Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Harry Wentland | 4735 | 68.41% | 10 | 10.10% |
Dmytro Laktyushkin | 399 | 5.77% | 10 | 10.10% |
Anthony Koo | 250 | 3.61% | 7 | 7.07% |
David Francis | 204 | 2.95% | 3 | 3.03% |
Bhawanpreet Lakha | 158 | 2.28% | 6 | 6.06% |
Alex Deucher | 127 | 1.83% | 5 | 5.05% |
Jun Lei | 112 | 1.62% | 1 | 1.01% |
Wesley Chalmers | 93 | 1.34% | 1 | 1.01% |
Nicholas Kazlauskas | 90 | 1.30% | 2 | 2.02% |
Zeyu Fan | 85 | 1.23% | 1 | 1.01% |
Shirish S | 77 | 1.11% | 3 | 3.03% |
Yogesh Mohan Marimuthu | 73 | 1.05% | 1 | 1.01% |
Charlene Liu | 67 | 0.97% | 5 | 5.05% |
Aidan Wood | 64 | 0.92% | 1 | 1.01% |
Tony Cheng | 50 | 0.72% | 4 | 4.04% |
Andrey Grodzovsky | 50 | 0.72% | 3 | 3.03% |
Roman Li | 41 | 0.59% | 1 | 1.01% |
abdoulaye berthe | 38 | 0.55% | 2 | 2.02% |
Hersen Wu | 35 | 0.51% | 2 | 2.02% |
Colin Ian King | 26 | 0.38% | 1 | 1.01% |
Leon Elazar | 24 | 0.35% | 1 | 1.01% |
Atufa Khan | 20 | 0.29% | 1 | 1.01% |
Yongqiang Sun | 15 | 0.22% | 2 | 2.02% |
Jerry (Fangzhi) Zuo | 13 | 0.19% | 2 | 2.02% |
Ken Chalmers | 11 | 0.16% | 1 | 1.01% |
Navid Emamdoost | 10 | 0.14% | 2 | 2.02% |
Igor Kravchenko | 8 | 0.12% | 1 | 1.01% |
Ashley Thomas | 8 | 0.12% | 1 | 1.01% |
Dave Airlie | 8 | 0.12% | 7 | 7.07% |
Lee Jones | 7 | 0.10% | 1 | 1.01% |
Joshua Aberback | 5 | 0.07% | 2 | 2.02% |
Julian Parkin | 5 | 0.07% | 1 | 1.01% |
Ken Wang | 4 | 0.06% | 1 | 1.01% |
Aric Cyr | 3 | 0.04% | 1 | 1.01% |
Christophe Jaillet | 1 | 0.01% | 1 | 1.01% |
Ding Wang | 1 | 0.01% | 1 | 1.01% |
Tom St Denis | 1 | 0.01% | 1 | 1.01% |
Chunming Zhou | 1 | 0.01% | 1 | 1.01% |
Mario Kleiner | 1 | 0.01% | 1 | 1.01% |
Leo (Sunpeng) Li | 1 | 0.01% | 1 | 1.01% |
Total | 6921 | 99 |
/* * Copyright 2012-15 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dm_services.h" #include "link_encoder.h" #include "stream_encoder.h" #include "resource.h" #include "dce110/dce110_resource.h" #include "include/irq_service_interface.h" #include "dce/dce_audio.h" #include "dce110/dce110_timing_generator.h" #include "irq/dce110/irq_service_dce110.h" #include "dce110/dce110_timing_generator_v.h" #include "dce/dce_link_encoder.h" #include "dce/dce_stream_encoder.h" #include "dce/dce_mem_input.h" #include "dce110/dce110_mem_input_v.h" #include "dce/dce_ipp.h" #include "dce/dce_transform.h" #include "dce110/dce110_transform_v.h" #include "dce/dce_opp.h" #include "dce110/dce110_opp_v.h" #include "dce/dce_clock_source.h" #include "dce/dce_hwseq.h" #include "dce110/dce110_hw_sequencer.h" #include "dce/dce_aux.h" #include "dce/dce_abm.h" #include "dce/dce_dmcu.h" #include "dce/dce_i2c.h" #include "dce/dce_panel_cntl.h" #define DC_LOGGER \ dc->ctx->logger #include "dce110/dce110_compressor.h" #include "reg_helper.h" #include "dce/dce_11_0_d.h" #include "dce/dce_11_0_sh_mask.h" #ifndef mmMC_HUB_RDREQ_DMIF_LIMIT #include "gmc/gmc_8_2_d.h" #include "gmc/gmc_8_2_sh_mask.h" #endif #ifndef mmDP_DPHY_INTERNAL_CTRL #define mmDP_DPHY_INTERNAL_CTRL 0x4aa7 #define mmDP0_DP_DPHY_INTERNAL_CTRL 0x4aa7 #define mmDP1_DP_DPHY_INTERNAL_CTRL 0x4ba7 #define mmDP2_DP_DPHY_INTERNAL_CTRL 0x4ca7 #define mmDP3_DP_DPHY_INTERNAL_CTRL 0x4da7 #define mmDP4_DP_DPHY_INTERNAL_CTRL 0x4ea7 #define mmDP5_DP_DPHY_INTERNAL_CTRL 0x4fa7 #define mmDP6_DP_DPHY_INTERNAL_CTRL 0x54a7 #define mmDP7_DP_DPHY_INTERNAL_CTRL 0x56a7 #define mmDP8_DP_DPHY_INTERNAL_CTRL 0x57a7 #endif #ifndef mmBIOS_SCRATCH_2 #define mmBIOS_SCRATCH_2 0x05CB #define mmBIOS_SCRATCH_3 0x05CC #define mmBIOS_SCRATCH_6 0x05CF #endif #ifndef mmDP_DPHY_BS_SR_SWAP_CNTL #define mmDP_DPHY_BS_SR_SWAP_CNTL 0x4ADC #define mmDP0_DP_DPHY_BS_SR_SWAP_CNTL 0x4ADC #define mmDP1_DP_DPHY_BS_SR_SWAP_CNTL 0x4BDC #define mmDP2_DP_DPHY_BS_SR_SWAP_CNTL 0x4CDC #define mmDP3_DP_DPHY_BS_SR_SWAP_CNTL 0x4DDC #define mmDP4_DP_DPHY_BS_SR_SWAP_CNTL 0x4EDC #define mmDP5_DP_DPHY_BS_SR_SWAP_CNTL 0x4FDC #define mmDP6_DP_DPHY_BS_SR_SWAP_CNTL 0x54DC #endif #ifndef mmDP_DPHY_FAST_TRAINING #define mmDP_DPHY_FAST_TRAINING 0x4ABC #define mmDP0_DP_DPHY_FAST_TRAINING 0x4ABC #define mmDP1_DP_DPHY_FAST_TRAINING 0x4BBC #define mmDP2_DP_DPHY_FAST_TRAINING 0x4CBC #define mmDP3_DP_DPHY_FAST_TRAINING 0x4DBC #define mmDP4_DP_DPHY_FAST_TRAINING 0x4EBC #define mmDP5_DP_DPHY_FAST_TRAINING 0x4FBC #define mmDP6_DP_DPHY_FAST_TRAINING 0x54BC #endif #ifndef DPHY_RX_FAST_TRAINING_CAPABLE #define DPHY_RX_FAST_TRAINING_CAPABLE 0x1 #endif static const struct dce110_timing_generator_offsets dce110_tg_offsets[] = { { .crtc = (mmCRTC0_CRTC_CONTROL - mmCRTC_CONTROL), .dcp = (mmDCP0_GRPH_CONTROL - mmGRPH_CONTROL), }, { .crtc = (mmCRTC1_CRTC_CONTROL - mmCRTC_CONTROL), .dcp = (mmDCP1_GRPH_CONTROL - mmGRPH_CONTROL), }, { .crtc = (mmCRTC2_CRTC_CONTROL - mmCRTC_CONTROL), .dcp = (mmDCP2_GRPH_CONTROL - mmGRPH_CONTROL), }, { .crtc = (mmCRTC3_CRTC_CONTROL - mmCRTC_CONTROL), .dcp = (mmDCP3_GRPH_CONTROL - mmGRPH_CONTROL), }, { .crtc = (mmCRTC4_CRTC_CONTROL - mmCRTC_CONTROL), .dcp = (mmDCP4_GRPH_CONTROL - mmGRPH_CONTROL), }, { .crtc = (mmCRTC5_CRTC_CONTROL - mmCRTC_CONTROL), .dcp = (mmDCP5_GRPH_CONTROL - mmGRPH_CONTROL), } }; /* set register offset */ #define SR(reg_name)\ .reg_name = mm ## reg_name /* set register offset with instance */ #define SRI(reg_name, block, id)\ .reg_name = mm ## block ## id ## _ ## reg_name static const struct dce_dmcu_registers dmcu_regs = { DMCU_DCE110_COMMON_REG_LIST() }; static const struct dce_dmcu_shift dmcu_shift = { DMCU_MASK_SH_LIST_DCE110(__SHIFT) }; static const struct dce_dmcu_mask dmcu_mask = { DMCU_MASK_SH_LIST_DCE110(_MASK) }; static const struct dce_abm_registers abm_regs = { ABM_DCE110_COMMON_REG_LIST() }; static const struct dce_abm_shift abm_shift = { ABM_MASK_SH_LIST_DCE110(__SHIFT) }; static const struct dce_abm_mask abm_mask = { ABM_MASK_SH_LIST_DCE110(_MASK) }; #define ipp_regs(id)\ [id] = {\ IPP_DCE110_REG_LIST_DCE_BASE(id)\ } static const struct dce_ipp_registers ipp_regs[] = { ipp_regs(0), ipp_regs(1), ipp_regs(2) }; static const struct dce_ipp_shift ipp_shift = { IPP_DCE100_MASK_SH_LIST_DCE_COMMON_BASE(__SHIFT) }; static const struct dce_ipp_mask ipp_mask = { IPP_DCE100_MASK_SH_LIST_DCE_COMMON_BASE(_MASK) }; #define transform_regs(id)\ [id] = {\ XFM_COMMON_REG_LIST_DCE110(id)\ } static const struct dce_transform_registers xfm_regs[] = { transform_regs(0), transform_regs(1), transform_regs(2) }; static const struct dce_transform_shift xfm_shift = { XFM_COMMON_MASK_SH_LIST_DCE110(__SHIFT) }; static const struct dce_transform_mask xfm_mask = { XFM_COMMON_MASK_SH_LIST_DCE110(_MASK) }; #define aux_regs(id)\ [id] = {\ AUX_REG_LIST(id)\ } static const struct dce110_link_enc_aux_registers link_enc_aux_regs[] = { aux_regs(0), aux_regs(1), aux_regs(2), aux_regs(3), aux_regs(4), aux_regs(5) }; #define hpd_regs(id)\ [id] = {\ HPD_REG_LIST(id)\ } static const struct dce110_link_enc_hpd_registers link_enc_hpd_regs[] = { hpd_regs(0), hpd_regs(1), hpd_regs(2), hpd_regs(3), hpd_regs(4), hpd_regs(5) }; #define link_regs(id)\ [id] = {\ LE_DCE110_REG_LIST(id)\ } static const struct dce110_link_enc_registers link_enc_regs[] = { link_regs(0), link_regs(1), link_regs(2), link_regs(3), link_regs(4), link_regs(5), link_regs(6), }; #define stream_enc_regs(id)\ [id] = {\ SE_COMMON_REG_LIST(id),\ .TMDS_CNTL = 0,\ } static const struct dce110_stream_enc_registers stream_enc_regs[] = { stream_enc_regs(0), stream_enc_regs(1), stream_enc_regs(2) }; static const struct dce_stream_encoder_shift se_shift = { SE_COMMON_MASK_SH_LIST_DCE110(__SHIFT) }; static const struct dce_stream_encoder_mask se_mask = { SE_COMMON_MASK_SH_LIST_DCE110(_MASK) }; static const struct dce_panel_cntl_registers panel_cntl_regs[] = { { DCE_PANEL_CNTL_REG_LIST() } }; static const struct dce_panel_cntl_shift panel_cntl_shift = { DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT) }; static const struct dce_panel_cntl_mask panel_cntl_mask = { DCE_PANEL_CNTL_MASK_SH_LIST(_MASK) }; static const struct dce110_aux_registers_shift aux_shift = { DCE_AUX_MASK_SH_LIST(__SHIFT) }; static const struct dce110_aux_registers_mask aux_mask = { DCE_AUX_MASK_SH_LIST(_MASK) }; #define opp_regs(id)\ [id] = {\ OPP_DCE_110_REG_LIST(id),\ } static const struct dce_opp_registers opp_regs[] = { opp_regs(0), opp_regs(1), opp_regs(2), opp_regs(3), opp_regs(4), opp_regs(5) }; static const struct dce_opp_shift opp_shift = { OPP_COMMON_MASK_SH_LIST_DCE_110(__SHIFT) }; static const struct dce_opp_mask opp_mask = { OPP_COMMON_MASK_SH_LIST_DCE_110(_MASK) }; #define aux_engine_regs(id)\ [id] = {\ AUX_COMMON_REG_LIST(id), \ .AUX_RESET_MASK = 0 \ } static const struct dce110_aux_registers aux_engine_regs[] = { aux_engine_regs(0), aux_engine_regs(1), aux_engine_regs(2), aux_engine_regs(3), aux_engine_regs(4), aux_engine_regs(5) }; #define audio_regs(id)\ [id] = {\ AUD_COMMON_REG_LIST(id)\ } static const struct dce_audio_registers audio_regs[] = { audio_regs(0), audio_regs(1), audio_regs(2), audio_regs(3), audio_regs(4), audio_regs(5), audio_regs(6), }; static const struct dce_audio_shift audio_shift = { AUD_COMMON_MASK_SH_LIST(__SHIFT) }; static const struct dce_audio_mask audio_mask = { AUD_COMMON_MASK_SH_LIST(_MASK) }; /* AG TBD Needs to be reduced back to 3 pipes once dce10 hw sequencer implemented. */ #define clk_src_regs(id)\ [id] = {\ CS_COMMON_REG_LIST_DCE_100_110(id),\ } static const struct dce110_clk_src_regs clk_src_regs[] = { clk_src_regs(0), clk_src_regs(1), clk_src_regs(2) }; static const struct dce110_clk_src_shift cs_shift = { CS_COMMON_MASK_SH_LIST_DCE_COMMON_BASE(__SHIFT) }; static const struct dce110_clk_src_mask cs_mask = { CS_COMMON_MASK_SH_LIST_DCE_COMMON_BASE(_MASK) }; static const struct bios_registers bios_regs = { .BIOS_SCRATCH_3 = mmBIOS_SCRATCH_3, .BIOS_SCRATCH_6 = mmBIOS_SCRATCH_6 }; static const struct resource_caps carrizo_resource_cap = { .num_timing_generator = 3, .num_video_plane = 1, .num_audio = 3, .num_stream_encoder = 3, .num_pll = 2, .num_ddc = 3, }; static const struct resource_caps stoney_resource_cap = { .num_timing_generator = 2, .num_video_plane = 1, .num_audio = 3, .num_stream_encoder = 3, .num_pll = 2, .num_ddc = 3, }; static const struct dc_plane_cap plane_cap = { .type = DC_PLANE_TYPE_DCE_RGB, .blends_with_below = true, .blends_with_above = true, .per_pixel_alpha = 1, .pixel_format_support = { .argb8888 = true, .nv12 = false, .fp16 = true }, .max_upscale_factor = { .argb8888 = 16000, .nv12 = 1, .fp16 = 1 }, .max_downscale_factor = { .argb8888 = 250, .nv12 = 1, .fp16 = 1 }, 64, 64 }; static const struct dc_plane_cap underlay_plane_cap = { .type = DC_PLANE_TYPE_DCE_UNDERLAY, .blends_with_above = true, .per_pixel_alpha = 1, .pixel_format_support = { .argb8888 = false, .nv12 = true, .fp16 = false }, .max_upscale_factor = { .argb8888 = 1, .nv12 = 16000, .fp16 = 1 }, .max_downscale_factor = { .argb8888 = 1, .nv12 = 250, .fp16 = 1 }, 64, 64 }; #define CTX ctx #define REG(reg) mm ## reg #ifndef mmCC_DC_HDMI_STRAPS #define mmCC_DC_HDMI_STRAPS 0x4819 #define CC_DC_HDMI_STRAPS__HDMI_DISABLE_MASK 0x40 #define CC_DC_HDMI_STRAPS__HDMI_DISABLE__SHIFT 0x6 #define CC_DC_HDMI_STRAPS__AUDIO_STREAM_NUMBER_MASK 0x700 #define CC_DC_HDMI_STRAPS__AUDIO_STREAM_NUMBER__SHIFT 0x8 #endif static int map_transmitter_id_to_phy_instance( enum transmitter transmitter) { switch (transmitter) { case TRANSMITTER_UNIPHY_A: return 0; case TRANSMITTER_UNIPHY_B: return 1; case TRANSMITTER_UNIPHY_C: return 2; case TRANSMITTER_UNIPHY_D: return 3; case TRANSMITTER_UNIPHY_E: return 4; case TRANSMITTER_UNIPHY_F: return 5; case TRANSMITTER_UNIPHY_G: return 6; default: ASSERT(0); return 0; } } static void read_dce_straps( struct dc_context *ctx, struct resource_straps *straps) { REG_GET_2(CC_DC_HDMI_STRAPS, HDMI_DISABLE, &straps->hdmi_disable, AUDIO_STREAM_NUMBER, &straps->audio_stream_number); REG_GET(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO, &straps->dc_pinstraps_audio); } static struct audio *create_audio( struct dc_context *ctx, unsigned int inst) { return dce_audio_create(ctx, inst, &audio_regs[inst], &audio_shift, &audio_mask); } static struct timing_generator *dce110_timing_generator_create( struct dc_context *ctx, uint32_t instance, const struct dce110_timing_generator_offsets *offsets) { struct dce110_timing_generator *tg110 = kzalloc(sizeof(struct dce110_timing_generator), GFP_KERNEL); if (!tg110) return NULL; dce110_timing_generator_construct(tg110, ctx, instance, offsets); return &tg110->base; } static struct stream_encoder *dce110_stream_encoder_create( enum engine_id eng_id, struct dc_context *ctx) { struct dce110_stream_encoder *enc110 = kzalloc(sizeof(struct dce110_stream_encoder), GFP_KERNEL); if (!enc110) return NULL; dce110_stream_encoder_construct(enc110, ctx, ctx->dc_bios, eng_id, &stream_enc_regs[eng_id], &se_shift, &se_mask); return &enc110->base; } #define SRII(reg_name, block, id)\ .reg_name[id] = mm ## block ## id ## _ ## reg_name static const struct dce_hwseq_registers hwseq_stoney_reg = { HWSEQ_ST_REG_LIST() }; static const struct dce_hwseq_registers hwseq_cz_reg = { HWSEQ_CZ_REG_LIST() }; static const struct dce_hwseq_shift hwseq_shift = { HWSEQ_DCE11_MASK_SH_LIST(__SHIFT), }; static const struct dce_hwseq_mask hwseq_mask = { HWSEQ_DCE11_MASK_SH_LIST(_MASK), }; static struct dce_hwseq *dce110_hwseq_create( struct dc_context *ctx) { struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL); if (hws) { hws->ctx = ctx; hws->regs = ASIC_REV_IS_STONEY(ctx->asic_id.hw_internal_rev) ? &hwseq_stoney_reg : &hwseq_cz_reg; hws->shifts = &hwseq_shift; hws->masks = &hwseq_mask; hws->wa.blnd_crtc_trigger = true; } return hws; } static const struct resource_create_funcs res_create_funcs = { .read_dce_straps = read_dce_straps, .create_audio = create_audio, .create_stream_encoder = dce110_stream_encoder_create, .create_hwseq = dce110_hwseq_create, }; #define mi_inst_regs(id) { \ MI_DCE11_REG_LIST(id), \ .MC_HUB_RDREQ_DMIF_LIMIT = mmMC_HUB_RDREQ_DMIF_LIMIT \ } static const struct dce_mem_input_registers mi_regs[] = { mi_inst_regs(0), mi_inst_regs(1), mi_inst_regs(2), }; static const struct dce_mem_input_shift mi_shifts = { MI_DCE11_MASK_SH_LIST(__SHIFT), .ENABLE = MC_HUB_RDREQ_DMIF_LIMIT__ENABLE__SHIFT }; static const struct dce_mem_input_mask mi_masks = { MI_DCE11_MASK_SH_LIST(_MASK), .ENABLE = MC_HUB_RDREQ_DMIF_LIMIT__ENABLE_MASK }; static struct mem_input *dce110_mem_input_create( struct dc_context *ctx, uint32_t inst) { struct dce_mem_input *dce_mi = kzalloc(sizeof(struct dce_mem_input), GFP_KERNEL); if (!dce_mi) { BREAK_TO_DEBUGGER(); return NULL; } dce_mem_input_construct(dce_mi, ctx, inst, &mi_regs[inst], &mi_shifts, &mi_masks); dce_mi->wa.single_head_rdreq_dmif_limit = 3; return &dce_mi->base; } static void dce110_transform_destroy(struct transform **xfm) { kfree(TO_DCE_TRANSFORM(*xfm)); *xfm = NULL; } static struct transform *dce110_transform_create( struct dc_context *ctx, uint32_t inst) { struct dce_transform *transform = kzalloc(sizeof(struct dce_transform), GFP_KERNEL); if (!transform) return NULL; dce_transform_construct(transform, ctx, inst, &xfm_regs[inst], &xfm_shift, &xfm_mask); return &transform->base; } static struct input_pixel_processor *dce110_ipp_create( struct dc_context *ctx, uint32_t inst) { struct dce_ipp *ipp = kzalloc(sizeof(struct dce_ipp), GFP_KERNEL); if (!ipp) { BREAK_TO_DEBUGGER(); return NULL; } dce_ipp_construct(ipp, ctx, inst, &ipp_regs[inst], &ipp_shift, &ipp_mask); return &ipp->base; } static const struct encoder_feature_support link_enc_feature = { .max_hdmi_deep_color = COLOR_DEPTH_121212, .max_hdmi_pixel_clock = 300000, .flags.bits.IS_HBR2_CAPABLE = true, .flags.bits.IS_TPS3_CAPABLE = true }; static struct link_encoder *dce110_link_encoder_create( struct dc_context *ctx, const struct encoder_init_data *enc_init_data) { struct dce110_link_encoder *enc110 = kzalloc(sizeof(struct dce110_link_encoder), GFP_KERNEL); int link_regs_id; if (!enc110) return NULL; link_regs_id = map_transmitter_id_to_phy_instance(enc_init_data->transmitter); dce110_link_encoder_construct(enc110, enc_init_data, &link_enc_feature, &link_enc_regs[link_regs_id], &link_enc_aux_regs[enc_init_data->channel - 1], &link_enc_hpd_regs[enc_init_data->hpd_source]); return &enc110->base; } static struct panel_cntl *dce110_panel_cntl_create(const struct panel_cntl_init_data *init_data) { struct dce_panel_cntl *panel_cntl = kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL); if (!panel_cntl) return NULL; dce_panel_cntl_construct(panel_cntl, init_data, &panel_cntl_regs[init_data->inst], &panel_cntl_shift, &panel_cntl_mask); return &panel_cntl->base; } static struct output_pixel_processor *dce110_opp_create( struct dc_context *ctx, uint32_t inst) { struct dce110_opp *opp = kzalloc(sizeof(struct dce110_opp), GFP_KERNEL); if (!opp) return NULL; dce110_opp_construct(opp, ctx, inst, &opp_regs[inst], &opp_shift, &opp_mask); return &opp->base; } static struct dce_aux *dce110_aux_engine_create( struct dc_context *ctx, uint32_t inst) { struct aux_engine_dce110 *aux_engine = kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL); if (!aux_engine) return NULL; dce110_aux_engine_construct(aux_engine, ctx, inst, SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD, &aux_engine_regs[inst], &aux_mask, &aux_shift, ctx->dc->caps.extended_aux_timeout_support); return &aux_engine->base; } #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) } static const struct dce_i2c_registers i2c_hw_regs[] = { i2c_inst_regs(1), i2c_inst_regs(2), i2c_inst_regs(3), i2c_inst_regs(4), i2c_inst_regs(5), i2c_inst_regs(6), }; static const struct dce_i2c_shift i2c_shifts = { I2C_COMMON_MASK_SH_LIST_DCE110(__SHIFT) }; static const struct dce_i2c_mask i2c_masks = { I2C_COMMON_MASK_SH_LIST_DCE110(_MASK) }; static struct dce_i2c_hw *dce110_i2c_hw_create( struct dc_context *ctx, uint32_t inst) { struct dce_i2c_hw *dce_i2c_hw = kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL); if (!dce_i2c_hw) return NULL; dce100_i2c_hw_construct(dce_i2c_hw, ctx, inst, &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks); return dce_i2c_hw; } static struct clock_source *dce110_clock_source_create( struct dc_context *ctx, struct dc_bios *bios, enum clock_source_id id, const struct dce110_clk_src_regs *regs, bool dp_clk_src) { struct dce110_clk_src *clk_src = kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL); if (!clk_src) return NULL; if (dce110_clk_src_construct(clk_src, ctx, bios, id, regs, &cs_shift, &cs_mask)) { clk_src->base.dp_clk_src = dp_clk_src; return &clk_src->base; } kfree(clk_src); BREAK_TO_DEBUGGER(); return NULL; } static void dce110_clock_source_destroy(struct clock_source **clk_src) { struct dce110_clk_src *dce110_clk_src; if (!clk_src) return; dce110_clk_src = TO_DCE110_CLK_SRC(*clk_src); kfree(dce110_clk_src->dp_ss_params); kfree(dce110_clk_src->hdmi_ss_params); kfree(dce110_clk_src->dvi_ss_params); kfree(dce110_clk_src); *clk_src = NULL; } static void dce110_resource_destruct(struct dce110_resource_pool *pool) { unsigned int i; for (i = 0; i < pool->base.pipe_count; i++) { if (pool->base.opps[i] != NULL) dce110_opp_destroy(&pool->base.opps[i]); if (pool->base.transforms[i] != NULL) dce110_transform_destroy(&pool->base.transforms[i]); if (pool->base.ipps[i] != NULL) dce_ipp_destroy(&pool->base.ipps[i]); if (pool->base.mis[i] != NULL) { kfree(TO_DCE_MEM_INPUT(pool->base.mis[i])); pool->base.mis[i] = NULL; } if (pool->base.timing_generators[i] != NULL) { kfree(DCE110TG_FROM_TG(pool->base.timing_generators[i])); pool->base.timing_generators[i] = NULL; } } for (i = 0; i < pool->base.res_cap->num_ddc; i++) { if (pool->base.engines[i] != NULL) dce110_engine_destroy(&pool->base.engines[i]); if (pool->base.hw_i2cs[i] != NULL) { kfree(pool->base.hw_i2cs[i]); pool->base.hw_i2cs[i] = NULL; } if (pool->base.sw_i2cs[i] != NULL) { kfree(pool->base.sw_i2cs[i]); pool->base.sw_i2cs[i] = NULL; } } for (i = 0; i < pool->base.stream_enc_count; i++) { if (pool->base.stream_enc[i] != NULL) kfree(DCE110STRENC_FROM_STRENC(pool->base.stream_enc[i])); } for (i = 0; i < pool->base.clk_src_count; i++) { if (pool->base.clock_sources[i] != NULL) { dce110_clock_source_destroy(&pool->base.clock_sources[i]); } } if (pool->base.dp_clock_source != NULL) dce110_clock_source_destroy(&pool->base.dp_clock_source); for (i = 0; i < pool->base.audio_count; i++) { if (pool->base.audios[i] != NULL) { dce_aud_destroy(&pool->base.audios[i]); } } if (pool->base.abm != NULL) dce_abm_destroy(&pool->base.abm); if (pool->base.dmcu != NULL) dce_dmcu_destroy(&pool->base.dmcu); if (pool->base.irqs != NULL) { dal_irq_service_destroy(&pool->base.irqs); } } static void get_pixel_clock_parameters( const struct pipe_ctx *pipe_ctx, struct pixel_clk_params *pixel_clk_params) { const struct dc_stream_state *stream = pipe_ctx->stream; /*TODO: is this halved for YCbCr 420? in that case we might want to move * the pixel clock normalization for hdmi up to here instead of doing it * in pll_adjust_pix_clk */ pixel_clk_params->requested_pix_clk_100hz = stream->timing.pix_clk_100hz; pixel_clk_params->encoder_object_id = stream->link->link_enc->id; pixel_clk_params->signal_type = pipe_ctx->stream->signal; pixel_clk_params->controller_id = pipe_ctx->stream_res.tg->inst + 1; /* TODO: un-hardcode*/ pixel_clk_params->requested_sym_clk = LINK_RATE_LOW * LINK_RATE_REF_FREQ_IN_KHZ; pixel_clk_params->flags.ENABLE_SS = 0; pixel_clk_params->color_depth = stream->timing.display_color_depth; pixel_clk_params->flags.DISPLAY_BLANKED = 1; pixel_clk_params->flags.SUPPORT_YCBCR420 = (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420); pixel_clk_params->pixel_encoding = stream->timing.pixel_encoding; if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR422) { pixel_clk_params->color_depth = COLOR_DEPTH_888; } if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420) { pixel_clk_params->requested_pix_clk_100hz = pixel_clk_params->requested_pix_clk_100hz / 2; } if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING) pixel_clk_params->requested_pix_clk_100hz *= 2; } void dce110_resource_build_pipe_hw_param(struct pipe_ctx *pipe_ctx) { get_pixel_clock_parameters(pipe_ctx, &pipe_ctx->stream_res.pix_clk_params); pipe_ctx->clock_source->funcs->get_pix_clk_dividers( pipe_ctx->clock_source, &pipe_ctx->stream_res.pix_clk_params, &pipe_ctx->pll_settings); resource_build_bit_depth_reduction_params(pipe_ctx->stream, &pipe_ctx->stream->bit_depth_params); pipe_ctx->stream->clamping.pixel_encoding = pipe_ctx->stream->timing.pixel_encoding; } static bool is_surface_pixel_format_supported(struct pipe_ctx *pipe_ctx, unsigned int underlay_idx) { if (pipe_ctx->pipe_idx != underlay_idx) return true; if (!pipe_ctx->plane_state) return false; if (pipe_ctx->plane_state->format < SURFACE_PIXEL_FORMAT_VIDEO_BEGIN) return false; return true; } static enum dc_status build_mapped_resource( const struct dc *dc, struct dc_state *context, struct dc_stream_state *stream) { struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(&context->res_ctx, stream); if (!pipe_ctx) return DC_ERROR_UNEXPECTED; if (!is_surface_pixel_format_supported(pipe_ctx, dc->res_pool->underlay_pipe_index)) return DC_SURFACE_PIXEL_FORMAT_UNSUPPORTED; dce110_resource_build_pipe_hw_param(pipe_ctx); /* TODO: validate audio ASIC caps, encoder */ resource_build_info_frame(pipe_ctx); return DC_OK; } static bool dce110_validate_bandwidth( struct dc *dc, struct dc_state *context, bool fast_validate) { bool result = false; DC_LOG_BANDWIDTH_CALCS( "%s: start", __func__); if (bw_calcs( dc->ctx, dc->bw_dceip, dc->bw_vbios, context->res_ctx.pipe_ctx, dc->res_pool->pipe_count, &context->bw_ctx.bw.dce)) result = true; if (!result) DC_LOG_BANDWIDTH_VALIDATION("%s: %dx%d@%d Bandwidth validation failed!\n", __func__, context->streams[0]->timing.h_addressable, context->streams[0]->timing.v_addressable, context->streams[0]->timing.pix_clk_100hz / 10); if (memcmp(&dc->current_state->bw_ctx.bw.dce, &context->bw_ctx.bw.dce, sizeof(context->bw_ctx.bw.dce))) { DC_LOG_BANDWIDTH_CALCS( "%s: finish,\n" "nbpMark_b: %d nbpMark_a: %d urgentMark_b: %d urgentMark_a: %d\n" "stutMark_b: %d stutMark_a: %d\n" "nbpMark_b: %d nbpMark_a: %d urgentMark_b: %d urgentMark_a: %d\n" "stutMark_b: %d stutMark_a: %d\n" "nbpMark_b: %d nbpMark_a: %d urgentMark_b: %d urgentMark_a: %d\n" "stutMark_b: %d stutMark_a: %d stutter_mode_enable: %d\n" "cstate: %d pstate: %d nbpstate: %d sync: %d dispclk: %d\n" "sclk: %d sclk_sleep: %d yclk: %d blackout_recovery_time_us: %d\n" , __func__, context->bw_ctx.bw.dce.nbp_state_change_wm_ns[0].b_mark, context->bw_ctx.bw.dce.nbp_state_change_wm_ns[0].a_mark, context->bw_ctx.bw.dce.urgent_wm_ns[0].b_mark, context->bw_ctx.bw.dce.urgent_wm_ns[0].a_mark, context->bw_ctx.bw.dce.stutter_exit_wm_ns[0].b_mark, context->bw_ctx.bw.dce.stutter_exit_wm_ns[0].a_mark, context->bw_ctx.bw.dce.nbp_state_change_wm_ns[1].b_mark, context->bw_ctx.bw.dce.nbp_state_change_wm_ns[1].a_mark, context->bw_ctx.bw.dce.urgent_wm_ns[1].b_mark, context->bw_ctx.bw.dce.urgent_wm_ns[1].a_mark, context->bw_ctx.bw.dce.stutter_exit_wm_ns[1].b_mark, context->bw_ctx.bw.dce.stutter_exit_wm_ns[1].a_mark, context->bw_ctx.bw.dce.nbp_state_change_wm_ns[2].b_mark, context->bw_ctx.bw.dce.nbp_state_change_wm_ns[2].a_mark, context->bw_ctx.bw.dce.urgent_wm_ns[2].b_mark, context->bw_ctx.bw.dce.urgent_wm_ns[2].a_mark, context->bw_ctx.bw.dce.stutter_exit_wm_ns[2].b_mark, context->bw_ctx.bw.dce.stutter_exit_wm_ns[2].a_mark, context->bw_ctx.bw.dce.stutter_mode_enable, context->bw_ctx.bw.dce.cpuc_state_change_enable, context->bw_ctx.bw.dce.cpup_state_change_enable, context->bw_ctx.bw.dce.nbp_state_change_enable, context->bw_ctx.bw.dce.all_displays_in_sync, context->bw_ctx.bw.dce.dispclk_khz, context->bw_ctx.bw.dce.sclk_khz, context->bw_ctx.bw.dce.sclk_deep_sleep_khz, context->bw_ctx.bw.dce.yclk_khz, context->bw_ctx.bw.dce.blackout_recovery_time_us); } return result; } static enum dc_status dce110_validate_plane(const struct dc_plane_state *plane_state, struct dc_caps *caps) { if (((plane_state->dst_rect.width * 2) < plane_state->src_rect.width) || ((plane_state->dst_rect.height * 2) < plane_state->src_rect.height)) return DC_FAIL_SURFACE_VALIDATE; return DC_OK; } static bool dce110_validate_surface_sets( struct dc_state *context) { int i, j; for (i = 0; i < context->stream_count; i++) { if (context->stream_status[i].plane_count == 0) continue; if (context->stream_status[i].plane_count > 2) return false; for (j = 0; j < context->stream_status[i].plane_count; j++) { struct dc_plane_state *plane = context->stream_status[i].plane_states[j]; /* underlay validation */ if (plane->format >= SURFACE_PIXEL_FORMAT_VIDEO_BEGIN) { if ((plane->src_rect.width > 1920 || plane->src_rect.height > 1080)) return false; /* we don't have the logic to support underlay * only yet so block the use case where we get * NV12 plane as top layer */ if (j == 0) return false; /* irrespective of plane format, * stream should be RGB encoded */ if (context->streams[i]->timing.pixel_encoding != PIXEL_ENCODING_RGB) return false; } } } return true; } static enum dc_status dce110_validate_global( struct dc *dc, struct dc_state *context) { if (!dce110_validate_surface_sets(context)) return DC_FAIL_SURFACE_VALIDATE; return DC_OK; } static enum dc_status dce110_add_stream_to_ctx( struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream) { enum dc_status result = DC_ERROR_UNEXPECTED; result = resource_map_pool_resources(dc, new_ctx, dc_stream); if (result == DC_OK) result = resource_map_clock_resources(dc, new_ctx, dc_stream); if (result == DC_OK) result = build_mapped_resource(dc, new_ctx, dc_stream); return result; } static struct pipe_ctx *dce110_acquire_underlay( struct dc_state *context, const struct resource_pool *pool, struct dc_stream_state *stream) { struct dc *dc = stream->ctx->dc; struct dce_hwseq *hws = dc->hwseq; struct resource_context *res_ctx = &context->res_ctx; unsigned int underlay_idx = pool->underlay_pipe_index; struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[underlay_idx]; if (res_ctx->pipe_ctx[underlay_idx].stream) return NULL; pipe_ctx->stream_res.tg = pool->timing_generators[underlay_idx]; pipe_ctx->plane_res.mi = pool->mis[underlay_idx]; /*pipe_ctx->plane_res.ipp = res_ctx->pool->ipps[underlay_idx];*/ pipe_ctx->plane_res.xfm = pool->transforms[underlay_idx]; pipe_ctx->stream_res.opp = pool->opps[underlay_idx]; pipe_ctx->pipe_idx = underlay_idx; pipe_ctx->stream = stream; if (!dc->current_state->res_ctx.pipe_ctx[underlay_idx].stream) { struct tg_color black_color = {0}; struct dc_bios *dcb = dc->ctx->dc_bios; hws->funcs.enable_display_power_gating( dc, pipe_ctx->stream_res.tg->inst, dcb, PIPE_GATING_CONTROL_DISABLE); /* * This is for powering on underlay, so crtc does not * need to be enabled */ pipe_ctx->stream_res.tg->funcs->program_timing(pipe_ctx->stream_res.tg, &stream->timing, 0, 0, 0, 0, pipe_ctx->stream->signal, false); pipe_ctx->stream_res.tg->funcs->enable_advanced_request( pipe_ctx->stream_res.tg, true, &stream->timing); pipe_ctx->plane_res.mi->funcs->allocate_mem_input(pipe_ctx->plane_res.mi, stream->timing.h_total, stream->timing.v_total, stream->timing.pix_clk_100hz / 10, context->stream_count); color_space_to_black_color(dc, COLOR_SPACE_YCBCR601, &black_color); pipe_ctx->stream_res.tg->funcs->set_blank_color( pipe_ctx->stream_res.tg, &black_color); } return pipe_ctx; } static void dce110_destroy_resource_pool(struct resource_pool **pool) { struct dce110_resource_pool *dce110_pool = TO_DCE110_RES_POOL(*pool); dce110_resource_destruct(dce110_pool); kfree(dce110_pool); *pool = NULL; } struct stream_encoder *dce110_find_first_free_match_stream_enc_for_link( struct resource_context *res_ctx, const struct resource_pool *pool, struct dc_stream_state *stream) { int i; int j = -1; struct dc_link *link = stream->link; for (i = 0; i < pool->stream_enc_count; i++) { if (!res_ctx->is_stream_enc_acquired[i] && pool->stream_enc[i]) { /* Store first available for MST second display * in daisy chain use case */ j = i; if (pool->stream_enc[i]->id == link->link_enc->preferred_engine) return pool->stream_enc[i]; } } /* * For CZ and later, we can allow DIG FE and BE to differ for all display types */ if (j >= 0) return pool->stream_enc[j]; return NULL; } static const struct resource_funcs dce110_res_pool_funcs = { .destroy = dce110_destroy_resource_pool, .link_enc_create = dce110_link_encoder_create, .panel_cntl_create = dce110_panel_cntl_create, .validate_bandwidth = dce110_validate_bandwidth, .validate_plane = dce110_validate_plane, .acquire_idle_pipe_for_layer = dce110_acquire_underlay, .add_stream_to_ctx = dce110_add_stream_to_ctx, .validate_global = dce110_validate_global, .find_first_free_match_stream_enc_for_link = dce110_find_first_free_match_stream_enc_for_link }; static bool underlay_create(struct dc_context *ctx, struct resource_pool *pool) { struct dce110_timing_generator *dce110_tgv = kzalloc(sizeof(*dce110_tgv), GFP_KERNEL); struct dce_transform *dce110_xfmv = kzalloc(sizeof(*dce110_xfmv), GFP_KERNEL); struct dce_mem_input *dce110_miv = kzalloc(sizeof(*dce110_miv), GFP_KERNEL); struct dce110_opp *dce110_oppv = kzalloc(sizeof(*dce110_oppv), GFP_KERNEL); if (!dce110_tgv || !dce110_xfmv || !dce110_miv || !dce110_oppv) { kfree(dce110_tgv); kfree(dce110_xfmv); kfree(dce110_miv); kfree(dce110_oppv); return false; } dce110_opp_v_construct(dce110_oppv, ctx); dce110_timing_generator_v_construct(dce110_tgv, ctx); dce110_mem_input_v_construct(dce110_miv, ctx); dce110_transform_v_construct(dce110_xfmv, ctx); pool->opps[pool->pipe_count] = &dce110_oppv->base; pool->timing_generators[pool->pipe_count] = &dce110_tgv->base; pool->mis[pool->pipe_count] = &dce110_miv->base; pool->transforms[pool->pipe_count] = &dce110_xfmv->base; pool->pipe_count++; /* update the public caps to indicate an underlay is available */ ctx->dc->caps.max_slave_planes = 1; ctx->dc->caps.max_slave_yuv_planes = 1; ctx->dc->caps.max_slave_rgb_planes = 0; return true; } static void bw_calcs_data_update_from_pplib(struct dc *dc) { struct dm_pp_clock_levels clks = {0}; /*do system clock*/ dm_pp_get_clock_levels_by_type( dc->ctx, DM_PP_CLOCK_TYPE_ENGINE_CLK, &clks); /* convert all the clock fro kHz to fix point mHz */ dc->bw_vbios->high_sclk = bw_frc_to_fixed( clks.clocks_in_khz[clks.num_levels-1], 1000); dc->bw_vbios->mid1_sclk = bw_frc_to_fixed( clks.clocks_in_khz[clks.num_levels/8], 1000); dc->bw_vbios->mid2_sclk = bw_frc_to_fixed( clks.clocks_in_khz[clks.num_levels*2/8], 1000); dc->bw_vbios->mid3_sclk = bw_frc_to_fixed( clks.clocks_in_khz[clks.num_levels*3/8], 1000); dc->bw_vbios->mid4_sclk = bw_frc_to_fixed( clks.clocks_in_khz[clks.num_levels*4/8], 1000); dc->bw_vbios->mid5_sclk = bw_frc_to_fixed( clks.clocks_in_khz[clks.num_levels*5/8], 1000); dc->bw_vbios->mid6_sclk = bw_frc_to_fixed( clks.clocks_in_khz[clks.num_levels*6/8], 1000); dc->bw_vbios->low_sclk = bw_frc_to_fixed( clks.clocks_in_khz[0], 1000); dc->sclk_lvls = clks; /*do display clock*/ dm_pp_get_clock_levels_by_type( dc->ctx, DM_PP_CLOCK_TYPE_DISPLAY_CLK, &clks); dc->bw_vbios->high_voltage_max_dispclk = bw_frc_to_fixed( clks.clocks_in_khz[clks.num_levels-1], 1000); dc->bw_vbios->mid_voltage_max_dispclk = bw_frc_to_fixed( clks.clocks_in_khz[clks.num_levels>>1], 1000); dc->bw_vbios->low_voltage_max_dispclk = bw_frc_to_fixed( clks.clocks_in_khz[0], 1000); /*do memory clock*/ dm_pp_get_clock_levels_by_type( dc->ctx, DM_PP_CLOCK_TYPE_MEMORY_CLK, &clks); dc->bw_vbios->low_yclk = bw_frc_to_fixed( clks.clocks_in_khz[0] * MEMORY_TYPE_MULTIPLIER_CZ, 1000); dc->bw_vbios->mid_yclk = bw_frc_to_fixed( clks.clocks_in_khz[clks.num_levels>>1] * MEMORY_TYPE_MULTIPLIER_CZ, 1000); dc->bw_vbios->high_yclk = bw_frc_to_fixed( clks.clocks_in_khz[clks.num_levels-1] * MEMORY_TYPE_MULTIPLIER_CZ, 1000); } static const struct resource_caps *dce110_resource_cap( struct hw_asic_id *asic_id) { if (ASIC_REV_IS_STONEY(asic_id->hw_internal_rev)) return &stoney_resource_cap; else return &carrizo_resource_cap; } static bool dce110_resource_construct( uint8_t num_virtual_links, struct dc *dc, struct dce110_resource_pool *pool, struct hw_asic_id asic_id) { unsigned int i; struct dc_context *ctx = dc->ctx; struct dc_bios *bp; ctx->dc_bios->regs = &bios_regs; pool->base.res_cap = dce110_resource_cap(&ctx->asic_id); pool->base.funcs = &dce110_res_pool_funcs; /************************************************* * Resource + asic cap harcoding * *************************************************/ pool->base.pipe_count = pool->base.res_cap->num_timing_generator; pool->base.underlay_pipe_index = pool->base.pipe_count; pool->base.timing_generator_count = pool->base.res_cap->num_timing_generator; dc->caps.max_downscale_ratio = 150; dc->caps.i2c_speed_in_khz = 40; dc->caps.i2c_speed_in_khz_hdcp = 40; dc->caps.max_cursor_size = 128; dc->caps.min_horizontal_blanking_period = 80; dc->caps.is_apu = true; dc->caps.extended_aux_timeout_support = false; /************************************************* * Create resources * *************************************************/ bp = ctx->dc_bios; if (bp->fw_info_valid && bp->fw_info.external_clock_source_frequency_for_dp != 0) { pool->base.dp_clock_source = dce110_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_EXTERNAL, NULL, true); pool->base.clock_sources[0] = dce110_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_PLL0, &clk_src_regs[0], false); pool->base.clock_sources[1] = dce110_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_PLL1, &clk_src_regs[1], false); pool->base.clk_src_count = 2; /* TODO: find out if CZ support 3 PLLs */ } if (pool->base.dp_clock_source == NULL) { dm_error("DC: failed to create dp clock source!\n"); BREAK_TO_DEBUGGER(); goto res_create_fail; } for (i = 0; i < pool->base.clk_src_count; i++) { if (pool->base.clock_sources[i] == NULL) { dm_error("DC: failed to create clock sources!\n"); BREAK_TO_DEBUGGER(); goto res_create_fail; } } pool->base.dmcu = dce_dmcu_create(ctx, &dmcu_regs, &dmcu_shift, &dmcu_mask); if (pool->base.dmcu == NULL) { dm_error("DC: failed to create dmcu!\n"); BREAK_TO_DEBUGGER(); goto res_create_fail; } pool->base.abm = dce_abm_create(ctx, &abm_regs, &abm_shift, &abm_mask); if (pool->base.abm == NULL) { dm_error("DC: failed to create abm!\n"); BREAK_TO_DEBUGGER(); goto res_create_fail; } { struct irq_service_init_data init_data; init_data.ctx = dc->ctx; pool->base.irqs = dal_irq_service_dce110_create(&init_data); if (!pool->base.irqs) goto res_create_fail; } for (i = 0; i < pool->base.pipe_count; i++) { pool->base.timing_generators[i] = dce110_timing_generator_create( ctx, i, &dce110_tg_offsets[i]); if (pool->base.timing_generators[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create tg!\n"); goto res_create_fail; } pool->base.mis[i] = dce110_mem_input_create(ctx, i); if (pool->base.mis[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create memory input!\n"); goto res_create_fail; } pool->base.ipps[i] = dce110_ipp_create(ctx, i); if (pool->base.ipps[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create input pixel processor!\n"); goto res_create_fail; } pool->base.transforms[i] = dce110_transform_create(ctx, i); if (pool->base.transforms[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create transform!\n"); goto res_create_fail; } pool->base.opps[i] = dce110_opp_create(ctx, i); if (pool->base.opps[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create output pixel processor!\n"); goto res_create_fail; } } for (i = 0; i < pool->base.res_cap->num_ddc; i++) { pool->base.engines[i] = dce110_aux_engine_create(ctx, i); if (pool->base.engines[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC:failed to create aux engine!!\n"); goto res_create_fail; } pool->base.hw_i2cs[i] = dce110_i2c_hw_create(ctx, i); if (pool->base.hw_i2cs[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC:failed to create i2c engine!!\n"); goto res_create_fail; } pool->base.sw_i2cs[i] = NULL; } if (dc->config.fbc_support) dc->fbc_compressor = dce110_compressor_create(ctx); if (!underlay_create(ctx, &pool->base)) goto res_create_fail; if (!resource_construct(num_virtual_links, dc, &pool->base, &res_create_funcs)) goto res_create_fail; /* Create hardware sequencer */ dce110_hw_sequencer_construct(dc); dc->caps.max_planes = pool->base.pipe_count; for (i = 0; i < pool->base.underlay_pipe_index; ++i) dc->caps.planes[i] = plane_cap; dc->caps.planes[pool->base.underlay_pipe_index] = underlay_plane_cap; bw_calcs_init(dc->bw_dceip, dc->bw_vbios, dc->ctx->asic_id); bw_calcs_data_update_from_pplib(dc); return true; res_create_fail: dce110_resource_destruct(pool); return false; } struct resource_pool *dce110_create_resource_pool( uint8_t num_virtual_links, struct dc *dc, struct hw_asic_id asic_id) { struct dce110_resource_pool *pool = kzalloc(sizeof(struct dce110_resource_pool), GFP_KERNEL); if (!pool) return NULL; if (dce110_resource_construct(num_virtual_links, dc, pool, asic_id)) return &pool->base; kfree(pool); BREAK_TO_DEBUGGER(); return NULL; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1