD_MAX_CACHE_TYPES]; amdgpu_amdkfd_get_cu_info(kdev->adev, &cu_info); pcu_info = &cu_info; gpu_processor_id = dev->node_props.simd_id_base; pcache_info = cache_info; num_of_cache_types = kfd_get_gpu_cache_info(kdev, &pcache_info); if (!num_of_cache_types) { pr_warn("no cache info found\n"); return; } /* For each type of cache listed in the kfd_gpu_cache_info table, * go through all available Compute Units. * The [i,j,k] loop will * if kfd_gpu_cache_info.num_cu_shared = 1 * will parse through all available CU * If (kfd_gpu_cache_info.num_cu_shared != 1) * then it will consider only one CU from * the shared unit */ for (ct = 0; ct < num_of_cache_types; ct++) { cu_processor_id = gpu_processor_id; if (pcache_info[ct].cache_level == 1) { for (i = 0; i < pcu_info->num_shader_engines; i++) { for (j = 0; j < pcu_info->num_shader_arrays_per_engine; j++) { for (k = 0; k < pcu_info->num_cu_per_sh; k += pcache_info[ct].num_cu_shared) { ret = fill_in_l1_pcache(&props_ext, pcache_info, pcu_info, pcu_info->cu_bitmap[i % 4][j + i / 4], ct, cu_processor_id, k); if (ret < 0) break; if (!ret) { num_of_entries++; list_add_tail(&props_ext->list, &dev->cache_props); } /* Move to next CU block */ num_cu_shared = ((k + pcache_info[ct].num_cu_shared) <= pcu_info->num_cu_per_sh) ? pcache_info[ct].num_cu_shared : (pcu_info->num_cu_per_sh - k); cu_processor_id += num_cu_shared; } } } } else { ret = fill_in_l2_l3_pcache(&props_ext, pcache_info, pcu_info, ct, cu_processor_id); if (ret < 0) break; if (!ret) { num_of_entries++; list_add_tail(&props_ext->list, &dev->cache_props); } } } dev->node_props.caches_count += num_of_entries; pr_debug("Added [%d] GPU cache entries\n", num_of_entries); } static int kfd_topology_add_device_locked(struct kfd_dev *gpu, uint32_t gpu_id, struct kfd_topology_device **dev) { int proximity_domain = ++topology_crat_proximity_domain; struct list_head temp_topology_device_list; void *crat_image = NULL; size_t image_size = 0; int res; res = kfd_create_crat_image_virtual(&crat_image, &image_size, COMPUTE_UNIT_GPU, gpu, proximity_domain); if (res) { pr_err("Error creating VCRAT for GPU (ID: 0x%x)\n", gpu_id); topology_crat_proximity_domain--; goto err; } INIT_LIST_HEAD(&temp_topology_device_list); res = kfd_parse_crat_table(crat_image, &temp_topology_device_list, proximity_domain); if (res) { pr_err("Error parsing VCRAT for GPU (ID: 0x%x)\n", gpu_id); topology_crat_proximity_domain--; goto err; } kfd_topology_update_device_list(&temp_topology_device_list, &topology_device_list); *dev = kfd_assign_gpu(gpu); if (WARN_ON(!*dev)) { res = -ENODEV; goto err; } /* Fill the cache affinity information here for the GPUs * using VCRAT */ kfd_fill_cache_non_crat_info(*dev, gpu); /* Update the SYSFS tree, since we added another topology * device */ res = kfd_topology_update_sysfs(); if (!res) sys_props.generation_count++; else pr_err("Failed to update GPU (ID: 0x%x) to sysfs topology. res=%d\n", gpu_id, res); err: kfd_destroy_crat_image(crat_image); return res; } int kfd_topology_add_device(struct kfd_dev *gpu) { uint32_t gpu_id; struct kfd_topology_device *dev; struct kfd_cu_info cu_info; int res = 0; int i; const char *asic_name = amdgpu_asic_name[gpu->adev->asic_type]; gpu_id = kfd_generate_gpu_id(gpu); pr_debug("Adding new GPU (ID: 0x%x) to topology\n", gpu_id); /* Check to see if this gpu device exists in the topology_device_list. * If so, assign the gpu to that device, * else create a Virtual CRAT for this gpu device and then parse that * CRAT to create a new topology device. Once created assign the gpu to * that topology device */ down_write(&topology_lock); dev = kfd_assign_gpu(gpu); if (!dev) res = kfd_topology_add_device_locked(gpu, gpu_id, &dev); up_write(&topology_lock); if (res) return res; dev->gpu_id = gpu_id; gpu->id = gpu_id; kfd_dev_create_p2p_links(); /* TODO: Move the following lines to function * kfd_add_non_crat_information */ /* Fill-in additional information that is not available in CRAT but * needed for the topology */ amdgpu_amdkfd_get_cu_info(dev->gpu->adev, &cu_info); for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1; i++) { dev->node_props.name[i] = __tolower(asic_name[i]); if (asic_name[i] == '\0') break; } dev->node_props.name[i] = '\0'; dev->node_props.simd_arrays_per_engine = cu_info.num_shader_arrays_per_engine; dev->node_props.gfx_target_version = gpu->device_info.gfx_target_version; dev->node_props.vendor_id = gpu->adev->pdev->vendor; dev->node_props.device_id = gpu->adev->pdev->device; dev->node_props.capability |= ((dev->gpu->adev->rev_id << HSA_CAP_ASIC_REVISION_SHIFT) & HSA_CAP_ASIC_REVISION_MASK); dev->node_props.location_id = pci_dev_id(gpu->adev->pdev); dev->node_props.domain = pci_domain_nr(gpu->adev->pdev->bus); dev->node_props.max_engine_clk_fcompute = amdgpu_amdkfd_get_max_engine_clock_in_mhz(dev->gpu->adev); dev->node_props.max_engine_clk_ccompute = cpufreq_quick_get_max(0) / 1000; dev->node_props.drm_render_minor = gpu->shared_resources.drm_render_minor; dev->node_props.hive_id = gpu->hive_id; dev->node_props.num_sdma_engines = kfd_get_num_sdma_engines(gpu); dev->node_props.num_sdma_xgmi_engines = kfd_get_num_xgmi_sdma_engines(gpu); dev->node_props.num_sdma_queues_per_engine = gpu->device_info.num_sdma_queues_per_engine - gpu->device_info.num_reserved_sdma_queues_per_engine; dev->node_props.num_gws = (dev->gpu->gws && dev->gpu->dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) ? dev->gpu->adev->gds.gws_size : 0; dev->node_props.num_cp_queues = get_cp_queues_num(dev->gpu->dqm); kfd_fill_mem_clk_max_info(dev); kfd_fill_iolink_non_crat_info(dev); switch (dev->gpu->adev->asic_type) { case CHIP_KAVERI: case CHIP_HAWAII: case CHIP_TONGA: dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 << HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) & HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK); break; case CHIP_CARRIZO: case CHIP_FIJI: case CHIP_POLARIS10: case CHIP_POLARIS11: case CHIP_POLARIS12: case CHIP_VEGAM: pr_debug("Adding doorbell packet type capability\n"); dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 << HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) & HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK); break; default: if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(9, 0, 1)) dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 << HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) & HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK); else WARN(1, "Unexpected ASIC family %u", dev->gpu->adev->asic_type); } /* * Overwrite ATS capability according to needs_iommu_device to fix * potential missing corresponding bit in CRAT of BIOS. */ if (dev->gpu->use_iommu_v2) dev->node_props.capability |= HSA_CAP_ATS_PRESENT; else dev->node_props.capability &= ~HSA_CAP_ATS_PRESENT; /* Fix errors in CZ CRAT. * simd_count: Carrizo CRAT reports wrong simd_count, probably * because it doesn't consider masked out CUs * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd */ if (dev->gpu->adev->asic_type == CHIP_CARRIZO) { dev->node_props.simd_count = cu_info.simd_per_cu * cu_info.cu_active_number; dev->node_props.max_waves_per_simd = 10; } /* kfd only concerns sram ecc on GFX and HBM ecc on UMC */ dev->node_props.capability |= ((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__GFX)) != 0) ? HSA_CAP_SRAM_EDCSUPPORTED : 0; dev->node_props.capability |= ((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__UMC)) != 0) ? HSA_CAP_MEM_EDCSUPPORTED : 0; if (KFD_GC_VERSION(dev->gpu) != IP_VERSION(9, 0, 1)) dev->node_props.capability |= (dev->gpu->adev->ras_enabled != 0) ? HSA_CAP_RASEVENTNOTIFY : 0; if (KFD_IS_SVM_API_SUPPORTED(dev->gpu->adev->kfd.dev)) dev->node_props.capability |= HSA_CAP_SVMAPI_SUPPORTED; kfd_debug_print_topology(); kfd_notify_gpu_change(gpu_id, 1); return 0; } /** * kfd_topology_update_io_links() - Update IO links after device removal. * @proximity_domain: Proximity domain value of the dev being removed. * * The topology list currently is arranged in increasing order of * proximity domain. * * Two things need to be done when a device is removed: * 1. All the IO links to this device need to be removed. * 2. All nodes after the current device node need to move * up once this device node is removed from the topology * list. As a result, the proximity domain values for * all nodes after the node being deleted reduce by 1. * This would also cause the proximity domain values for * io links to be updated based on new proximity domain * values. * * Context: The caller must hold write topology_lock. */ static void kfd_topology_update_io_links(int proximity_domain) { struct kfd_topology_device *dev; struct kfd_iolink_properties *iolink, *p2plink, *tmp; list_for_each_entry(dev, &topology_device_list, list) { if (dev->proximity_domain > proximity_domain) dev->proximity_domain--; list_for_each_entry_safe(iolink, tmp, &dev->io_link_props, list) { /* * If there is an io link to the dev being deleted * then remove that IO link also. */ if (iolink->node_to == proximity_domain) { list_del(&iolink->list); dev->node_props.io_links_count--; } else { if (iolink->node_from > proximity_domain) iolink->node_from--; if (iolink->node_to > proximity_domain) iolink->node_to--; } } list_for_each_entry_safe(p2plink, tmp, &dev->p2p_link_props, list) { /* * If there is a p2p link to the dev being deleted * then remove that p2p link also. */ if (p2plink->node_to == proximity_domain) { list_del(&p2plink->list); dev->node_props.p2p_links_count--; } else { if (p2plink->node_from > proximity_domain) p2plink->node_from--; if (p2plink->node_to > proximity_domain) p2plink->node_to--; } } } } int kfd_topology_remove_device(struct kfd_dev *gpu) { struct kfd_topology_device *dev, *tmp; uint32_t gpu_id; int res = -ENODEV; int i = 0; down_write(&topology_lock); list_for_each_entry_safe(dev, tmp, &topology_device_list, list) { if (dev->gpu == gpu) { gpu_id = dev->gpu_id; kfd_remove_sysfs_node_entry(dev); kfd_release_topology_device(dev); sys_props.num_devices--; kfd_topology_update_io_links(i); topology_crat_proximity_domain = sys_props.num_devices-1; sys_props.generation_count++; res = 0; if (kfd_topology_update_sysfs() < 0) kfd_topology_release_sysfs(); break; } i++; } up_write(&topology_lock); if (!res) kfd_notify_gpu_change(gpu_id, 0); return res; } /* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD * topology. If GPU device is found @idx, then valid kfd_dev pointer is * returned through @kdev * Return - 0: On success (@kdev will be NULL for non GPU nodes) * -1: If end of list */ int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev) { struct kfd_topology_device *top_dev; uint8_t device_idx = 0; *kdev = NULL; down_read(&topology_lock); list_for_each_entry(top_dev, &topology_device_list, list) { if (device_idx == idx) { *kdev = top_dev->gpu; up_read(&topology_lock); return 0; } device_idx++; } up_read(&topology_lock); return -1; } static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask) { int first_cpu_of_numa_node; if (!cpumask || cpumask == cpu_none_mask) return -1; first_cpu_of_numa_node = cpumask_first(cpumask); if (first_cpu_of_numa_node >= nr_cpu_ids) return -1; #ifdef CONFIG_X86_64 return cpu_data(first_cpu_of_numa_node).apicid; #else return first_cpu_of_numa_node; #endif } /* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor * of the given NUMA node (numa_node_id) * Return -1 on failure */ int kfd_numa_node_to_apic_id(int numa_node_id) { if (numa_node_id == -1) { pr_warn("Invalid NUMA Node. Use online CPU mask\n"); return kfd_cpumask_to_apic_id(cpu_online_mask); } return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id)); } void kfd_double_confirm_iommu_support(struct kfd_dev *gpu) { struct kfd_topology_device *dev; gpu->use_iommu_v2 = false; if (!gpu->device_info.needs_iommu_device) return; down_read(&topology_lock); /* Only use IOMMUv2 if there is an APU topology node with no GPU * assigned yet. This GPU will be assigned to it. */ list_for_each_entry(dev, &topology_device_list, list) if (dev->node_props.cpu_cores_count && dev->node_props.simd_count && !dev->gpu) gpu->use_iommu_v2 = true; up_read(&topology_lock); } #if defined(CONFIG_DEBUG_FS) int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data) { struct kfd_topology_device *dev; unsigned int i = 0; int r = 0; down_read(&topology_lock); list_for_each_entry(dev, &topology_device_list, list) { if (!dev->gpu) { i++; continue; } seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id); r = dqm_debugfs_hqds(m, dev->gpu->dqm); if (r) break; } up_read(&topology_lock); return r; } int kfd_debugfs_rls_by_device(struct seq_file *m, void *data) { struct kfd_topology_device *dev; unsigned int i = 0; int r = 0; down_read(&topology_lock); list_for_each_entry(dev, &topology_device_list, list) { if (!dev->gpu) { i++; continue; } seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id); r = pm_debugfs_runlist(m, &dev->gpu->dqm->packet_mgr); if (r) break; } up_read(&topology_lock); return r; } #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1